用户名: 密码: 验证码:
干旱胁迫下不同倍体小麦株型演化与生态适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以进化上具有亲缘关系的6个小麦品种作为实验材料,采用盆栽控水的方法,2008年和2009年测定了四个野生近缘种(二倍体MO1和M04、四倍体DM22和DM31)、两个六倍体包括古老六倍体品种和尚头(无麦芒)及1998年培育成的现代六倍体品种陇春8275(有麦芒)的株型和产量形成变化。利用灰色关联度分析法和异速生长关系等统计方法研究了不同供水条件下不同倍体小麦株型性状的演化特征(叶型、茎型)、籽粒产量形成和植株组件之间的几何关系,得出如下主要结论:
     1.旱地小麦的叶型演变强化了人工种群属性。随着小麦染色体倍数的增加,小麦植株上三片叶的叶夹角、叶开角、弯曲度及叶面积均呈逐渐增大的趋势,而叶片长/宽比却表现为逐渐变小,该现象在充分供水条件下更加明显。这些特征表明旱地小麦通过增大叶片角度、叶片演化向着短而宽的方向演化来规避种群内部竞争和增大群体水平上的光捕捉面积,这种进化策略有助于提高群体产量,验证了现代小麦的个体互利型属性和人工种群性质。
     2.旱地小麦茎型是以产量为目标进行演变。随着小麦倍体的增加,单株分蘖数逐渐减少,株高逐渐增加。充分供水条件下,二倍体和四倍体的分蘖数在7和4之间,显著高于六倍体的3个分蘖数,干旱条件下二倍体和四倍体的分蘖数在4到3之间同样显著高于六倍体的2个分蘖数,且充分供水条件下不同品种的分蘖数均高于干旱条件下的分蘖数,分蘖数的减少有利于资源更多地配置到主株的垂直分配上,从而提高植株高,不同倍体茎秆节数均出现四个节、五个节和六个节现象,且四个节的植株最接近株高构成指数的“黄金分割”—0.618,五个节的植株次之,六个节最差,该趋势在充分供水条件下更为明显。初步认为,在供水充足条件下小麦植株主要建立茎节间的理想黄金分割比例来获得较高的繁殖分配,进一步证明了以籽粒产量为目标的茎节间的黄金分割比例规律。
     3.株高的黄金分割比例关系是自然选择和人工选择的结果。充分供水条件现代品种茎节间的黄金分割出现偏离,偏离值在介于8.23%和-60.33%之间,干旱胁迫下不同品种的偏离值和调控能力有较大差异。现代品种的偏离值介于-5.48%和-19.09%之间,而野生近缘种则处于-32.91%和-12.34%(二倍体)与-26.05%和-53.47%(四倍体)之间。干旱胁迫下小麦株高随着小麦倍体的增加而增加,从二倍体到四倍体的株高的增加是对自然选择的适应性进化,而从四倍体到六倍体的株高增加则主要是以产量为目标的人工选择的结果。
     4.基茎横截面积与籽粒产量具有高度的关联性。无论是干旱胁迫组还是充分供水组,小麦植株分蘖数与产量的关联度均为最低,而株高与产量的关联度均较高,推测旱地小麦在从二倍体到六倍体的进化过程中朝向“低分蘖、高株型”的方向演变。三种主要光合叶片(旗叶、倒2叶和倒3叶)的“生物量”与产量的关联度均大于“叶位高度”的关联度,表明叶片的“质量效应”大于其“”空间着生效应。基茎横截面积在充分供水组中与产量的关联度最高,而在干旱胁迫组中则排倒数第二,表明该性状可能是干旱胁迫下产量形成的敏感指标,是作物产量形成的物质及结构基础。
     5.小麦植株各组件间的异速生长关系比较。除极个别品种外,不同倍体小麦籽粒产量与地上生物量,叶片重量与地上生物量,分蘖数与地上生物量均存在异速生长关系,这种异速生长关系可采用模型方程y=a+bx表示。充分供水条件下二倍体籽粒重量与地上生物量异速生长现象较干旱条件不不明显,六倍体则相反;充分供水条件下二四六倍体叶片重量与地上部分生物量的异速生长现象明显;二倍体品种的分蘖数与地上生物量在充分供水异速生长现象明显,其余各品种均不明显,趋于协调趋势。
Pot-culture and water-control experiments were conducted to determine the changes in plant type and yield formation using six wheat varieties with evolutionally genetic relationship as experimental materials including four wild relatives (Diploid wheat MO1 and MO4, Tetraploid wheat DM22 and DM31), and two hexaploid wheat including old hexaploid Monkhead and modern hexaploid Longchun 8275 which was released in 1998 under the conditions of rain shelter. By analysing the plant type evolution and its relationship with yield formation in different-ploidy wheats under drought stress and sufficient water supply. A few major conclusions were made as follows:
     1. The data indicated that the leaf angle against stem, the leaf opening angle, the leaf camber and the leaf area tended to increase with the multiplication of chromosome sets, while the length-to-width ratio of leaf was found to decrease. This trend was more distinct under well watered condition. The yield per pot and the yield stability were increased along with the evolvement of wheat varieties. The results showed that dryland wheat was developed to avoid intraspecific competition and enlarge the leaf area to capture sunlight at the level of population by way of increasing blade angle, broadening and shortening blade dimension, which would help improve the population yield as an evolutionary strategy. Experimental results demonstrate the mutually beneficial nature of modern wheat at the individual level and the property of artificial populations.
     2.Along with the growth of chromosome complement, wheat plant showed decreased branch number、increased stem length. The stem length increases in two ways, one is to increase the length of internode, and the other is to add pitch number. All different-ploidy wheats emerged tillers that have four internodes、five internodes、six internodes, and wheat plant with four internodes is nearest the Golden section index of plant height-0.618, followed by type of five internodes and then type of six internodes. To drought stress group, this kind of effects is sharper. It is believed that wheat plant build ideal Golden section to fulfill its high yield under sufficient water supply, this proportion is broken down under drought stress, whereas wheat with different diploid have different ability to recover and rebuild this proportion. It is obvious that modern wheat plants are superior to wild wheat plants in this direction. Wheat height evolution is not only an active way to adapt to natural selection, but also the result of artificvial selections with a view to increasing crop yields.
     3. Tactic difference of the golden proportion. The Golden proportion of modern varieties'internodes appear deviate under sufficient water supply, deviation value is between 8.23% and -60.33%, but to varieties under drought stress, there is a big gap between their deviation value and steering capacity. The research shows deviation value of modern varieties is between-5.48% and -19.09%, the value of wild species fall in between -32.91% and -12.34%(diploid) or between -26.05% and -53.47% (tetraploid). Plant height of wheat is increasing as its multiple increase under drought stress, stem height increasing from diploid plant to tetraploid plant is adaptive evolution of natural selection, nevertheless, stem height increasing from tetraploid plant to hexaploid plant is the result of artificial selection aimed volume of production.
     4. Grey analysis results indicated that the correlation of tillering number to yield was the lowest, but that of plant height to yield relatively high both in CK and S groups, suggesting that dryland wheat was evolved following the tendency of "lower tillering rate, higher plant height" along with the progress from diploid to hexaploid. Biomass of three kinds of main photosynthetic leaves (flag leaf, top 2nd leaf and top 3rd leaf) were observed to wholly share higher correlation to yield than their location height, showing that the effect of leaf biomass was superior to its spatial location effect. Specially, it was first found that the cross sectional area of bottom stem had the highest correlation rate to yield in CK group, but it was ranked last but one in S group. The evidence showed that this trait was likely to be a sensitive indicator of yield formation as a result of drought stress, which was substantial and structural basis of yield formation.
     5. The comparation of wheat plant pieces between different speed growth:Except very few pieces, different wheat grain yield and the biomass above-ground, leaf weight and ground biomass, the biomasses and tiller development exist allometry-relationship, the allometry-relationship can be showed with y=a+bx Compared with wheat under dronght stress, the grain weight and biomass growth rate of diploid wheat is not obvious under sufficient water supply, as it is not to hexaploid. For all three ploidy types, regulation of allometric growth between leaves weight and the biomass above-ground is obvious; Diploid tillering and the biomass above-ground is more noticeable under sufficient water supply, the others breed is not distinct, and tends to coordinate.
引文
1. Araus J L, Brown H R,Febrero A.1993. Ear photo synthesis carbon isotope discrim-ination and the contribution of respiratory CO2 to differences in grain mass in durum wheat J. Plant,Cell and Environment,16:383-392.
    2. Austin RB, Bingham J, Blackwell RD, Evans LT, Ford MA, Morgan CL and Taylor M.1980. Genetic improvements in winter wheat yields since 1900 and associated physiological changes J. Agric Sci,94:675-689.
    3. Borojevic S.1986. Genetic changes in morpho-physiologic characters in relation to breeding for increased wheat yield. In Gnetic Improvement in Yield of Wheat J.Crop Sci So,71-85.
    4. Donald C M.1968. The breeding of crop ideotypes J. Euphytica,17:385-403.
    5. Emetrius L.2006. The origin of allometric scaling laws in biology J. Theor Biol, 243:455-467.
    6. Engledow FL.1923. Wadham SM. Inrestigation on Yield in the Cereals J. Part Agrisoi,13:16-19.
    7. Enquist BJ,Brown JH, West GB.1998. Allometric scaling of plant energetics and population density J. Nature,395:163-165.
    8. Evans LT and Dustone RL.1970. Some physiological aspects of evolution in wheat J. Biol Science.
    9. Gould S J.1966. Allomet ry in size in ontogeny and phylogeny J. Biological Reviews,41:58-72.
    10. Heath D V, F G Gregory.1938. The constancy of the meannet assimilation rate and its ecological importance J. AnnBotany,2:811-818.
    11. Huxley J.1932. Problems of relat ive growth M. London Methuen.
    12. Kittredge J.1944. Estimation of the amount of foliage of trees and stands J. Forest, 42:905-912.
    13. Ledent J.F.1982.Factors determining flag curvature in wheat J..Crop Sci.,22: 617-622.
    14. Matsushima S.1960. Theories and techniques in rice cultivation-theory on yield annlysis and its application J. Yokendo.Tokyo,1:170-228
    15. Ogbonnaya FC, Halloran GM, Lagudah E S. D.2005. Genome of wheat-60 years on from kihara, sears and McFadden A Tsunewaki K (ed), Frontiers of Wheat Bioscience, the 100th Memorial Issue of Wheat Information Service C. Kihara Memorial Foundation for the Advancement of Life Sciences,205-220.
    16. Reif JC, Zhang P, Dreisigacker S.2005. Wheat genetic diversity trends during domestication and breeding J. Theor Appl Genet,110:859-864.
    17. Siddique KHM, Kirby ETM and Perry MW.1989. Ear stem ratio in old and modern wheat varieties:relationship with improvement in number of grains per ear and yield. J. Field Crop Res.21:59-78.
    18. Smith R J.1980. Rethinking allometry J. Journal of Theoretical Biology,87: 972-111.
    19. Van Ginkel M, Ogbonnaya F.2007. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions J. Field Crops Research, 104:86-94.
    20. Weiner J.1992. Compet it ion and allomet ry in three species of annual plants J. Ecology,732:648-656
    21. Warburton M L, Crossa J, Franco J.2006. Bringing wild relatives back into t he family:recovering genetic diversity in CIMMYT improved wheat germplasm J. Euphytica,149:289-301.
    22. West GB Brown JH, Enquist BJ.1997. Ageneral model for the origin of all ometric scaling laws in biology J. Science,276:122-126
    23. Wright C.1873. On the uses and origin of the arrangenments of leaves in plans J.. Mem.Am.Acad.Arts Sci,9:379-415.
    24.陈集贤, 赵绪兰。高产稳产优质广适应性小麦育种基础[M]。北京:科学出版社,2000,44-56。
    25.陈晓远,高志红,刘晓英,罗远培。水分胁迫对冬小麦根冠生长关系及产量的影响[J]。作物学报,2004,30(7):723-728。
    26.单玉珊。小麦高产栽培技术原理[M]。北京:科学出版社,2001: 36-40。
    27.封超年,郭文善,何建华等。高产小麦株型的指标体系[J]。扬州大学学报,1998,1(4):24-30。
    28.封超年。小麦高产株型的生理特性[J]。扬州大学学报自然科学版,1999(4)41-46。
    29.傅兆麟,小麦超高产基因型产量因素、株型和冠层结构特征研究,中国农业大学博士学位论文,2001。
    30.傅兆麟。小麦超高产基因型的株型结构问题[J]。云南农业大学学报,2007,22(1):17-22。
    31.高瑞玲等。高产小麦生理指标的初步探讨[J]。河南农学院学报。1981(4):34
    32.管建慧,郭新宇,刘克礼。作物品种产量潜力研究概况[J]。农艺科学,2007,23(2):202-205。
    33. HALLAUER A R。玉米轮回选择的理论与实践M。中国农业科学院作物育种栽培研究所。北京:农业出版社,1989:1-16。
    34.#12
    35.雷振生。黄淮麦区冬小麦合理株型结构问题[J]。华北农学报1994,9(4):27-32。
    36.李万昌,刘曙东。强优势杂交小麦产量结构优势间关系的研究[J]。麦类作物学报,2002,22(3):1-6。
    37.李仲芳,王刚。种内竞争对一年生植物高生长与生物量关系的影响[J]。兰州大学学报,2002,38(2):141-146。
    38.刘兆晔,于经川,牟春生,刘维正,王江春,陈永娜。小麦株高构成指数的研究[J]。莱阳农学院学报,2000,17(2):120-123。
    39.祁适雨,小麦育种与远缘杂交[J]。世界农业,1983年07期。
    40.裘敏,魏亦勤,刘旺清,张双喜,李红霞。2007。小麦5个产量性状与产量的灰色关联度分析。安徽农业科学[J],35(2)。
    41.任正隆。关于作物育种攻关的几个问题[J]。西南农业报,1995,8(4):119-125
    42.松岛省三。 稻作的理论与技术M。庞诚译,北京:中国农业出版社,1981
    43.苏祖芳,许乃霞,孙成明。水稻抽穗后株型指标与产量形成关系的研究[J]。中国农业大学,2003,36(1):115-120。
    44.孙其信,郭玉响。T型杂种小麦优势表现的形态及遗传基础[J]。北京农业大学学报,1985,11(4):65-73。
    45.田木生,刘国强。小麦主要性状和产量的关系。安徽农学通报。1997,3(2):5-8。
    46.王建林,徐正进,魏树和。水稻株型育种生理生态特性的研究现状与展望[J]。。辽宁农业科学,2000,(4):23-27。
    47.王志芬,吴科,宋良增。山东省不同穗型超高产小麦产量构成因素分析与选择思路[J]。山东农业科学,2001(4):6-8。
    48.魏燮中,吴兆苏。小麦植株高度的结构分析,南京农学院学报,1983,(1):14-21。
    49.吴兆苏。小麦育种学[M]。北京: 农业出版社,1990。206-234。
    50.肖洒, 王刚,李良。毛乌素沙地油蒿与杨柴异速生长模式及个体大小的种内竞争调节[J],中国沙漠,2003,23(1):67-71。
    51.行翠平,张哲夫。冬小麦丰稳性分析及其育种目标探讨[J]。小麦研究,1999,20(2):29-32。
    52.熊友才。旱地作物根源信号的演化及产量形成的关系,兰州大学研究生学位论文,2005。
    53.杨守仁,张龙步,陈温福等。 水稻超高产育种的理论与方法[J]。 中国水稻科学,1996,10(2):115-120。
    54.杨文雄。旱地小麦株型指标与产量形成的关系研究[J]。 干旱地区农业研究200624(1):43-46。
    55.杨文雄。旱地小麦株型指标与产量形成关系研究[J]。干旱地区农业研究,2006,24(1):43-46。
    56.殷宏章。稻麦群体研究论文集[M]。上海:上海科学技术出版社,1961:44-50。
    57.张建成,张弘旭,张汇娟。小麦主要产量构成因素间的灰色关联度分析,内蒙古农业科技,2008,(3):25-26。
    598.张娟。超高产小麦品种冠层结构对产量的影响及遗传研究,河南农业大学硕 士学位论文,2000。
    59.赵倩,梁新明,姜鸿明等。小麦矮化对产量及抗倒性的影响[J]。莱阳农学院学报,1999,16(3):168-171。
    60.周畅,吴钿。水稻株型与产量的相关性及灰色关联分析[J]。江西农业学报,2004,16(3):9-13。
    61.周凤云,张亚琴,蒋刚。两系杂交小麦产量和产量构成因素的灰色关联度分析。
    62.朱冬梅。弱筋小麦优质高产株型指标与调控,扬州大学硕士学位论文,2005.5:2-3。
    63.朱国富。江苏淮南地区小麦品种产量结构与合适株型的关系探讨,南京农业大学硕士论文,1990。
    64.庄巧生。庄巧生文集[M]。北京:中国农业出版社,1999:412-413。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700