用户名: 密码: 验证码:
趋化因子受体CCR9在非小细胞肺癌中的表达及作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺癌是世界上最常见的肿瘤,位于肿瘤相关死亡的首位,每年有约160万新增病例,并且其相关死亡率在继续增加。其中非小细胞肺癌(NSCLC)占整个肺癌的85%左右,出于缺少有效的生物靶点,至少有40%的患者确诊时已经处于无法手术的肿瘤晚期。因此,独立可靠的、有预测性的分子靶标对肺癌的干预尤为重要。
     趋化因子是一类分子量为8-14kDa的小蛋白,与其同源的受体结合后具有白细胞的激活与趋化作用。趋化因子受体是有7个跨膜结构域的G蛋白偶联受体,其中趋化因子受体9(CC chemokine receptor-9, CCR9)与其特异性配体CCL25/TECK(thymus expressed CC chemokine)结合后与T淋巴细胞的活化和募集相关。趋化因子及其受体在实体瘤的凋亡中也起到重要作用。其中CCR9高表达于部分实体瘤细胞上,可能通过调控PI3K/Akt信号通路促进肿瘤细胞的增殖、抑制肿瘤细胞的凋亡。
     目前,CCR9在人NSCLC中的作用尚不明确。本实验旨在评估CCR9在NSCLC中的表达及其在NSCLC发生、发展过程中的生物学作用及可能的作用机制,为临床治疗人NSCLC提供有价值的实验依据。
     方法
     1.对广西壮族自治区人民医医院的119名NSCLC患者施行电话随访,了解其生存期及术后治疗;使用免疫组织化学技术对119名NSCLC患者癌组织及相应癌旁正常肺组织的石蜡标本中CCR9的表达水平进行检测;结合患者临床资料,分析CCR9表达与NSCLC中临床病理特征、生存率及预后的关系。
     2.设计合成3个与CCR9基因(Gen Bank accession number, Gene ID:10803)构建pcDNATM6.2-GW/EmGFPmiR表达载体,筛选出沉默效率最高的表达载体进行慢病毒包装并转染人NSCLC细胞系SK-MES-1和A549,构建能稳定沉默CCR9表达的NSCLC细胞系。
     3.运用MTT法实验观察CCR9-CCL25相互作用对NSCLC细胞系SK-MES-1和A549增殖能力影响;通过FACE (Fast-activated cell-based enzyme-linked immunosorbent assay)实验检测对PI3K/Akt信号通路活化的影响;通过PI染色流式细胞仪分析及免疫印迹法(Western blot),检测细胞周期及重要的周期蛋的改变;通过AnnexinV/PI流式双染及免疫印迹法(Western blot),检测细胞凋亡和凋亡蛋白的改变。
     4.以BALB/c裸鼠为研究对象,采用皮下注射稳转NSCLC细胞和对照组细胞悬液,建立肺癌细胞的裸鼠动物模型,通过观察肿瘤形成时间,测量肿瘤体积的方法观察肿瘤的形成和肿瘤的生长状况;采用Western blot检测肿瘤组织CCR9和PI3K/Akt信号通路重要蛋白PI3K110、pAkt和Akt蛋白的表达。
     结果
     1.免疫组化结果显示,CCR9主要定位于细胞膜与细胞质。NSCLC组织中CCR9阳性表达率为52.1%,明显高于正常对照组的10.1%(x2=49.028,P=0.000)。Pearson卡方检验表明,CCR9表达与组织病理分型、淋巴结转移和TNM分期等临床病理变量密切相关。CCR9阳性组患者的生存时间明显短于CCR9阴性组。多因素Cox比例风险模型分析显示,CCR9是NSCLC患者总体生存时间的独立预后因素。
     2.针对CCR9基因构建3个miRNA干扰载体和1个阴性对照载体,转化至感受态细胞DH-5a后,经测序表明插入的片段序列与设计合成的CCR9的RNA编码序列完全一致,证明miRNA干扰载体全部构建成功。根据RT-PCR和Western blot检测结果筛选出瞬时共转染SK-MES-1和A549细胞48小时后抑制作用最为显著的载体pcDNA6.2-GW/EmGFP-miR-MR1与pDNOR221和plenti6/v5-DEST连接,构建plenti6/v5慢病毒表达载体。经RT-PCR和Western blot验证与阴性病毒感染对照细胞SK-MES-1/Lv-NC和A549/Lv-NC以及未转染SK-MES-1和A549细胞相比,沉默细胞中CCR9的表达明显减少。经6ug/ml Blasticidin(杀稻瘟菌素)抗生素筛选后,用3ug/ml Blasticidin对慢病毒转染的细胞进行维持,最终构建能够稳定沉默CCR9表达的NSCLC细胞SK-MES-1/Lv-miCCR9和A549/Lv-miCCR9。
     3.体外实验表明,CCR9-CCL25轴相互作用以PI3K/Akt依赖的方式,上调重要的细胞周期蛋白和抗凋亡蛋白的表达同时抑制凋亡蛋白的表达,促进NSCLC细胞的增殖,抑制NSCLC细胞的凋亡,同时上述效应可以被wortmannin(一种P13K酶的特异性抑制剂)或用CCR9的沉默阻断CC9-CCL25轴的相互作用所逆转。此表明CCR9-CCL25轴主要是通过PI3K/Akt信号通路改变NSCLC的生物学特性的。
     4.与对照组相比,稳转CCR9RNAi的NSCLC细胞接种裸鼠皮下后,肿瘤生长明显减慢,肿瘤体积明显缩小。同时,CCR9蛋白下调,肿瘤内PI3K/Akt信号通路蛋白PI3K110、pAkt和Akt蛋白表达均明显降低。
     结论
     1.我们的免疫组化实验证实,CCR9在NSCLC组织中高表达,并且癌组织中表达显著高于相应癌旁正常肺组织;CCR9表达与患者组织学类型、是否合并淋巴结转移、临床分期以及预后密切相关。CCR9可以作为NSCLC患者预后的独立预测因素。
     2.我们的体内外实验证实,CCR9-CCL25轴的相互作用,通过活化PI3K/Akt信号通路,促进NSCLC细胞的增殖,抑(?)NSCLC细胞的凋亡。这可能是NSCLC进展的重要原因。
Background
     Lung cancer is the leading cause of cancer-related mortality worldwide, Approximately1.6million new cases of lung cancer are diagnosed each year throughout the world, the mortality related to lung cancer continues to rise. Non-small cell lung cancer (NSCLC) is the most frequent (approximately85%) type of lung cancer. Due to the lack of effective biomarkers, at least40%of patients with lung cancer are diagnosed in an advanced stage. Therefore, reliable and independent prognostic or predictive markers are needed for further intervention.
     Chemokines are small (8-14kDa) proteins that play key roles in development and leukocyte trafficking through interactions with cognate cell surface seven-transmembrane G protein-coupled receptors(GPCRs). CC chemokine receptor-9(CCR9) is a GPCRs and plays an important role in T-cell development and tissue-specific homing when binding to its specific ligand CCL25, which is also known as thymus expressed chemokine (TECK). Chemokines are also important for solid tumor apoptosis. CCR9is expressed in some carcinoma cells, and may promote proliferation and suppress apoptosis of cancer cells by activating the PI3K/Akt pathway.
     We investigated the expression status and functional significance of CCR9in NSCLC tissue and cell lines, and then explored the probable mechanism in vitro and in vivo, so as to provide experimental evidence on searching novel therapeutic targets of NSCLC.
     Methods
     1. Telephone following up regarding on life span and postoperative treatment was carried out with119patients who visited at The People's Hospital of Guangxi Zhuang Autonomous Region; Immunohistochemistry was used on119NSCLC pathological sections to detect the expression of CCR9; the correlation of CCR9expression with clinic pathologic variables and prognosis was analyzed.
     2. Three precursor microRNAs (Pre-miRNA) sequences targeting to CCR9and a negative control were designed and inserted into pcDNA6.2-GW/EmGFP-miR expression Vector to construct recombinant plasmid. To verify the recombinants, the recombinants were extracted for sequence detection. Using the instruction for lipofectamine2000, we transient transfected the recombinant plasmids in cultured SK-MES-1and A549cells. After48hours, RT-PCR and Western blot testing were used to identify the target site with the highest interfering efficiency. We packaged the recombinant lentiviral vector for CCR9RNAi with the highest interfering efficiency using the BLOCK-iTTPol Ⅱ miR RNAi Expression Vector Kit. The lentiviral vectors were transfceted into SK-MES-1and A549cells. To produce stable transfection cell lines, the cells were cultured in a selection medium.
     3. MTT assay was used to assess the proliferation ability of NSCLC cell lines SK-MES-1and A549with CCR9-CCL25interaction; FACE (Fast-activated cell-based enzyme-linked immunosorbent) assay was used to assess the influence of activation of PI3K/Akt signal pathway; Cell cycle distributions and related proteins were analyzed by flowcytometry and Western blot; Cell apoptosis and related proteins were analyzed by Annexin V-A and Western blot.
     4. BALB/c nude mice were injected subcutaneously with stably transfected NSCLC cells groups and control cell groups respectively to construct nude mouse of lung cancer animal models. Times of tumor formation of each group were obtained. The formation and growth of the tumors were observed by measuring. CCR9, PI3K110, pAkt and Akt proteins expression were detected by Western blot test.
     Results
     1. The results of immunohistochemistry showed that CCR9was mainly localized in cell membrane and cytoplasm. The positive rate of CCR9in lung cancer was significantly higher than that of CCR9in normal lung tissues (52.1%vs.10.1%,/2=49.028, P=0.000). CCR9expression closely correlated with histopathologic classification, lymph node metastasis and TNM stage in NSCLC by Pearson Chi-square test. The survival time in the CCR9expression group was shorter than those in the none expression group. CCR9was adopted as an independent prognostic factor for survival of NSCLC patients though multivariate Cox proportional hazard model analysis.
     2. Three recombinant plasmid expression vectors encoding Pre-miRNA against CCR9and a negative control were constructed correctly and veritified by sequencing. GFP was observed under the fluorescence microscope after the plasmids were transfected into the SK-MES-1and A549cells24hours later. Then pcDNA-CCR9-miR-MR-1was identified to have the highest interfering efficiency by RT-PCR and Western blot. We packaged the plenti6/v5recombinant lentiviral expression vector by pDNOR221and plenti6/v5-DEST for CCR9RNA interference with pcDNA-CCR9-miR-MR-1. To construct the stable transfectants, the cells were cultured in a selection medium containing6ug/ml of blasticidin for14days and the stable cell lines after selection were obtained with3ug/ml of blasticidin. Of note, about85-90%knockdown of CCR9expression in the SK-MES-1and A549cells were obtained by miRNA tcehnique.
     3. Compromised CCR9-CCL25interaction induced cell cycle arrest, reduced proliferation and promoted apoptosis in NSCLC cells in vitro. Importantly, CCR9-CCL25interaction resulted in a significant increase in phosphoinositide3-kinase (PI3K)/Akt activity. In addition, we showed that CCR9-CCL25interaction mediated the activation of the PI3K/Akt pathway in NSCLC cells, resulting in the up-regulation of important cell cycle proteins and antiapoptotic proteins, as well as the down-regulation of apoptotic proteins in a PI3K/Akt-dependent manner. These CCR9-CCL25mediated effects were abrogated in the presence of a PI3K inhibitor (wortmannin) or by inhibiting the CCR9-CCL25interaction through CCR9silencing, which also suggested that the biological function of CCR9-CCL25was mainly regulated by PI3K.
     4. After lung cancer cells transfected with CCR9RNAi were inoculated subcutaneously in nude mice, tumor growth were inhibited and tumor volume reduced significantly, compared with the control group. Expression of CCR9protein reduced. The expression of activated PI3K/Akt signaling pathway proteins were significantly down regulated.
     Conclusion
     1. Our IHC data indicated that CCR9is over-expressed in NSCLC. The expression of CCR9is correlated to histological types, with or without lymphatic metastasis and TNM stages. The survival time in the CCR9expression group was shorter than those in the none expression group. CCR9was adopted as an independent prognostic factor for survival of NSCLC patients.
     2.Our in vitro and in vivo data indicated that CCR9-CCL25interaction, via activation of the PI3K/Akt signaling pathway, significantly promoted NSCLC cell proliferation and suppressed NSCLC cells apoptosis, which might be a possible cause of NSCLC tumor progression.
引文
[1]Siegel R, Ma J, Zou Z, et al. Cancer statistics,2014[J]. CA Cancer J Clin,2014,64(1):9-29.
    [2]Ward E, Desantis C, Robbins A, et al. Childhood and adolescent cancer statistics,2014[J]. CA Cancer J Clin,2014,64(2):83-103.
    [3]Keith R L, Miller Y E. Lung cancer chemoprevention:current status and future prospects[J], Nat Rev Clin Oncol,2013,10(6):334-343.
    [4]Dragnev K, You M, Wang Y, et al. Lung cancer chemoprevention:difficulties, promise and potential agents?[J]. Expert Opin Investig Drugs,2013,22(1):35-47.
    [5]Yoshie O. [Role of chemokines and chemokine receptors in leukocyte trafficking][J]. Nihon Rinsho,2005,63 Suppl 4:437-443.
    [6]Singh S, Singh U P, Stiles J K, et al. Expression and functional role of CCR9 in prostate cancer cell migration and invasion[J]. Clin Cancer Res,2004,10(24):8743-8750.
    [7]Johnson E L, Singh R, Singh S, et al. CCL25-CCR9 interaction modulates ovarian cancer cell migration, metalloproteinase expression, and invasion[J]. World J Surg Oncol,2010,8:62.
    [8]Chen H J, Edwards R, Tucci S, et al. Chemokine 25-induced signaling suppresses colon cancer invasion and metastasis[J]. J Clin Invest,2012,122(9):3184-3196.
    [9]Johnson E L, Singh R, Johnson-Holiday C M, et al. CCR9 interactions support ovarian cancer cell survival and resistance to cisplatin-induced apoptosis in a PI3K-dependent and FAK-independent fashion[J]. J Ovarian Res,2010,3:15.
    [10]Johnson-Holiday C, Singh R, Johnson E, et al. CCL25 mediates migration, invasion and matrix metalloproteinase expression by breast cancer cells in a CCR9-dependent fashion[J]. Int J Oncol,2011,38(5):1279-1285.
    [11]Johnson-Holiday C, Singh R, Johnson E L, et al. CCR9-CCL25 interactions promote cisplatin resistance in breast cancer cell through Akt activation in a PI3K-dependent and FAK-independent fashion[J]. World J Surg Oncol,2011,9:46.
    [12]Amersi F F, Terando A M, Goto Y, et al. Activation of CCR9/CCL25 in cutaneous melanoma mediates preferential metastasis to the small intestine[J]. Clin Cancer Res,2008,14(3):638-645.
    [13]Kuhnelt-Leddihn L, Muller H, Eisendle K, et al. Overexpression of the chemokine receptors CXCR4, CCR7, CCR9, and CCR10 in human primary cutaneous melanoma:a potential prognostic value for CCR7 and CCR10?[J]. Arch Dermatol Res,2012,304(3):185-193.
    [14]Margolin K A. CCR9:CCL25 in melanoma metastatic to small intestine[J]. Curr Oncol Rep,2009,11(5):331-332.
    [15]van den Oord J. The CCR9-CCL25 axis mediates melanoma metastasis to the small intestine[J]. Nat Clin Pract Oncol,2008,5(8):440-441.
    [16]Amersi F F, Terando A M, Goto Y, et al. Activation of CCR9/CCL25 in cutaneous melanoma mediates preferential metastasis to the small intestine[J]. Clin Cancer Res,2008,14(3):638-645.
    [17]Richmond A. CCR9 homes metastatic melanoma cells to the small bowel[J]. Clin Cancer Res,2008,14(3):621-623.
    [18]Hwang S T. Chemokine receptors in melanoma:CCR9 has a potential role in metastasis to the small bowel[J]. J Invest Dermatol,2004,122(3):xiv-xv.
    [19]Singh R, Stockard C R, Grizzle W E, et al. Expression and histopathological correlation of CCR9 and CCL25 in ovarian cancer[J]. Int J Oncol,2011,39(2):373-381.
    [20]Johnson E L, Singh R, Singh S, et al. CCL25-CCR9 interaction modulates ovarian cancer cell migration, metalloproteinase expression, and invasion[J]. World J Surg Oncol,2010,8:62.
    [21]Heinrich E L, Arrington A K, Ko M E, et al. Paracrine Activation of Chemokine Receptor CCR9 Enhances The Invasiveness of Pancreatic Cancer Cells[J]. Cancer Microenviron,2013,6 (3):241-245.
    [22]Johnson-Holiday C, Singh R, Johnson E, et al. CCL25 mediates migration, invasion and matrix metalloproteinase expression by breast cancer cells in a CCR9-dependent fashion[J]. Int J Oncol,2011,38(5):1279-1285.
    [23]Singh S, Singh U P, Stiles J K, et al. Expression and functional role of CCR9 in prostate cancer cell migration and invasion[J]. Clin Cancer Res,2004,10(24):8743-8750.
    [24]Eksteen B, Grant A J, Miles A, et al. Hepatic endothelial CCL25 mediates the recruitment of CCR9+gut-homing lymphocytes to the liver in primary sclerosing cholangitis[J]. J Exp Med,2004,200(11):1511-1517.
    [25]Qiuping Z, Qun L, Chunsong H, et al. Selectively increased expression and functions of chemokine receptor CCR9 on CD4+T cells from patients with T-cell lineage acute lymphocytic leukemia[J]. Cancer Res,2003,63(19):6469-6477.
    [26]van den Oord J. The CCR9-CCL25 axis mediates melanoma metastasis to the small intestine[J]. Nat Clin Pract Oncol,2008,5(8):440-441.
    [27]Letsch A, Keilholz U, Schadendorf D, et al. Functional CCR9 expression is associated with small intestinal metastasis[J]. J Invest Dermatol,2004,122(3):685-690.
    [28]Johnson-Holiday C, Singh R, Johnson E, et al. CCL25 mediates migration, invasion and matrix metalloproteinase expression by breast cancer cells in a CCR9-dependent fashion[J]. Int J Oncol,2011,38(5):1279-1285.
    [29]Sharma P K, Singh R, Novakovic K R, et al. CCR9 mediates PI3K/AKT-dependent antiapoptotic signals in prostate cancer cells and inhibition of CCR9-CCL25 interaction enhances the cytotoxic effects of etoposide[J]. Int J Cancer,2010,127(9):2020-2030.
    [30]Johnson-Holiday C, Singh R, Johnson E L, et al. CCR9-CCL25 interactions promote cisplatin resistance in breast cancer cell through Akt activation in a PI3K-dependent and FAK-independent fashion[J]. World J Surg Oncol,2011,9:46.
    [31]李杰,李强.趋化因子CCL25/CCR9在胰腺癌患者的表达研究[J].中华肝胆外科杂志,2011,17(6):475-478.
    [32]Walton S P, Wu M, Gredell J A, et al. Designing highly active siRNAs for therapeutic applications[J]. FEBS J,2010,277(23):4806-4813.
    [33]Cullen B R. Transcription and processing of human microRNA precursors[J]. Mol Cell,2004,16(6):861-865.
    [34]Djuranovic S, Nahvi A, Green R. A parsimonious model for gene regulation by miRNAs[J]. Science,2011,331 (6017):550-553.
    [35]Dann C T. New technology for an old favorite:lentiviral transgenesis and RNAi in rats[J]. Transgenic Res,2007,16(5):571-580.
    [36]Wong L F, Goodhead L, Prat C, et al. Lentivirus-mediated gene transfer to the central nervous system:therapeutic and research applications[J]. Hum Gene Ther,2006,17(1):1-9.
    [37]May C, Rivella S, Callegari J, et al. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin[J]. Nature,2000,406(6791):82-86.
    [38]Klinghoffer R A, Magnus J, Schelter J, et al. Reduced seed region-based off-target activity with lentivirus-mediated RNAi[J]. RNA,2010,16(5):879-884.
    [39]Nagakubo D, Jin Z, Hieshima K, et al. Expression of CCR9 in HTLV-1+T cells and ATL cells expressing Tax[J]. Int J Cancer,2007,120(7):1591-1597.
    [40]Couzin J. Breakthrough of the year. Small RNAs make big splash[J]. Science,2002,298(5602): 2296-2297.
    [41]Mallory A C, Reinhart B J, Bartel D, et al. A viral suppressor of RNA silencing differentially regulates the accumulation of short interfering RNAs and micro-RNAs in tobacco[J]. Proc Natl Acad Sci U S A,2002,99(23):15228-15233.
    [42]Boden D, Pusch O, Ramratnam B. Overcoming HIV-1 resistance to RNA interference[J]. Front Biosci,2007,12:3104-3116.
    [43]Boden D, Pusch O, Lee F, et al. Promoter choice affects the potency of HIV-1 specific RNA interference[J]. Nucleic Acids Res,2003,31(17):5033-5038.
    [44]Yeom K H, Lee Y, Han J, et al. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing[J]. Nucleic Acids Res,2006,34(16):4622-4629.
    [45]Han J, Lee Y, Yeom K H, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex[J]. Cell,2006,125(5):887-901.
    [46]Han J, Lee Y, Yeom K H, et al. The Drosha-DGCR8 complex in primary microRNA processing[J]. Genes Dev,2004,18(24):3016-3027.
    [47]Feng Y, Zhang X, Song Q, et al. Drosha processing controls the specificity and efficiency of global microRNA expression[J]. Biochim Biophys Acta,2011,1809(11-12):700-707.
    [48]Zhang X, Zeng Y. The terminal loop region controls microRNA processing by Drosha and Dicer[J]. Nucleic Acids Res,2010,38(21):7689-7697.
    [49]Calin G A, Dumitru C D, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia[J]. Proc Natl Acad Sci U S A,2002,99(24):15524-15529.
    [50]Sunkar R. MicroRNAs with macro-effects on plant stress responses[J]. Semin Cell Dev Biol,2010,21(8):805-811.
    [51]Dennis C. Small RNAs:the genome's guiding hand?[J]. Nature,2002,420(6917):732.
    [52]Li Y C, He S M, He Z X, et al. Plumbagin induces apoptotic and autophagic cell death through inhibition of the PI3K/Akt/mTOR pathway in human non-small cell lung cancer cells[J]. Cancer Lett,2014,344(2):239-259.
    [53]Trigka E A, Levidou G, Saetta A A, et al. A detailed immunohistochemical analysis of the PI3K/AKT/mTOR pathway in lung cancer:correlation with PIK3CA, AKT1, K-RAS or PTEN mutational status and clinicopathological features[J]. Oncol Rep,2013,30(2):623-636.
    [54]Li Q, Yang J, Yu Q, et al. Associations between single-nucleotide polymorphisms in the PI3K-PTEN-AKT-mTOR pathway and increased risk of brain metastasis in patients with non-small cell lung cancer[J]. Clin Cancer Res,2013,19(22):6252-6260.
    [55]Papadimitrakopoulou V. Development of PI3K/AKT/mTOR pathway inhibitors and their application in personalized therapy for non-small-cell lung cancer[J]. J Thorac Oncol,2012,7(8): 1315-1326.
    [56]Jeong E H, Choi H S, Lee T G, et al. Dual Inhibition of PI3K/Akt/mTOR Pathway and Role of Autophagy in Non-Small Cell Lung Cancer Cells[J]. Tuberc Respir Dis (Seoul),2012,72(4): 343-351.
    [57]Pu X, Hildebrandt M A, Lu C, et al. PI3K/PTEN/AKT/mTOR pathway genetic variation predicts toxicity and distant progression in lung cancer patients receiving platinum-based chemotherapy[J]. Lung Cancer,2011,71 (1):82-88.
    [58]Qi H, Fan L. [PI3K/Akt/mTOR signaling pathway and non-small cell lung cancer][J]. Zhongguo Fei Ai ZaZhi,2010,13(12):1149-1154.
    [59]Yue W, Wang X, Wang Y. [The Relationship between the PI3K/Akt/mTOR Signal Transduction Pathway and Non-small Cell Lung Cancer.][J]. Zhongguo Fei Ai Za Zhi,2009,12(4):312-315.
    [60]Sharma P K, Singh R, Novakovic K R, et al. CCR9 mediates PI3K/AKT-dependent antiapoptotic signals in prostate cancer cells and inhibition of CCR9-CCL25 interaction enhances the cytotoxic effects of etoposide[J]. Int J Cancer,2010,127(9):2020-2030.
    [61]Khan M Z, Brandimarti R, Shimizu S, et al. The chemokine CXCL12 promotes survival of postmitotic neurons by regulating Rb protein[J]. Cell Death Differ,2008,15(10):1663-1672.
    [62]Ticchioni M, Essafi M, Jeandel P Y, et al. Homeostatic chemokines increase survival of B-chronic lymphocytic leukemia cells through inactivation of transcription factor FOXO3a[J]. Oncogene,2007,26(50):7081-7091.
    [63]Youn B S, Yu K Y, Oh J, et al. Role of the CC chemokine receptor 9/TECK. interaction in apoptosis[J]. Apoptosis,2002,7(3):271-276.
    [64]Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis[J]. Genes Dev,2000,14(2): 163-176.
    [65]Wurbel M A, Malissen B, Campbell J J. Complex regulation of CCR9 at multiple discrete stages of Tcell development J]. Eur J Immunol,2006,36(1):73-81.
    [66]Uehara S, Hayes S M, Li L, et al. Premature expression of chemokine receptor CCR9 impairs T cell development[J]. J Immunol,2006,176(1):75-84.
    [67]Sherr C J. Cancer cell cycles[J]. Science,1996,274(5293):1672-1677.
    [68]Zhang E B, Han L, Yin D D, et al. c-Myc-induced, long, noncoding H19 affects cell proliferation and predicts a poor prognosis in patients with gastric cancer[J]. Med Oncol, 2014,31(5):914.
    [69]Vindrieux D, Devailly G, Augert A, et al. Repression of PLA2R1 by c-MYC and HIF-2alpha promotes cancer growth[J]. Oncotarget,2014.
    [70]Conacci-Sorrell M, Ngouenet C, Anderson S, et al. Stress-induced cleavage of Myc promotes cancer cell survival[J]. Genes Dev,2014,28(7):689-707.
    [71]Lu Y T, Sun X J, Chen C, et al. [Role of PI3K-AKT signaling pathway in CD40-mediated proliferation and invasiveness of lung cancer cell][J]. Zhonghua Yi Xue Za Zhi,2013,93(10): 775-779.
    [72]Zhu B, Zhou X. [The study of PI3K/AKT pathway in lung cancer metastasis and drug resistance][J]. Zhongguo Fei Ai Za Zhi,2011,14(8):689-694.
    [73]Xiong F, Jiang M, Huang Z, et al. A novel herbal formula induces cell cycle arrest and apoptosis in association with suppressing the PI3K/AK.T pathway in human lung cancer A549 cells[J]. Integr Cancer Ther,2014,13(2):152-160.
    [74]Yun F, Jia Y, Li X, et al. Clinicopathological significance of PTEN and PI3K/AKT signal transduction pathway in non-small cell lung cancer[J]. Int J Clin Exp Pathol,2013,6(10):2112-2120.
    [75]Wang Y, Chen L, Huang G, et al. Klotho sensitizes human lung cancer cell line to cisplatin via PI3k/Akt pathway[J]. PLoS One,2013,8(2):e57391.
    [76]Li Y C, He S M, He Z X, et al. Plumbagin induces apoptotic and autophagic cell death through inhibition of the PI3K/Akt/mTOR pathway in human non-small cell lung cancer cells[J]. Cancer Lett,2014,344(2):239-259.
    [77]Warig C, Lisanti M P, Liao D J. Reviewing once more the c-myc and Ras collaboration: converging at the cyclin D1-CDK4 complex and challenging basic concepts of cancer biology[J]. Cell Cycle,2011,10(l):57-67.
    [78]Gera J F, Mellinghoff I K, Shi Y, et al. AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression[J]. J Biol Chem,2004,279(4):2737-2746.
    [79]Fine B, Hodakoski C, Koujak S, et al. Activation of the PI3K pathway in cancer through inhibition of PTEN by exchange factor P-REX2a[J]. Science,2009,325(5945):1261-1265.
    [80]Carracedo A, Ma L, Teruya-Feldstein J, et al. Inhibition of mTORCl leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer[J]. J Clin Invest,2008, 118(9):3065-3074.
    [81]Osaki M, Oshimura M, Ito H. PI3K-Akt pathway:its functions and alterations in human cancer[J].Apoptosis,2004,9(6):667-676.
    [82]Roy H K, Olusola B F, Clemens D L, et al. AKT proto-oncogene overexpression is an early event during sporadic colon carcinogenesis[J]. Carcinogenesis,2002,23(1):201-205.
    [83]Nam S Y, Lee H S, Jung G A, et al. Akt/PKB activation in gastric carcinomas correlates with clinicopathologic variables and prognosis[J], APMIS,2003,111(12):1105-1113.
    [84]Cheng J Q, Godwin A K, Bellacosa A, et al. AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas[J]. Proc Natl Acad Sci U S A,1992,89(19):9267-9271.
    [85]Bellacosa A, de Feo D, Godwin A K, et al. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas[J]. Int J Cancer,1995,64(4):280-285.
    [86]Sharrard R M, Maitland N J. Regulation of protein kinase B activity by PTEN and SHIP2 in human prostate-derived cell lines[J]. Cell Signal,2007,19(1):129-138.
    [87]Sha M, Ye J, Zhang L X, et al. Celastrol Induces Apoptosis of Gastric Cancer Cells by miR-21 Inhibiting PI3K/Akt-NF-kappaB Signaling Pathway[J]. Pharmacology,2014,93(1-2):39-46.
    [88]Liu M, Li C M, Chen Z F, et al. Celecoxib regulates apoptosis and autophagy via the PI3K/Akt signaling pathway in SGC-7901 gastric cancer cells[J]. Int J Mol Med,2014,33(6):1451-1458.
    [89]Park J S, Kwon J K, Kim H R, et al. Farnesol induces apoptosis of DU145 prostate cancer cells through the PI3K/Akt and MAPK pathways[J]. Int J Mol Med,2014,33(5):1169-1176.
    [90]Zhang H, Guo M, Chen J H, et al. Osteopontin Knockdown Inhibits alpha,beta Integrin-Induced Cell Migration and Invasion and Promotes Apoptosis of Breast Cancer Cells by Inducing Autophagy and Inactivating the PI3K/Akt/mTOR Pathway[J]. Cell Physiol Biochem,2014,33 (4):991-1002.
    [91]Uehara S, Song K, Farber J M, et al. Characterization of CCR9 expression and CCL25/thymus-expressed chemokine responsiveness during T cell development:CD3(high) CD69+thymocytes and gammadeltaTCR+thymocytes preferentially respond to CCL25[J]. J Immunol,2002,168(1):134-142.
    [92]Wurbel M A, Malissen B, Campbell J J. Complex regulation of CCR9 at multiple discrete stages of T cell development[J]. Eur J Immunol,2006,36(1):73-81.
    [93]Singh S, Singh U P, Stiles J K, et al. Expression and functional role of CCR9 in prostate cancer cell migration and invasion[J]. Clin Cancer Res,2004,10(24):8743-8750.
    [94]Drakes M L, Stiff P J, Blanchard T G. Inverse relationship between dendritic cell CCR9 expression and maturation state[J]. Immunology,2009,127(4):466-476.
    [95]Wurbel M A, Malissen M, Guy-Grand D, et al. Mice lacking the CCR9 CC-chemokine receptor show a mild impairment of early T-and B-cell development and a reduction in T-cell receptor gammadelta(+) gut intraepithelial lymphocytes[J]. Blood,2001,98(9):2626-2632.
    [96]Uehara S, Hayes S M, Li L, et al. Premature expression of chemokine receptor CCR9 impairs T cell development J]. J Immunol,2006,176(1):75-84.
    [97]Qiuping Z, Qun L, Chunsong H, et al. Selectively increased expression and functions of chemokine receptor CCR9 on CD4+T cells from patients with T-cell lineage acute lymphocytic leukemia[J]. Cancer Res,2003,63(19):6469-6477.
    [98]Zheng L, Ren J Q, Chen Q, et al. [The effect of HER2/neu overexpression on p53 gene expression, cell proliferation and sensitivity to gamma-irradiation via the PI3K/Akt pathway in breast cancer cell MCF7][J]. Zhonghua Zhong Liu Za Zhi,2004,26(10):594-597.
    [99]Rho S B, Kim B R, Kang S. A gene signature-based approach identifies thioridazine as an inhibitor of phosphatidylinositol-3'-kinase (PI3K)/AKT pathway in ovarian cancer cells[J]. Gynecol Oncol,2011,120(l):121-127.
    [100]Schwarz J K, Payton J E, Rashmi R, et al. Pathway-specific analysis of gene expression data identifies the PI3K/Akt pathway as a novel therapeutic target in cervical cancer[J]. Clin Cancer Res,2012,18(5):1464-1471.
    [101]Lin X, Zhang X, Wang Q, et al. Perifosine downregulates MDRl gene expression and reverses multidrug-resistant phenotype by inhibiting PI3K/Akt/NF-kappaB signaling pathway in a human breast cancer cell line[J]. Neoplasma,2012,59(3):248-256.
    [102]Wang X, Gao P, Lin F, et al. Wilms'tumour suppressor gene 1 (WT1) is involved in the carcinogenesis of Lung cancer through interaction with PI3K/Akt pathway[J]. Cancer Cell Int,2013,13(1):114.
    [103]Shaw R J, Cantley L C. Ras, PI(3)K and mTOR signalling controls tumour cell growth[J]. Nature,2006,441 (7092):424-430.
    [104]Pisick E, Jagadeesh S, Salgia R. Receptor tyrosine kinases and inhibitors in lung cancerfJ]. ScientificWorldJournal,2004,4:589-604.
    [105]Massion P P, Taflan P M, Shyr Y, et al. Early involvement of the phosphatidylinositol 3-kinase/Akt pathway in lung cancer progression[J]. Am J Respir Crit Care Med,2004,170(10): 1088-1094.
    [106]Chu Z H, Liang X H, Zhou X L, et al. [Effects of deguelin on proliferation and apoptosis of MCF-7 breast cancer cells by phosphatidylinositol 3-kinase/Akt signaling pathway][J]. Zhong Xi Yi Jie He Xue Bao,2011,9(5):533-538.
    [107]Chun K H, Kosmeder J N, Sun S, et al. Effects of deguelin on the phosphatidylinositol 3-kinase/Akt pathway and apoptosis in premalignant human bronchial epithelial cells[J]. J Natl Cancer Inst,2003,95(4):291-302.
    [108]Tsurutani J, Steinberg S M, Ballas M, et al. Prognostic significance of clinical factors and Akt activation in patients with bronchioloalveolar carcinoma[J]. Lung Cancer,2007,55(1):115-121.
    [109]Tsurutani J, Fukuoka J, Tsurutani H, et al. Evaluation of two phosphorylation sites improves the prognostic significance of Akt activation in non-small-cell lung cancer tumors[J]. J Clin Oncol,2006,24(2):306-314.
    [110]Soung Y H, Lee J W, Nam S W, et al. Mutational analysis of AKT1, AKT2 and AKT3 genes in common human carcinomas[J]. Oncology,2006,70(4):285-289.
    [111]Wang Z, Yang L, An T, et al. [The Association between EGFR Gene Amplification and the Prognosis in Non-small Cell Lung Cancer:A meta-analysis.][J]. Zhongguo Fei Ai Za Zhi,2009,12(12):1247-1254.
    [112]Zhang X, Xu L, Wang H, et al. [The relationship between EGFR mutations and response and prognosis of tyrosine kinase inhibitors in advanced Non-small-cell Lung Cancer.][J]. Zhongguo Fei Ai Za Zhi,2008,11(2):206-213.
    [113]Sasaki H, Endo K, Mizuno K, et al. EGFR mutation status and prognosis for gefitinib treatment in Japanese lung cancer[J]. Lung Cancer,2006,51 (1):135-136.
    [114]Wu M, Zhao J, Song S W, et al. EGFR mutations are associated with prognosis but not with the response to front-line chemotherapy in the Chinese patients with advanced non-small cell lung cancer[J]. Lung Cancer,2010,67(3):343-347.
    [115]Gately K, Forde L, Cuffe S, et al. High coexpression of both EGFR and IGF 1R correlates with poor patient prognosis in resected non-small-cell lung cancer[J]. Clin Lung Cancer,2014,15 (1):58-66.
    [116]Sonobe M, Nakagawa M, Takenaka K, et al. Influence of epidermal growth factor receptor (EGFR) gene mutations on the expression of EGFR, phosphoryl-Akt, and phosphoryl-MAPK, and on the prognosis of patients with non-small cell lung cancer[J]. J Surg Oncol,2007,95 (1):63-69.
    [117]Kokubo Y, Gemma A, Noro R, et al. Reduction of PTEN protein and loss of epidermal growth factor receptor gene mutation in lung cancer with natural resistance to gefitinib (IRESSA)[J]. Br J Cancer,2005,92(9):1711-1719.
    [118]Hancock W W. Chemokines and the pathogenesis of T cell-dependent immune responses[J]. Am J Pathol,1996,148(3):681-684.
    [119]Lloyd A R, Oppenheim J J, Kelvin D J, et al. Chemokines regulate T cell adherence to recombinant adhesion molecules and extracellular matrix proteins[J]. J Immunol,1996,156 (3):932-938.
    [120]Lukacs N W, Strieter R M, Elner V, et al. Production of chemokines, interleukin-8 and monocyte chemoattractant protein-1, during monocyte:endothelial cell interactions[J]. Blood,1995,86(7):2767-2773.
    [1]Bonecchi R, Polentarutti N, Luini W, et al. Up-regulation of CCR1 and CCR3 and induction of chemotaxis to CC chemokines by IFN-gamma in human neutrophils[J]. J Immunol,1999,162 (1):474_479.
    [2]Endres M J, Clapham P R, Marsh M, et al. CD4-independent infection by HIV-2 is mediated by fusin/CXCR4[J].Cell,1996,87(4):745-756.
    [3]Simmons G, Wilkinson D, Reeves J D, et al. Primary, syncytium-inducing human immunodefic iency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry[J]. J Virol,1996,70(12):8355-8360.
    [4]Atchison R E, Gosling J, Monteclaro F S, et al. Multiple extracellular elements of CCR5 and HIV-1 entry:dissociation from response to chemokines[J]. Science,1996,274(5294):1924-1926.
    [5]Qiuping Z, Jei X, Youxin J, et al. CC chemokine ligand 25 enhances resistance to apoptosis in CD4+T cells from patients with T-cell lineage acute and chronic lymphocytic leukemia by means of livin activation[J]. Cancer Res,2004,64(20):7579-7587.
    [6]Zaballos A, Gutierrez J, Varona R, et al. Cutting edge:identification of the orphan chemokine receptor GPR-9-6 as CCR9, the receptor for the chemokine TECK[J]. J Immunol,1999,162 (10):5671-5675.
    [7]Nagakubo D, Jin Z, Hieshima K, et al. Expression of CCR9 in HTLV-1+T cells and ATL cells expressing Tax[J]. Int J Cancer,2007,120(7):1591-1597.
    [8]Amersi F F, Terando A M, Goto Y, et al. Activation of CCR9/CCL25 in cutaneous melanoma mediates preferential metastasis to the small intestine[J]. Clin Cancer Res,2008,14(3):638-645.
    [9]Hwang S T. Chemokine receptors in melanoma:CCR9 has a potential role in metastasis to the small bowel[J]. J Invest Dermatol,2004,122(3):xiv-xv.
    [10]Johnson-Holiday C, Singh R, Johnson E, et al. CCL25 mediates migration, invasion and matrix metalloproteinase expression by breast cancer cells in a CCR9-dependent fashion[J]. Int J Oncol,2011,38(5):1279-1285.
    [11]Singh S, Singh U P, Stiles J K, et al. Expression and functional role of CCR9 in prostate cancer cell migration and invasion[J]. Clin Cancer Res,2004,10(24):8743-8750.
    [12]Tang D, Lahti J M, Grenet J, et al. Cycloheximide-induced T-cell death is mediated by a Fas-associated death domain-dependent mechanism[J]. JBiol Chem,1999,274(11):7245-7252.
    [13]Zabel B A, Agace W W, Campbell J J, et al. Human G protein-coupled receptor GPR-9-6/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus-expressed chemokine-mediated chemotaxis[J]. J Exp Med,1999,190(9):1241-1256.
    [14]Kim C H, Pelus L M, White J R, et al. Differential chemotactic behavior of developing T cells in response to thymic chemokines[J]. Blood,1998,91(12):4434-4443.
    [15]Wurbel M A, Malissen M, Guy-Grand D, et al. Mice lacking the CCR9 CC-chemokine receptor show a mild impairment of early T-and B-cell development and a reduction in T-cell receptor gammadelta(+) gut intraepithelial lymphocytes[J]. Blood,2001,98(9):2626-2632.
    [16]Weston C R, Lambright D G, Davis R J. Signal transduction. MAP kinase signaling specificity [J]. Science,2002,296(5577):2345-2347.
    [17]Park H S, Kim M S, Huh S H, et al. Akt (protein kinase B) negatively regulates SEK1 by means of protein phosphorylation[J]. J Biol Chem,2002,277(4):2573-2578.
    [18]Frame S, Cohen P. GSK3 takes centre stage more than 20 years after its discovery[J]. Biochem J,2001,359(Pt 1):1-16.
    [19]Chen S, Guttridge D C, You Z, et al. Wnt-1 signaling inhibits apoptosis by activating beta-catenin/T cell factor-mediated transcription[J]. J Cell Biol,2001,152(l):87-96.
    [20]Dorsam G, Voice J, Kong Y, et al. Vasoactive intestinal peptide mediation of development and functions of T lymphocytes[J]. Ann N Y Acad Sci,2000,921:79-91.
    [21]Osaki M, Oshimura M, Ito H. PI3K-Akt pathway:its functions and alterations in human cancer[J]. Apoptosis,2004,9(6):667-676.
    [22]Chang F, Lee J T, Navolanic P M, et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation:a target for cancer chemotherapy [J]. Leukemia,2003,17(3):590-603.
    [23]Sharrard R M, Maitland N J. Regulation of protein kinase B activity by PTEN and SHIP2 in human prostate-derived cell lines[J]. Cell Signal,2007,19(1):129-138.
    [24]Wang H, Luo Q F, Peng A F, et al. Positive feedback regulation between Akt phosphorylation and fatty acid synthase expression in osteosarcoma[J]. Int J Mol Med,2014,33(3):633-639.
    [25]Mackenzie R W, Elliott B T. Akt/PKB activation and insulin signaling:a novel insulin signaling pathway in the treatment of type 2 diabetes[J]. Diabetes Metab Syndr Obes,2014, 7:55-64.
    [26]Xin M, Deng X. Nicotine inactivation of the proapoptotic function of Bax through phosphorylation[J]. J Biol Chem,2005,280(11):10781-10789.
    [27]Hidalgo M, Rowinsky E K. The rapamycin-sensitive signal transduction pathway as a target for cancer therapy[J]. Oncogene,2000,19(56):6680-6686.
    [28]Gibson E M, Henson E S, Haney N, et al. Epidermal growth factor protects epithelial-derived cells from tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by inhibiting cytochrome c release[J]. Cancer Res,2002,62(2):488-496.
    [29]Kim E C, Yun B S, Ryoo I J, et al. Complestatin prevents apoptotic cell death:inhibition of a mitochondrial caspase pathway through AKT/PKB activation[J]. Biochem Biophys Res Commun,2004,313(1):193-204.
    [30]Yu C R, Peden K W, Zaitseva M B, et al. CCR9A and CCR9B:two receptors for the chemokine CCL25/TECK/Ck beta-15 that differ in their sensitivities to ligand[J]. J Immunol, 2000,164(3):1293-1305.
    [31]Zabel B A, Agace W W, Campbell J J, et al. Human G protein-coupled receptor GPR-9-6/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus-expressed chemokine-mediated chemotaxis[J]. J Exp Med,1999,190(9):1241-1256.
    [32]Papadakis K A, Prehn J, Nelson V, et al. The role of thymus-expressed chemokine and its receptor CCR9 on lymphocytes in the regional specialization of the mucosal immune system[J]. J Immunol,2000,165(9):5069-5076.
    [33]Kunkel E J, Campbell J J, Haraldsen G, et al. Lymphocyte CC chemokine receptor 9 and epithelial thymus-expressed chemokine (TECK) expression distinguish the small intestinal immune compartment:Epithelial expression of tissue-specific chemokines as an organizing principle in regional immunity[J]. J Exp Med,2000,192(5):761-768.
    [34]Youn B S, Kim Y J, Mantel C, et al. Blocking of c-FLIP(L)-independent cycloheximide-induced apoptosis or Fas-mediated apoptosis by the CC chemokine receptor 9/TECK interaction[J]. Blood,2001,98(4):925-933.
    [35]胡志芳,张秋萍,陈会敏,等.T淋巴细胞性白血病患者CCR9的功能改变[J].中国免疫学杂志,2004,20(12):825-827.
    [36]Qiuping Z, Jei X, Youxin J, et al. CC chemokine ligand 25 enhances resistance to apoptosis in CD4+T cells from patients with T-cell lineage acute and chronic lymphocytic leukemia by means of livin activation[J]. Cancer Res,2004,64(20):7579-7587.
    [37]Mirandola L, Chiriva-Internati M, Montagna D, et al. Notchl regulates chemotaxis and proliferation by controlling the CC-chemokine receptors 5 and 9 in T cell acute lymphoblastic leukaemia[J]. J Pathol,2012,226(5):713-722.
    [38]Qiuping Z, Jei X, Youxin J, et al. CC chemokine ligand 25 enhances resistance to apoptosis in CD4+ T cells from patients with T-cell lineage acute and chronic lymphocytic leukemia by means of livin activation[J]. Cancer Res,2004,64(20):7579-7587.
    [39]Letsch A, Keilholz U, Schadendorf D, et al. Functional CCR9 expression is associated with small intestinal metastasis[J]. J Invest Dermatol,2004,122(3):685-690.
    [40]Margolin K A. CCR9:CCL25 in melanoma metastatic to small intestine[J]. Curr Oncol Rep,2009,11(5):331-332.
    [41]Wurbel M A, Mcintire M G, Dwyer P, et al. CCL25/CCR9 interactions regulate large intestinal inflammation in a murine model of acute colitis[J]. PLoS One,2011,6(1):e 16442.
    [42]Li X, Madison B B, Zacharias W, et al. Deconvoluting the intestine:molecular evidence for a major role of the mesenchyme in the modulation of signaling cross talk[J]. Physiol Genomics,2007,29(3):290-301.
    [43]Chen H J, Edwards R, Tucci S, et al. Chemokine 25-induced signaling suppresses colon cancer invasion and metastasis[J]. J Clin Invest,2012,122(9):3184-3196.
    [44]李杰,李强.趋化因子CCL25/CCR9在胰腺癌患者的表达研究[J].中华肝胆外科杂志,2011,17(6):475-478.
    [45]Heinrich E L, Arrington A K, Ko M E, et al. Paracrine Activation of Chemokine Receptor CCR9 Enhances The Invasiveness of Pancreatic Cancer Cells[J]. Cancer Microenviron,2013,6 (3):241-245.
    [46]Singh S, Singh U P, Stiles J K, et al. Expression and functional role of CCR9 in prostate cancer cell migration and invasion[J]. Clin Cancer Res,2004,10(24):8743-8750.
    [47]Sharma P K, Singh R, Novakovic K R, et al. CCR9 mediates PI3K/AKT-dependent antiapoptotic signals in prostate cancer cells and inhibition of CCR9-CCL25 interaction enhances the cytotoxic effects of etoposide[J]. Int J Cancer,2010,127(9):2020-2030.
    [48]Johnson E L, Singh R, Singh S, et al. CCL25-CCR9 interaction modulates ovarian cancer cell migration, metalloproteinase expression, and invasion[J]. World J Surg Oncol,2010,8:62.
    [49]Johnson E L, Singh R, Johnson-Holiday C M, et al. CCR9 interactions support ovarian cancer cell survival and resistance to cisplatin-induced apoptosis in a PI3K-dependent and FAK-independent fashion[J]. J Ovarian Res,2010,3:15.
    [50]Johnson-Holiday C, Singh R, Johnson E L, et al. CCR9-CCL25 interactions promote cisplatin resistance in breast cancer cell through Akt activation in a PI3K-dependent and FAK-independent fashion[J]. World J Surg Oncol,2011,9:46.
    [51]Johnson-Holiday C, Singh R, Johnson E, et al. CCL25 mediates migration, invasion and matrix metalloproteinase expression by breast cancer cells in a CCR9-dependent fashion[J]. Int J Oncol,2011,38(5):1279-1285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700