用户名: 密码: 验证码:
基于压缩传感理论的锥束CT断层图像重建算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
计算机断层成像(Computed Tomography,CT)技术通过无损方式获取物体内部结构信息,广泛用于医学辅助诊断、工业无损检测、安全检查等领域。锥束CT体积小,重量轻,移动灵活,可在手术中快速拍片、定位,广泛用于介入手术治疗。受圆轨道几何扫描结构限制,锥束CT无法获取完备投影数据,制约了锥束CT成像质量。近年提出的压缩感知理论是一种信号高度不完备线性测量的高精确重建技术。在锥束CT图像重建领域,压缩感知理论利用图像的稀疏性先验信息,可从少视角投影数据中精确恢复原始图像。本文基于压缩感知理论,围绕重建精度、收敛速度和计算效率等问题展开研究工作,重点研究了基于FDK的反投影权重算法、基于投影收缩的压缩感知算法、快速自适应共轭梯度投影算法和锥束CT重建并行加速算法,其成果如下:
     针对锥束CT系统锥角增大而导致的锥束伪影严重的问题,提出了一种基于FDK的反投影权重锥束CT重建算法(back projection weighted FDK,BPW-FDK)。分析了圆扫描轨迹远端伪影的成因,针对圆周扫描阴影区域导致的Radon空间数据缺失,提出了一种距离变量的反投影权重函数,并将其作为约束条件引入到FDK算法中,实现扫描轨迹远端区域的数据补偿,扩大图像重建区域。与Parker-FDK算法相比,BPW-FDK算法重建图像在目标区域的归一化均方距离判据d和归一化平均绝对距离判据r均下降了50%以上,信噪比提高了5db。
     针对锥束CT成像系统中不完全投影数据重建问题,提出了一种基于投影收缩的压缩感知锥束CT短扫描重建算法(Projection-Contraction Barzilari-Borwein,PCBB)。针对BB梯度投影算法的非单调收敛,分析投影收缩法的预测校正特性,将校正过程引入压缩感知图像重建算法中,结合目标函数下降方向和凸集投影下降方向,对BB梯度投影算法进行校正,改善BB梯度投影算法的非单调特性。仿真结果表明,在25个采样角度下,PCBB算法重建图像的信噪比值比ASD-POCS算法、PC算法、GPBB算法的重建结果分别高出9.4870db、9.8027db、3.6159db。
     针对锥束CT成像系统中压缩感知算法最速下降法收敛缓慢问题,提出了一种快速自适应共轭梯度压缩感知锥束CT重建算法(adaptive stepsize congjuategradient, ASCG)。利用Lipschitz连续性求出下降步长,然后使用共轭梯度下降法迭代计算,最后采用联合代数重建算法更新重建图像。在每次迭代过程中自适应调整梯度下降步长,进一步加快重建算法的收敛速度。ASCG算法能够有效抑制条状伪影,极大提高少量投影数据时重建图像质量。在40投影角度下,ASCG算法重建结果的相对误差为0.1%,比GPBB算法重建结果的相对误差提高了一个数量级。
     锥束CT图像重建的计算复杂度与被重建体数据量N、投影视图个数M的乘积成正比,CPU架构的锥束CT图像重建时间往往达到几十分钟,难以满足实时成像要求。针对锥束CT图像重建时间过长这一瓶颈问题,提出了高度优化的基于GPU的Parker-FDK算法和联合代数重建算法(Simultaneous AlgebraicReconstruction Technique,SART)。基于CUDA架构的Parker-FDK算法充分利用以下技术:(1)优化使用线程块大小;(2)提高常量存储器和共享存储器的重复利用率;(3)使用纹理存储器的线性插值提高计算效率;(4)使用多GPU进一步提高加速比。基于CUDA的SART代码实现:(1)基于射线驱动的正投影技术,使用纹理存储器三线性插值技术;(2)基于体素驱动的反投影技术,使用共享存储器减少冗余计算。实验结果表明,基于CUDA架构的Parker-FDK算法和SART算法的时间性能得到极大提升:Parker-FDK算法的重建时间减少为0.33s;与CPU相比,基于CUDA架构的SART算法加速比约为100倍。
Computed tomography (CT) technique can get the internal information through anon-destructive way and has been widely used in a large number of applications inmedical diagnosis, industrial non-destructive detection and other fields. Because of itssmall size, light weight, mobility and flexiblity, cone-beam CT is extensively appliedto interventional surgery. However, cone-beam CT can not get sufficient projectiondata for exact reconstruction due to its sparse views. Thus the quality of thereconstructed image is not satisfied. Recent developments in compressed sensing haveenabled an accurate cone beam computed tomography (CBCT) reconstruction fromhighly undersampled projections. In this dissertation, we concentrate on thebackprojection weighted FDK algorithm, projection contraction based compressedsensing algorithm, a fast adaptive conjugate gradient projection algorithm to improvethe reconstruction accuracy and convergence speed. GPU is used to accelerate theimage reconstruction. The results are as follows:
     Cone beam artifacts increase along with the larger cone angle because thescanning trajectory of cone beam does not sufficiently satisfy data conditions. Aimedat the characteristics of missing data in Radon space, we propose a BackprojectionWeighted-FDK (BPW-FDK) algorithm for CBCT. A new backprojection weight ispresented to compensate for the missing data away from the rotating track forreconstruction region expansion. The images reconstructed from simulated noiselessprojections, projections with noise, and real projections from an internally developed3D scanner show that the proposed algorithm is able to sufficiently suppressartifacts away from the rotating track for large cone angle and provide more homogeneous image contrast. Its accuracy and speed make BPW-FDK algorithmsuitable for image reconstruction of real large CBCT.
     To solve the problem of image reconstruction of incomplete projection data fromcone-beam CT, a novel cone-beam CT reconstruction algorithm based onprojection-contraction method was proposed. Aiming at the non-monotonicconvergence of Gradient-Projection Barzilari-Borwein algorithm (GPBB), thepredictor-corrector feature of projection-contraction method was analyzed and wasincorporated into compressed sensing image reconstruction algorithm. The objectivefunction descent direction and the projection onto convex sets descent direction werecombined to correct the results of GPBB algorithm to improve the non-monotonicconvergence of GPBB algorithm. The experiments were conducted on simulatedprojection data and phantom scanning data. The simulated results show that, for25sampling angles, signal-to-noise ratio of images reconstructed by PCBB algorithm is9.4870db,9.8027db,3.6159db higher than those of images reconstructed by AdaptiveSteepest Descent-Projection Onto Convex Sets algorithm, projection contractionalgorithm and GPBB algorithm, respectively. The results of Phantom indicate thateven when a small amount of projections are acquired, the new algorithm caneffectively suppress strip artifacts and the reconstructed images show clear edge. Thealgorithm can greatly improve qualify of images reconstructed from few projectiondata.
     Recent developments in compressed sensing have enabled an accurate conebeam computed tomography (CBCT) reconstruction from highly undersampledprojections. However, gradient descent commonly used in these reconstructionmethods has a slow convergence speed. In this paper, we propose a novel CBCTreconstruction algorithm based on adaptive stepsize conjugate gradient (ASCG)method, which overcomes the drawback of the gradient descent methods. The CBCTimages are reconstructed by minimizing an objective function consisting of a datafidelity term and a TV-norm regularization term. While the data fidelity term uses l2norm to enforce the similarities between the measured projection data with theforward projections of reconstructed images, the penalty term uses Total variation(TV)-norm to enforce the piecewise constant property of the unknown object. Theobject function is minimized by conjugate gradient projection with the stepsizeanalytically calculated and adaptively changed at each iteration. The line searchtechnique is avoided to lessen the computation time. The Forbild numerical phantom is used to evaluate the performance of ASCG. Image relative error of reconstructedimages and computation efficiency were assessed and the behavior of ASCG arecompared with simultaneous algebraic reconstruction technique (SART), gradientprojection Barzilai-Borwein (GPBB) and another conjugate gradient projection usingfixed stepsize which is referred to FSCG. Under the condition of50-view projections,the ASCG algorithm showed convergence about600iterations whereas otheralgorithms need more than1000iterations to reconstruct the Forbild phantom image.For the same number of iteration, the computation time of ASCG is less than half ofthose of GPBB algorithm. we propose a novel adaptive stepsize conjugate gradientprojection algorithm for sparse-view CBCT reconstruction. Compared to GPBBalgorithm, ASCG algorithm has better performance both in convergence speed andreconstruction accuracy. These advantages have been demonstrated on Forbildphantom studies.
     To accelerate the Parker-FDK algorithm and SART for speedy and quality CTreconstruction by exploiting CUDA-enabled GPU, these techniques are proposed:(1)optimizing thread block size,(2) maximizing data reuse on constant memory andshared memory,(3) exploiting texture memory interpolation capability to increaseefficiency, and (4) using multiply GPUs. Two core techniques are proposed to useSART into the CUDA architecture:(1) a ray-driven projection along with hardwareinterpolation, and (2) a voxel-driven back-projection that can avoid redundantcomputation by combining CUDA shared memory. Extensive experimentsdemonstrate the proposed techniques can provide faster reconstruction with satisfiedimage quality.
引文
1. R ntgen W C. On aNew Kind of Rays [J].1896:
    2. Abel N. Aufl sung einer mechanischen Aufgabe [J]. Journal für die reine undangewandte Mathematik,1826,1:153-157.
    3. Radon J. On determination of functions by their integral values along certainmultiplicities [J]. Ber. der Sachische Akademie der WissenschaftenLeipzig,(Germany),1917,69:262-277.
    4. Cormack A M. Representation of a function by its line integrals, with someradiological applications [J]. Journal of Applied Physics,2004,34(9):2722-2727.
    5. Cormack A M,Quinto E. The mathematics and physics of radiation dose planningusing X-rays [J]. Contemporary Mathematics,1990,113:41-55.
    6. Cormack A M. A problem in rotation therapy with X rays [J]. InternationalJournal of Radiation Oncology Biology Physics,1987,13(4):623-630.
    7. Cormack A M. Early two-dimensional reconstruction and recent topics stemmingfrom it [J]. Science,1980,209(4464):1482-1486.
    8. Cormack A M. Early two-dimensional reconstruction (CT scanning) and recenttopics stemming from it [J]. Journal of computer assisted tomography,1980,4(5):658-664.
    9. Cormack A M. Sampling the Radon transform with beams of finite width [J].Physics in Medicine and Biology,1978,23(6):1141.
    10. Cormack A M,Doyle B. Algorithms for two-dimensional reconstruction [J].Physics in Medicine and Biology,1977,22(5):994.
    11. Cormack A M,Koehler A. Quantitative proton tomography: preliminaryexperiments [J]. Physics in Medicine and Biology,1976,21(4):560.
    12. Cormack A M. Reconstruction of densities from their projections, withapplications in radiological physics [J]. Physics in Medicine and Biology,1973,18(2):195.
    13. Cormack A M. A review of classification [J]. Journal of the Royal StatisticalSociety. Series A (General),1971:321-367.
    14. Cormack A M. Estimates of survival from the sighting of marked animals [J].Biometrika,1964:429-438.
    15. Kirillov A. On a problem formulated by gelfand, IM [J]. DOKLADYAKADEMII NAUK SSSR,1961,137(2):276.
    16. Tuy H K. An inversion formula for cone-beam reconstruction [J]. SIAM Journalon Applied Mathematics,1983,43(3):546-552.
    17. Zeng G L,Gullberg G. A cone-beam tomography algorithm for orthogonalcircle-and-line orbit [J]. Physics in Medicine and Biology,1992,37:563.
    18. Smith B D. Image reconstruction from cone-beam projections: necessary andsufficient conditions and reconstruction methods [J]. Medical Imaging, IEEETransactions on,1985,4(1):14-25.
    19. Grangeat P P, Le Masson P, Melennec P, et al. Evaluation of the3-D radontransform algorithm for cone beam reconstruction [C]. Medical Imaging V:Image Processing.1991:320-331
    20. Lee S,Wang G. A Grangeat-type half-scan algorithm for cone-beam CT [J].Medical Physics,2003,30:689.
    21. Noo F,Heuscher D. Image reconstruction from cone-beam data on a circularshort-scan [J]. Proceedings of SPIE-The International Society for OpticalEngineering,2002,4684:50.
    22. Wang G, Crawford C R, Kalender W A. Guest editorial-Multirow detector andcone-beam spiral/helical CT [J]. Medical Imaging, IEEE Transactions on,2000,19(9):817-821.
    23. Danielsson P-E, Edholm P, Eriksson J, et al. Towards exact reconstruction forhelical cone-beam scanning of long objects. A new detector arrangement and anew completeness condition [C]. Proc.1997Meeting on Fully3D ImageReconstruction in Radiology and Nuclear Medicine (Pittsburgh)(DW Townsendand PE Kinahan, eds.).1997:141-144
    24. Yang H, Li M, Koizumi K, et al. FBP-type cone-beam reconstruction algorithmwith Radon space interpolation capabilities for axially truncated data from acircular orbit [J]. Med. Imaging Technol,2006,24(3):201¨C208.
    25.王革,SeungWookLee.论锥束CT扫描Grangeat型Katsevich型的算法[J]. Ct理论与应用研究,2003,12(2):45-55.
    26. Grangeat P. Mathematical framework of cone beam3D reconstruction via thefirst derivative of the Radon transform [J]. Mathematical Methods inTomography,1991:66-97.
    27.郑晗,陈自宽.一种Grangeat圆轨迹锥束CT重建阴影区域填充方法[J].软件学报,20(5):1166-1175.
    28. Grangeat P, Mathematical framework of cone beam3D reconstruction via thefirst derivative of the Radon transform, in Mathematical Methods in Tomography.1991, Springer. p.66-97.
    29. Defrise M,Clack R. A cone-beam reconstruction algorithm using shift-variantfiltering and cone-beam backprojection [J]. Medical Imaging, IEEE Transactionson,1994,13(1):186-195.
    30. Kudo H,Saito T. Derivation and implementation of a cone-beam reconstructionalgorithm for nonplanar orbits [J]. Medical Imaging, IEEE Transactions on,1994,13(1):196-211.
    31. Defrise M, Noo F, Kudo H. A solution to the long-object problem in helicalcone-beam tomography [J]. Physics in Medicine and Biology,2000,45(3):623.
    32. Schaller S, Noo F, Sauer F, et al. Exact Radon rebinning algorithm for the longobject problem in helical cone-beam CT [J]. Medical Imaging, IEEETransactions on,2000,19(5):361-375.
    33. Katsevich A. Theoretically exact filtered backprojection-type inversion algorithmfor spiral CT [J]. SIAM Journal on Applied Mathematics,2002,62(6):2012-2026.
    34. Katsevich A. Image reconstruction for the circle and line trajectory [J]. Physicsin Medicine and Biology,2004,49:5059.
    35. Katsevich A. An improved exact filtered backprojection algorithm for spiralcomputed tomography [J]. Advances in Applied Mathematics,2004,32(4):681-697.
    36. Katsevich A. On two versions of a3π algorithm for spiral CT [J]. Physics inMedicine and Biology,2004,49(11):2129.
    37. Katsevich A. Analysis of an exact inversion algorithm for spiral cone-beam CT[J]. Physics in Medicine and Biology,2002,47(15):2583.
    38. Deng J, Yu H, Ni J, et al. A parallel implementation of the Katsevich algorithmfor3-D CT image reconstruction [J]. The Journal of Supercomputing,2006,38(1):35-47.
    39. Yu H,Wang G. Studies on artifacts of the Katsevich algorithm for spiralcone-beam CT [C]. Optical Science and Technology, the SPIE49th AnnualMeeting.2004:540-549
    40. Yu H,Wang G. Studies on implementation of the Katsevich algorithm for spiralcone-beam CT [J]. Journal of X-Ray Science and Technology,2004,12(2):97-116.
    41. Chen G-H. An alternative derivation of Katsevich’s cone-beam reconstructionformula [J]. Medical Physics,2003,30(12):3217-3226.
    42. Zhuang T, Leng S, Nett B E, et al. Fan-beam and cone-beam imagereconstruction via filtering the backprojection image of differentiated projectiondata [J]. Physics in Medicine and Biology,2004,49(24):5489.
    43. Nett B E, Zhuang T-L, Leng S, et al. Arc based cone-beam reconstructionalgorithm using an equal weighting scheme [J]. Journal of X-Ray Science andTechnology,2007,15(1):19-48.
    44.王瑜,陈亮,欧宗瑛等.圆弧加直线轨迹Katsevich类型的锥束CT重建算法[J].电子科技大学学报,2013,42(5):794-799.
    45.王瑜,苏铁明,王峰等.圆弧轨迹Katsevich类型的锥束CT重建[J].光电子.激光,2008,19(7):967-971.
    46.李冠华,王瑜,欧宗瑛等. GPU加速的圆弧轨迹Katsevich锥束CT重建算法[J].计算机辅助设计与图形学学报,2008,20(7):919-924.
    47. Pan X, Xia D, Zou Y, et al. A unified analysis of FBP-based algorithms in helicalcone-beam and circular cone-and fan-beam scans [J]. Physics in Medicine andBiology,2004,49:4349.
    48. Yu H,Wang G. Feldkamp-type VOI reconstruction from super-short-scancone-beam data [J]. Medical Physics,2004,31(6):1357-1362.
    49. Pack J D, Noo F, Clackdoyle R. Cone-beam reconstruction using thebackprojection of locally filtered projections [J]. Medical Imaging, IEEETransactions on,2004,24(1):70-85.
    50. Zhao J, Jin Y, Lu Y, et al. A filtered backprojection algorithm for triple-sourcehelical cone-beam CT [J]. Medical Imaging, IEEE Transactions on,2009,28(3):384-393.
    51. Zhao J, Jiang M, Zhuang T, et al. Minimum detection window and inter-helixPI-line with triple-source helical cone-beam scanning [J]. Journal of X-RayScience and Technology,2006,14(2):95-107.
    52. Zhao J, Jiang M, Zhuang T, et al. An exact reconstruction algorithm fortriple-source helical cone-beam CT [J]. Journal of X-Ray Science andTechnology,2006,14(3):191-206.
    53.王革,俞恒永等. X线CT研究与发展之展望[J].中国医疗器械杂志,2008,32(003):157-169.
    54. Feldkamp L, Davis L, Kress J. Practical cone-beam algorithm [J]. Journal of theOptical Society of America A,1984,1(6):612-619.
    55. Turbell H. Cone-beam reconstruction using filtered backprojection [J].2001:
    56. Grass M, K hler T, Proksa R.3D cone-beam CT reconstruction for circulartrajectories [J]. Physics in Medicine and Biology,2000,45(2):329.
    57. Grass M, K hler T, Proksa R. Angular weighted hybrid cone-beam CTreconstruction for circular trajectories [J]. Physics in Medicine and Biology,2001,46(6):1595.
    58.曾凯,陈志强,张丽等.基于同心圆轨道的锥形束CT重建算法[J].清华大学学报:自然科学版,2004,44(006):725-727.
    59. Tang X, Hsieh J, Nilsen R A, et al. A three-dimensional-weighted cone beamfiltered backprojection (CB-FBP) algorithm for image reconstruction involumetric CT ahelical scanning [J]. Physics in Medicine and Biology,2006,51:
    855.
    60.缪辉,王秋殷,赵会娟.针对小动物的锥束CT重建的研究及验证[J].光子学报,2010,39(9):1588-1593.
    61. Wang G, Yu H, De Man B. An outlook on x-ray CT research and development [J].Medical Physics,2008,35(3):1051-1064.
    62. Zhang D, Rong J, Chen W R, et al. Impact of additive noise on systemperformance of a digital X-ray imaging system [J]. Biomedical Engineering,IEEE Transactions on,2007,54(1):69-73.
    63. Herman G T,Lent A. Iterative reconstruction algorithms [J]. Computers inbiology and medicine,1976,6(4):273-294.
    64. Silva A C, Lawder H J, Hara A, et al. Innovations in CT dose reduction strategy:application of the adaptive statistical iterative reconstruction algorithm [J].American Journal of Roentgenology,2010,194(1):191-199.
    65. Hara A K, Paden R G, Silva A C, et al. Iterative reconstruction technique forreducing body radiation dose at CT: feasibility study [J]. American Journal ofRoentgenology,2009,193(3):764-771.
    66. Gordon R, Bender R, Herman G T. Algebraic reconstruction techniques (ART)for three-dimensional electron microscopy and X-ray photography [J]. Journal oftheoretical Biology,1970,29(3):471-481.
    67. Kaczmarz S,Steinhaus H. Theorie der orthogonalreihen [J]. New York,1951,32:1949-50.
    68. Herman G T,Meyer L B. Algebraic reconstruction techniques can be madecomputationally efficient [positron emission tomography application][J].Medical Imaging, IEEE Transactions on,1993,12(3):600-609.
    69. Guan H,Gordon R. A projection access order for speedy convergence of ART(algebraic reconstruction technique): a multilevel scheme for computedtomography [J]. Physics in medicine and biology,1994,39(11):2005.
    70. Guan H,Gordon R. Computed tomography using algebraic reconstructiontechniques (ARTs) with different projection access schemes: a comparison studyunder practical situations [J]. Physics in medicine and biology,1996,41(9):1727.
    71. Guan H,Zhu Y. Feasibility of megavoltage portal CT using an electronic portalimaging device (EPID) and a multi-level scheme algebraic reconstructiontechnique (MLS-ART)[J]. Physics in medicine and biology,1998,43(10):2925.
    72. Mueller K, Yagel R, Cornhill J F. The weighted-distance scheme: a globallyoptimizing projection ordering method for ART [J]. Medical Imaging, IEEETransactions on,1997,16(2):223-230.
    73.郭威,陈贺新.基于Twomey算法的CT图像重建[J].吉林大学学报(工学版),2011,1:
    74.郭威,陈贺新.一种改进的代数重建算法及其实现[J].吉林大学学报(工学版),2009,2:
    75. Byrne C L. Alternating Minimization as Sequential Unconstrained Minimization:A Survey [J]. Journal of Optimization Theory and Applications,2012:1-13.
    76. Byrne C L. An Elementary Proof of Convergence for the Forward-BackwardSplitting Algorithm [J].2012:
    77. Byrne C. Block iterative algorithms [J]. International Transactions in OperationalResearch,2009,16(4):427-463.
    78. Byrne C. Bounds on the largest singular value of a matrix and the convergence ofsimultaneous and block‐iterative algorithms for sparse linear systems [J].International Transactions in Operational Research,2009,16(4):465-479.
    79. Byrne C. Sequential unconstrained minimization algorithms for constrainedoptimization [J]. Inverse Problems,2008,24(1):015013.
    80. Ji D,He W. The correction SART algorithm based on circular symmetrical object[C].2009:151-154
    81. Hobiger T, Kondo T, Koyama Y. Constrained simultaneous algebraicreconstruction technique (C-SART)--a new and simple algorithm applied toionospheric tomography [J]. Earth Planets and Space (EPS),2008,60(7):727.
    82. Wang G,Jiang M. Ordered-subset simultaneous algebraic reconstructiontechniques (OS-SART)[J]. Journal of X-Ray Science and Technology,2004,12(3):169-177.
    83. Andersen A,Kak A. Simultaneous algebraic reconstruction technique (SART): asuperior implementation of the ART algorithm [J]. Ultrasonic imaging,1984,6(1):81-94.
    84. Jiang M,Wang G. Convergence of the simultaneous algebraic reconstructiontechnique (SART)[J]. Image Processing, IEEE Transactions on,2003,12(8):957-961.
    85. Zhang L, Lu W, Yin F, et al. An Adaptive Simultaneous Algebraic ReconstructionTechnique [J]. Medical Physics,2007,34(6):2346-2346.
    86. Xu F,Mueller K. Accelerating popular tomographic reconstruction algorithms oncommodity PC graphics hardware [J]. Nuclear Science, IEEE Transactions on,2005,52(3):654-663.
    87. Xu F, Xu W, Jones M, et al. On the efficiency of iterative ordered subsetreconstruction algorithms for acceleration on GPUs [J]. Computer methods andprograms in biomedicine,2010,98(3):261-270.
    88. Xu W, Xu F, Jones M, et al. High-performance iterative electron tomographyreconstruction with long-object compensation using graphics processing units(GPUs)[J]. Journal of structural biology,2010,171(2):142-153.
    89. Pang W-M, Qin J, Lu Y, et al. Accelerating simultaneous algebraic reconstructiontechnique with motion compensation using CUDA-enabled GPU [J].International journal of computer assisted radiology and surgery,2011,6(2):187-199.
    90. Jerri A J. The Shannon sampling theorem—Its various extensions andapplications: A tutorial review [J]. Proceedings of the IEEE,1977,65(11):1565-1596.
    91. Donoho D L. Compressed sensing [J]. Information Theory, IEEE Transactions on,2006,52(4):1289-1306.
    92. Candès E J. The restricted isometry property and its implications for compressedsensing [J]. Comptes Rendus Mathematique,2008,346(9):589-592.
    93. Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundantdictionaries [J]. Information Theory, IEEE Transactions on,2008,54(5):2210-2219.
    94. Candes E J, Romberg J K, Tao T. Stable signal recovery from incomplete andinaccurate measurements [J]. Communications on pure and applied mathematics,2006,59(8):1207-1223.
    95. Kung H,Yu C-M. Reducing Reconciliation Communication Cost withCompressed Sensing [J]. arXiv preprint arXiv:1212.2894,2012:
    96. Osher S, Burger M, Goldfarb D, et al. An iterative regularization method for totalvariation-based image restoration [J]. Multiscale Modeling&Simulation,2005,4(2):460-489.
    97. Yang J, Wright J, Huang T S, et al. Image super-resolution via sparserepresentation [J]. Image Processing, IEEE Transactions on,2010,19(11):2861-2873.
    98. Afonso M V, Bioucas-Dias J M, Figueiredo M A. A fast algorithm for theconstrained formulation of compressive image reconstruction and other linearinverse problems [C]. IEEE International Conference on Acoustics Speech andSignal Processing (ICASSP).2010:4034-4037
    99.陈涛,李正炜,王建立.应用压缩传感理论的单像素相机成像系统[J].光学精密工程,2012,20(11):2523-2530.
    100. Baraniuk R G. Single-pixel imaging via compressive sampling [J]. IEEE SignalProcessing Magazine,2008:
    101. Volz R,Close S. Inverse filtering of radar signals using compressed sensing withapplication to meteors [J]. Radio Science,2012,47(6): RS0N05.
    102. Herman M A,Strohmer T. High-resolution radar via compressed sensing [J].IEEE Transactions on Signal Processing,2009,57(6):2275-2284.
    103. Ender J H. On compressive sensing applied to radar [J]. Signal Processing,2010,90(5):1402-1414.
    104. Tello Alonso M, López-Dekker P, MallorquíJ J. A novel strategy for radarimaging based on compressive sensing [J]. IEEE Transactions on Geoscience andRemote Sensing,2010,48(12):4285-4295.
    105. Xu Y, Zuo W, Fan Z. Supervised sparse representation method with a heuristicstrategy and face recognition experiments [J]. Neurocomputing,2012,79:125-131.
    106. Huang Z, Liu Y, Li C, et al. A Robust Face and Ear based Multimodal BiometricSystem using Sparse Representation [J]. Pattern Recognition,2013:1-15.
    107. Shim B,Song B. Multiuser Detection via Compressive Sensing [J].Communications Letters, IEEE,2012,16(7):972-974.
    108. Vera Rodriguez I, Sacchi M, Gu Y J. A compressive sensing framework forseismic source parameter estimation [J]. Geophysical Journal International,2012,191(3):1226-1236.
    109.杨海蓉,方红,张成, et al.基于回溯的迭代硬阈值算法[J].自动化学报,2011,37(3):276-282.
    110.尹忠科,,王建英.由图像的稀疏分解重建图像的快速算法[J].电子科技大学学报,2006,35(004):447-449.
    111.石光明,刘丹华,高大化.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081.
    112. Tang J, Nett B E, Chen G H. Performance comparison between total variation(TV)-based compressed sensing and statistical iterative reconstruction algorithms[J]. Physics in medicine and biology,2009,54:5781.
    113. Tang J. Dose Reduction using Prior Image Constrained Compressed Sensing(DR-PICCS)[J]. Physics of Medical Imaging,2011,7961:
    114. Stayman J W. Penalized-Likelihood Reconstruction for Sparse Data Acquisitions[J]. Physics of Medical Imaging,2011,7961:
    115. Ritschl L. A new approach to limited angle tomography using the [J]. Physics ofMedical Imaging,2010,7622:76222H.
    116. Nett B E, Brauweiler R, Kalender W, et al. Perfusion measurements by micro-CTusing prior image constrained compressed sensing (PICCS): initial phantomresults [J]. Physics in medicine and biology,2010,55:2333.
    117.Chen G H, Tang J, Leng S. Prior image constrained compressed sensing (PICCS):a method to accurately reconstruct dynamic CT images from highlyundersampled projection data sets [J]. Medical physics,2008,35:660.
    118. Chen G H, Tang J, Hsieh J. Temporal resolution improvement using PICCS inMDCT cardiac imaging [J]. Medical physics,2009,36:2130.
    119. Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization[J]. Signal Processing Letters, IEEE,2007,14(10):707-710.
    120. Setzer S, Splitting methods in image processing.2009, PhD thesis, University ofMannheim,2009.53,54,145,149.
    121. Murakami Y, Yamagishi M, Yukawa M, et al. A sparse adaptive filtering usingtime-varying soft-thresholding techniques [C]. Acoustics Speech and SignalProcessing (ICASSP),2010IEEE International Conference on.2010:3734-3737
    122. Loris I, Bertero M, De Mol C, et al. Accelerating gradient projection methods for1-constrained signal recovery by steplength selection rules [J]. Applied andComputational Harmonic Analysis,2009,27(2):247-254.
    123. Combettes P L,Pesquet J C. Proximal splitting methods in signal processing [J].Fixed-Point Algorithms for Inverse Problems in Science and Engineering,2011:185-212.
    124. Johnson J E, Takenaka T, Ping K, et al. Advances in the3-D forward–backwardtime-stepping (FBTS) inverse scattering technique for breast cancer detection [J].IEEE Transactions on Biomedical Engineering,2009,56(9):2232-2243.
    125. Fadili J M,PeyréG. Total variation projection with first order schemes [J]. IEEETransactions on Image Processing,2011,20(3):657-669.
    126. Fadili M J,Starck J L. Monotone operator splitting for optimization problems insparse recovery [C]. Image Processing (ICIP),200916th IEEE InternationalConference on.2009:1461-1464
    127. Setzer S. Operator splittings, Bregman methods and frame shrinkage in imageprocessing [J]. International Journal of Computer Vision,2011,92(3):265-280.
    128. Bredies K. A forward–backward splitting algorithm for the minimization ofnon-smooth convex functionals in Banach space [J]. Inverse Problems,2008,25(1):015005.
    129. Aujol J F. Some first-order algorithms for total variation based image restoration[J]. Journal of Mathematical Imaging and Vision,2009,34(3):307-327.
    130. Jia X, Lou Y, Lewis J, et al. GPU-based fast low-dose cone beam CTreconstruction via total variation [J]. Journal of X-ray Science and Technology,2011,19(2):139-154.
    131. Attouch H, Bolte J, Svaiter B F. Convergence of descent methods forsemi-algebraic and tame problems: proximal algorithms, forward–backwardsplitting, and regularized Gauss–Seidel methods [J]. Mathematical Programming,2011:1-39.
    132. Setzer S. Split Bregman algorithm, Douglas-Rachford splitting and frameshrinkage [J]. Scale space and variational methods in computer vision,2009:464-476.
    133. Combettes P L,Pesquet J C. Primal-dual splitting algorithm for solving inclusionswith mixtures of composite, Lipschitzian, and parallel-sum type monotoneoperators [J]. Set-Valued and Variational Analysis,2012,20(2):307-330.
    134. Goldfarb D,Ma S. Fast multiple-splitting algorithms for convex optimization [J].SIAM Journal on Optimization,2012,22(2):533-556.
    135. Yu H,Wang G. A soft-threshold filtering approach for reconstruction from alimited number of projections [J]. Physics in medicine and biology,2010,55(13):3905.
    136.Blumensath T,Davies M E. Iterative hard thresholding for compressed sensing [J].Applied and Computational Harmonic Analysis,2009,27(3):265-274.
    137. Beck A,Teboulle M. A fast iterative shrinkage-thresholding algorithm for linearinverse problems [J]. SIAM Journal on Imaging Sciences,2009,2(1):183-202.
    138. Blumensath T,Davies M E. Iterative thresholding for sparse approximations [J].Journal of Fourier Analysis and Applications,2008,14(5):629-654.
    139. Sidky E Y, Kao C-M, Pan X. Accurate image reconstruction from few-views andlimited-angle data in divergent-beam CT [J]. Journal of X-Ray Science andTechnology,2006,14(2):119-139.
    140. Sidky E Y,Pan X. Image reconstruction in circular cone-beam computedtomography by constrained, total-variation minimization [J]. Physics in Medicineand Biology,2008,53:4777.
    141.刘宝东,曾理,李林升.管壁长弦投影数据截断问题的迭代重建算法[J].仪器仪表学报,2011,32(001):52-56.
    142. Park J C, Song B, Kim J S, et al. Fast compressed sensing-based CBCTreconstruction using Barzilai-Borwein formulation for application to on-lineIGRT [J]. Medical Physics,2012,39:1207.
    143. Beck A,Sabach S. A First Order Method for Finding Minimal Norm-LikeSolutions of Convex Optimization Problems [J].2011:
    144. Becker S, Bobin J, Candès E J. NESTA: a fast and accurate first-order methodfor sparse recovery [J]. SIAM Journal on Imaging Sciences,2011,4(1):1-39.
    145. Beck A, Ben-Tal A, Tetruashvili L. A Sequential Ascending Parameter Methodfor Solving Constrained Minimization Problems [J]. SIAM Journal onOptimization,2012,22(1):244-260.
    146.Beck A,Teboulle M. Smoothing and first order methods: A unified framework [J].SIAM Journal on Optimization,2012,22(2):557-580.
    147. Jensen T L, First-order Convex Optimization Methods for Signal and ImageProcessing.2011, Ph. D Thesis, Department of Electronic Systems, AalborgUniversity, Denmark.
    148. Jensen T L, J rgensen J H, Hansen P C, et al. Implementation of an optimalfirst-order method for strongly convex total variation regularization [J]. BITNumerical Mathematics,2012,52(2):329-356.
    149. Dahl J, Hansen P C, Jensen S H, et al. Algorithms and software for total variationimage reconstruction via first-order methods [J]. Numerical Algorithms,2010,53(1):67-92.
    150. Marin D, Nelson R C, Schindera S T, et al. Low-Tube-Voltage,High-Tube-Current Multidetector Abdominal CT: Improved Image Quality andDecreased Radiation Dose with Adaptive Statistical Iterative ReconstructionAlgorithm—Initial Clinical Experience1[J]. Radiology,2009,254(1):145-153.
    151. Hensley D. Slicing the cube in [J]. Proceedings of the American MathematicalSociety,1979,73(1):95-100.
    152.高欣.一种不完全投影图像重建的快速迭代算法[J].浙江大学学报,2004,38(009):1108-1111.
    153. Yu L, Zou Y, Sidky E Y, et al. Region of interest reconstruction from truncateddata in circular cone-beam CT [J]. Medical Imaging, IEEE Transactions on,2006,25(7):869-881.
    154. Nett B, Zhuang T, Leng S, et al. Arc based cone-beam reconstruction algorithmusing an equal weighting scheme [J]. Journal of X-Ray Science and Technology,2007,15(1):19-48.
    155. Zhu L, Yoon S, Fahrig R. A short-scan reconstruction for cone-beam CT usingshift-invariant FBP and equal weighting [J]. Medical Physics,2007,34:4422.
    156. Tang X, Hsieh J, Nilsen R A, et al. Extending three-dimensional weighted conebeam filtered backprojection (CB-FBP) algorithm for image reconstruction involumetric CT at low helical pitches [J]. Int. J. Biomed. Imaging,2006,45942:
    157. Yang D,Ning R. FDK half-scan with a heuristic weighting scheme on a flat paneldetector-based cone beam CT (FDKHSCW)[J]. International Journal ofBiomedical Imaging,2006,2006:
    158. WangYu, Wang F, Ou Z. A Cone-Beam Reconstruction Algorithm Based onNutating Line Filtration for Single Circular Trajectory [C].2006,2:10206-10209
    159. WangYu, Ou Z, Wang F. Modified FDK Algorithm for Cone-BeamReconstruction with Efficient Weighting Scheme [C].2006,2:9703-9707
    160. Mori S, Endo M, Komatsu S, et al. A combination-weighted Feldkamp-basedreconstruction algorithm for cone-beam CT [J]. Physics in Medicine and Biology,2006,51:3953.
    161.陈炼,吴志芳,王钦娅.锥束CT的分区短扫描FDK重建算法[J].清华大学学报:自然科学版,2009,(006):860-863.
    162. Shor N. The rate of convergence of the generalized gradient descent method [J].Cybernetics and Systems Analysis,1968,4(3):79-80.
    163. Shor N Z. Convergence rate of the gradient descent method with dilatation of thespace [J]. Cybernetics,1970,6(2):102-108.
    164.Fletcher R,Powell M J. A rapidly convergent descent method for minimization [J].The Computer Journal,1963,6(2):163-168.
    165. Fletcher R. On the Barzilai-Borwein gradient method [J]. Optimization andControl with Applications:235-256.
    166. Fletcher R. The Barzilai Borwein method-steepest descent method resurgent [C].Report in the International Workshop on ptimization and Control withApplications", Erice, Italy.2001:9-17
    167. Fletcher R, Stuart A, Sigurgeirsson H, et al. on Numerical Analysis, University ofDundee [J]. Applied Numerical Mathematics,2002,43:3-7.
    168. Dai Y H, Hager W W, Schittkowski K, et al. The cyclic Barzilai-Borwein methodfor unconstrained optimization [J]. IMA Journal of Numerical Analysis,2006,26(3):604-627.
    169. Dai Y H,Liao L Z. R-linear convergence of the Barzilai and Borwein gradientmethod [J]. IMA Journal of Numerical Analysis,2002,22(1):1-10.
    170. Dai Y H,Fletcher R. Projected Barzilai-Borwein methods for large-scalebox-constrained quadratic programming [J]. Numerische Mathematik,2005,100(1):21-47.
    171. Dai Y H,Zhang H C. Adaptive two-point stepsize gradient algorithm [J].Numerical Algorithms,2001,27(4):377-385.
    172. Dai Y-H,Yuan Y. A nonlinear conjugate gradient method with a strong globalconvergence property [J]. SIAM Journal on Optimization,1999,10(1):177-182.
    173.何炳生,廖立志.极大单调算子的一个新的近似邻近点算法[J].中国科学: A辑,2002,32(11):1026-1032.
    174. He B, Liao L-Z, Wang X. Proximal-like contraction methods for monotonevariational inequalities in a unified framework [J]. Computational Optimizationand Applications,2012,51(2):649-679.
    175.何炳生.论求解单调变分不等式的一些投收缩算法[J].计算数学,1996,18(1):54-60.
    176. Nesterov Y. Primal-dual subgradient methods for convex problems [J].Mathematical Programming,2009,120(1):221-259.
    177. Aubin J P. Lipschitz behavior of solutions to convex minimization problems [J].Mathematics of Operations Research,1984,9(1):87-111.
    178. Aubin J P,Clarke F. Shadow prices and duality for a class of optimal controlproblems [J]. SIAM Journal on Control and Optimization,1979,17(5):567-586.
    179. Aubin J P. Locally Lipschitz cooperative games [J]. Journal of MathematicalEconomics,1981,8(3):241-262.
    180. Polyak B T. The conjugate gradient method in extremal problems [J]. USSRComputational Mathematics and Mathematical Physics,1969,9(4):94-112.
    181. Du S-q,Chen Y-y. Global convergence of a modified spectral FR conjugategradient method [J]. Applied mathematics and computation,2008,202(2):766-770.
    182. Wei Z, Li G, Qi L. New nonlinear conjugate gradient formulas for large-scaleunconstrained optimization problems [J]. Applied mathematics and computation,2006,179(2):407-430.
    183. Zhang L, Zhou W, Li D. Global convergence of a modified Fletcher–Reevesconjugate gradient method with Armijo-type line search [J]. NumerischeMathematik,2006,104(4):561-572.
    184. Benzi M, Meyer C D, Tuma M. A sparse approximate inverse preconditioner forthe conjugate gradient method [J]. SIAM Journal on Scientific Computing,1996,17(5):1135-1149.
    185. Zhang L, Zhou W, Li D. Global convergence of the DY conjugate gradientmethod with Armijo line search for unconstrained optimization problems [J].Optimisation Methods and Software,2007,22(3):511-517.
    186. Huang H, Wei Z, Shengwei Y. The proof of the sufficient descent condition ofthe Wei–Yao–Liu conjugate gradient method under the strong Wolfe–Powell linesearch [J]. Applied mathematics and computation,2007,189(2):1241-1245.
    187. Dai Y-H. Conjugate gradient methods with Armijo-type line searches [J]. ActaMathematicae Applicatae Sinica,2002,18(1):123-130.
    188. Dai Y H. Convergence of conjugate gradient methods with constant stepsizes [J].Optimization Methods and Software,2011,26(6):895-909.
    189. Sun J,Zhang J. Global convergence of conjugate gradient methods without linesearch [J]. Annals of Operations Research,2001,103(1-4):161-173.
    190. Wang C J. Some remarks on conjugate gradient methods without line search [J].Applied mathematics and computation,2006,181(1):370-379.
    191. Cabral B, Cam N, Foran J. Accelerated volume rendering and tomographicreconstruction using texture mapping hardware [C]. Proceedings of the1994symposium on Volume visualization.1994:91-98
    192. Mueller K, Fast and accurate three-dimensional reconstruction from cone-beamprojection data using algebraic methods.1998, The Ohio State University.
    193. Weinlich A, Keck B, Scherl H, et al. Comparison of high-speed ray casting onGPU using CUDA and OpenGL [C]. Proceedings of the First InternationalWorkshop on New Frontiers in High-performance and Hardware-awareComputing.2008,1:25-30
    194. Keck B, Hofmann H, Scherl H, et al. GPU-accelerated SART reconstructionusing the CUDA programming environment [C]. SPIE Medical Imaging.2009:72582B-72582B-9
    195. Scherl H, Keck B, Kowarschik M, et al. Fast GPU-based CT reconstructionusing the common unified device architecture (CUDA)[C]. Nuclear ScienceSymposium Conference Record,2007. NSS'07. IEEE.2007,6:4464-4466
    196. Okitsu Y, Ino F, Hagihara K, Accelerating cone beam reconstruction using theCUDA-enabled GPU, in High Performance Computing-HiPC2008.2008,Springer. p.108-119.
    197. Okitsu Y, Ino F, Hagihara K. High-performance cone beam reconstruction usingCUDA compatible GPUs [J]. Parallel computing,2010,36(2):129-141.
    198. Ino F, Okitsu Y, Kishi T, et al. Out-of-core cone beam reconstruction usingmultiple GPUS [C]. Biomedical Imaging: From Nano to Macro,2010IEEEInternational Symposium on.2010:792-795
    199. Xu F,Mueller K. Ultra-fast3d filtered backprojection on commodity graphicshardware [C]. Biomedical Imaging: Nano to Macro,2004. IEEE InternationalSymposium on.2004:571-574
    200. Mueller K,Xu F. Practical considerations for GPU-accelerated CT [C].Biomedical Imaging: Nano to Macro,2006.3rd IEEE International Symposiumon.2006:1184-1187
    201. Xu F,Mueller K. A comparative study of popular interpolation and integrationmethods for use in computed tomography [C]. Biomedical Imaging: Nano toMacro,2006.3rd IEEE International Symposium on.2006:1252-1255
    202. Mueller K, Xu F, Neophytou N. Why do commodity graphics hardware boards(GPUs) work so well for acceleration of computed tomography?[C]. ElectronicImaging2007.2007:64980N-64980N-12
    203. Xu F,Mueller K. GPU-Acceleration of Attenuation and Scattering Compensationin Emission Computed Tomography [C]. First Workshop on High PerformanceImage Reconstruction (Fully3D Image Reconstruction in Radiology and NuclearMedicine).2007:29-32
    204. Xu F,Mueller K. Towards a unified framework for rapid3D computedtomography on commodity GPUs [C]. Nuclear Science Symposium ConferenceRecord,2003IEEE.2003,4:2757-2759
    205. Xu F,Mueller K. Real-time3D computed tomographic reconstruction usingcommodity graphics hardware [J]. Physics in medicine and biology,2007,52(12):3405.
    206. Xu F,Mueller K. GPU-Accelerated D2VR [C]. Volume Graphics.2006:23-30
    207. Chidlow K,M ller T. Rapid emission tomography reconstruction [C].Proceedings of the2003Eurographics/IEEE TVCG Workshop on Volumegraphics.2003:15-26
    208. Jang B, Kaeli D, Do S, et al. Multi GPU implementation of iterative tomographicreconstruction algorithms [C]. Biomedical Imaging: From Nano to Macro,2009.ISBI'09. IEEE International Symposium on.2009:185-188
    209. Yang C T, Huang C L, Lin C-F. Hybrid CUDA, OpenMP, and MPI parallelprogramming on multicore GPU clusters [J]. Computer Physics Communications,2011,182(1):266-269.
    210. Zeng G L,Gullberg G T. Unmatched projector/backprojector pairs in an iterativereconstruction algorithm [J]. Medical Imaging, IEEE Transactions on,2000,19(5):548-555.
    211. Reshetov A, Soupikov A, Hurley J. Multi-level ray tracing algorithm [C]. ACMTransactions on Graphics (TOG).2005,24:1176-1185
    212. Woo A. Fast ray-box intersection [C]. Graphics Gems.1990:395-396
    213. Snyder J M,Barr A H, Ray tracing complex models containing surfacetessellations. Vol.21.1987: ACM.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700