用户名: 密码: 验证码:
根域限制对牡丹碳代谢和内源激素变化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以‘洛阳红’牡丹为材料,研究了根域限制(盆栽)对牡丹碳代谢和内源激素变化的影响。结果表明,根域限制使牡丹的株高和冠幅、混合芽的生长发育以及叶面积大小都受到抑制。一二级根的数量减少,一级根的干重和鲜重显著低于对照,二级根的干重和鲜重与对照无显著差异;三级根的数量增加,干重显著低于对照。一级根和三级根的含水量均高于对照,二级根的含水量低于对照,说明牡丹干物质积累主要集中在二级根,一级根的存储干物质的能力下降,功能退化,三级根的吸水能力增加,说明根域限制并未使牡丹根部受到水分胁迫。根域限制使牡丹基质的pH值增加。
     根域限制显著地降低了牡丹叶片的净光合速率(Pn),蔗糖磷酸合成酶(SPS)和酸性转化酶(AI)的活性。根域限制下,牡丹叶片中SPS和AI活性的降低,表明其源强和库强都受到抑制。盛花期之前,牡丹叶片中蔗糖、淀粉的含量显著低于对照(大田栽培);从盛花期到开花后期,库强拉动蔗糖运输到库器官的动力不足,淀粉水解少,蔗糖、淀粉在叶片中形成累积;盛花前后己糖变化平稳,含量总体低于对照。库强小是牡丹Pn降低的主要原因,还与叶面积小和碳水化合物在叶片中的累积有一定的相关性。
     根域限制下,牡丹花朵的直径和高度都显著降低,牡丹在初开期瓣干重占总干重比例显著低于对照,从圆桃期到初开期花瓣干重的增加速度也低于对照。这说明根域限制抑制了牡丹花瓣干重的增加和干物质积累的速度。从圆桃期到盛开期,雄蕊干重/总干重的比值高于对照,雌蕊干重/总干重的比值低于对照,表明根域限制下,牡丹花器官干重的分配发生了变化,干重分配到花瓣和雌蕊的比例有所降低,分配到雄蕊的比例增加。根域限制使牡丹花器官总体的蔗糖、己糖含量降低,但是降低的程度不一样,在花瓣和雌蕊中降低的程度要低于雄蕊中降低的程度。牡丹花瓣中淀粉含量在圆桃期和初开期,显著低于对照,雄蕊中淀粉含量在圆桃期、初开期和盛开期显著低于对照,雌蕊中淀粉含量在四个时期都显著低于对照。雌蕊中可溶性糖和淀粉的不足,是根域限制牡丹败育率较高的原因。从圆桃期到衰老期,根域限制牡丹花瓣、雄蕊、雌蕊中AI活性都显著低于对照,AI活性的降低使牡丹花瓣、花粉和子房的生长和发育活力都受到影响,说明根域限制牡丹花器官库强小,拉动蔗糖输送到花器官的动力不足,蔗糖输送的少,蔗糖被利用后,能形成淀粉被存储起来作为储备资源也少,碳水化合物储备资源受限,调动碳水化合物利用的动力不足,以牡丹花径小,开花不良,败育率较高等形式表现出来。
     根域限制下,牡丹根中ZR、IAA和GA含量总体低于对照,其中IAA含量在四个时期与对照差异显著,下降相对较为明显;牡丹根中ABA含量总体高于对照,旺盛生长Ⅱ期和开花前期显著高于对照。牡丹茎中ZR、IAA和GA含量总体低于对照,ZR含量在萌芽期、IAA含量在在旺盛生长Ⅱ期和开花前期、GA含量在开花前期与对照差异显著;茎中ABA含量总体高于对照,在萌芽期和旺盛生长Ⅱ期与对照差异显著。叶片中IAA和GA含量略微低于对照,但与对照差异不显著;ZR含量在旺盛生长期与对照差异显著;ABA含量在旺盛生长期和开花前期显著高于对照。总体看来,根域限制降低了ZR、IAA和GA的含量(根中表现较为明显)。而增加了ABA的含量(叶片中表现较为明显)。
This study analyzed the effect of root restriction (potted cultivated) on carbohydratemetabolism and endogenous hormones in 'Luoyang hong' tree peony (Paeonia suffruticosa).Theresult showed that root restriction reduced the plant height, canopy size, growth and developmentlevel of bud of tree peony. The number of the rootⅠ,rootⅡ of tree peony were reduced. Freshand dry weight of the rootⅠ were significantly lower than control. Fresh and dry weight of theroot Ⅱ were not significantly different from the control. The number of root Ⅲ was increased,but their dry weight was significantly lower than the control. Water content of the rootⅠ and rootⅢ were higher than control. Water content of rootⅡ was lower than the control. So it can be seenthat dry matter of root restriction tree peony were mainly concentrated in the root Ⅱ, and thestorage ability of rootⅠwas decreased. The water absorption capacity of root Ⅲ was increasedwhich means that root were not suffered water stress when grown under root restriction. The pHvalue of peony matrix was increased when grown under root restriction.
     Root restriction significantly reduced the net photosynthetic rate (Pn), sucrose phosphatesynthase (SPS) activity and acid invertase (AI) activity of tree peony leaves. The declined SPSactivity and AI activity in tree peony leaves show that both source and sink strength are inhibitedby root restriction. Before anthesis, sucrose and starch levels were significantly lower in rootrestriction tree peony leaves than that in control. However, from flowering-stage to late-floweringstage, sucrose and starch were accumulated in root restriction tree peony leaves mainly because ofthe low sink strength which limited the driving force to transport sucrose to sink organ and tohydrolyze starch. Hexose content in root restriction tree peony leaves were lower than the controloverall and the chagne was smooth at anthesis. Lower level of sink strength was the main reasonfor the reduced Pn of tree peony grown under root restriction. The reduction of leaf area andaccumulation of carbohydrates in leaves can also explain the decline of Pn to a certain extent.
     Under root restriction, the diameter and thickness of tree peony flower were significantlyreduced. At initiating-bloom-stage, the ratio of petal dry weight to total flower dry weight wassignificantly lower than control. From round-peach stage to initiating-bloom-stage, dry matterincrease rate of petal was lower than the control, which means that root restriction inhibited drymatter increase and dry matter increase rate of petal. From round-peach stage to full-bloom stage,the ratio of stamen dry matter to total flower dry weight was higher than the control, the ratio ofpistil dry weight to total flower dry weight was lower than the control, it shows that dry matter distribution of flower organ was changed, which distributed relatively more to stamens anddistributed relatively less to petals and pistils. Sucrose content and hexose content of tree peonyflower organ were decreased. However, the reduction degrees between different flower organswere different. The reduction degree in petals and pistils were lower than the reduction degree instamens. From round-peach stage to initiating-bloom-stage, starch content in petal wassignificantly lower than the control. Starch content in stamen was significantly lower than thecontrol at round-peach stage, initiating-bloom-stage and full-bloom stage. Starch content in pistilat all the stage was significantly lower than the control. The lack of soluble content and starchcontent in pistil were the reason for the higher abortion rate of tree peony grown under rootrestriction.From round-peach stage to senescence stage, activities of AI in petals, stamens andpistils were significantly lower than that in the control. The growth and development of petals,pollen and ovary were all affected by the decreased AI activity. It can be seen that the sinkstrength of flower organ was not strong enough and have insufficient power to transport sucrose.There is less sucrose to form starch when sucrose were used. There are not enough carbohydrateand lack of motivation to mobilize carbohydrate to utilize, so the flower diameter was small,flowering badly and have higher abortion rate in tree peony when growing under root restriction.
     ZR, IAA and GA content in the root of tree peony was generally lower than the controlgrowing under root restriction. IAA content in the root was significantly lower than the control inall the sampling stage and its reduction was obvious. ABA content is generally higher than thecontrol. At fast-growing stageⅡand before-flowing stage, ABA content in root were significantlyhigher than the control. ZR, IAA and GA content in the stems of tree peony was generally lowerthan the control growing under root restriction. ZR content in stems at germination stage wassignificantly lower than that in the control. IAA content in stems at germination stage andfast-growing stageⅡ were significantly lower than that in the control. GA content in stems atbefore-flowing stage was significantly lower than that in the control. IAA content and GA contentin tree peony leaves were slightly lower than that in the control, but the difference were notsignificant. ZR content in tree peony leaves at fast-growing stage was significantly lower than thatin the control. ABA content in tree peony leaves at fast-growing stage and before-flowing stagewere significantly higher than that in the control. Generally root restriction reduced ZR content,IAA content and GA content in tree peony, which is more obviously in root. ABA content weregenerally increased in tree peony when grown under restriction, which is more obviously inleaves.
引文
[1] Appleton B L, Whitcomb C E. Effects of container size and transplanting date on the growthof tree seedlings[J]. Journal of Environmental Horticulture.1983,1(4):89-93.
    [2] Tschaplinski T J, Blake T J. Effects of root restriction on growth correlations, water relationsand senescence of alder seedlings[J]. Physiologia Plantarum.1985,2(64):167-176.
    [3] Mataa M, Tominaga S. Effects of root restriction on tree development in ponkan mandarin(Citrus Reticulata Blanco)[J]. Journal of the American Society for Horticultural Science.1998,123(4):651-655.
    [4] Byers R E, Carbaugh D H, Combs L D. The influence of root restriction on flowering,fruiting, tree growth, yields, and fruit quality of apple trees[J]. Hortscience.2000,35(3):418.
    [5] Kharkina T G, Ottosen C O, Rosenqvist E. Effects of root restriction on the growth andphysiology of cucumber plants[J]. Physiologia Plantarum.1999,105:434-441.
    [6] Nishizawa T, Saito K. Effects of rooting volume restriction on the growth and carbohydrateconcentration in tomato plants[J]. Journal of the American Society for Horticultural Science.1998,123(4):581-585.
    [7] Saito T, Fukuda N, Likubo T, et al. Effects of root-restriction and salinity on the fruit yieldand quality of processing tomato[J]. The Japanese Society for Horticultural Science.2008,77(2):165-172.
    [8] Yong J W H, Letham D S, Wong S C, et al. Effects of root restriction on growth andassociated cytokinin levels in cotton (Gossypium hirsutum)[J]. Functional Plant Biology.2010,37:974-984.
    [9] Yeh D M, Chiang H H. Growth and flower initiation in hydrangea as affected by rootrestriction and defoliation[J]. Scientia Horticulturae.2000,91:123-132.
    [10]王世平,张才喜,罗菊花,等.果树根域限制栽培研究进展[J].果树学报.2002,19(5):298-301.
    [11] Carmi A. Growth, water transport and transpiration in root-restricted plants of bean, and theirrelation to abscisic acid accumulation[J]. Plant Science.1995,107:69-76.
    [12] Izaguirre-Mayorala M L, de Mallorca M S. Responses of Rhizobium-inoculated andnitrogen-supplied Phaseolus vulgaris and Vigna unguiculata plants to root volume restriction[J].Australian Journal of Plant Physiology.1999,26:613-623.
    [13] Ismail M R, Davies W J. Root restriction affects leaf growth and stomatal response: the roleof xylem sap ABA[J]. Scientia Horticulturae.1998,74:257-268.
    [14]宋敏丽,温祥珍,李亚灵.根际高温对植物生长和代谢的影响综述[J].生态学杂志.2010,29(11):2258-2264.
    [15]韩碧文.植物生长与分化[M].北京:中国农业大学出版社,2003.
    [16]侯慧芝,黄高宝,郭清毅,等.干旱灌区冬小麦根系的生长冗余[J].生态学杂志.2007,26(9):1407-1411.
    [17] Bravdo B A, Levin I, Assaf R. Control of root size and root environment of fruit trees foroptimal fruit production[J]. Journal of Plant Nutrition.1992,15(6-7):699-712.
    [18] Bravdo B A, Levin I, Assaf R. Control of root size and root environment of fruit trees foroptimal fruit production[J]. Journal of Plant Nutrition.1992,15(6-7):699-712.
    [19] Singh R, Maclachlan G. Transport and metabolism of sucrose versus hexoses in relationto growth in etiolated pea stem[J]. Plant Physiol.1983,71:531-535.
    [20] Ntoukakis V E. Regulation and physiological role of sucrose phosphate synthase in vascularbundles of 'Washington' navel orange (Citrus sinensis L. Osbeck) in relation to sink strength.[D].University of California Riverside A,2005.
    [21] Eveland A L. Regulation of sink strength in developing maize florets: implication for seed setand grain yield [D]. University of Florida,2008.
    [22] Turgeon R. The sink-source transition in leaves[J]. Annual Review of Plant Physiological.1989,40:119-138.
    [23] Marcelis L F M. Sink strength as a determinant of dry matter partitioning in the wholeplant[J]. Journal of Experimental Botany.1996,47(Special Issue):1281-1291.
    [24] Mccormick A J, Cramer M D, Watt D A. Sink strength regulates photosynthesis insugarcane[J]. New Phytologist.2006,171:759-770.
    [25] Heuvelink E, Buiskool R P M. Influence of sink-source interaction on dry matter productionin tomato[J]. Annals of Botany.1995,75:381-389.
    [26] Clifford P E. Source limitation of sink yield in mung beans[J]. Annals of Botany.1979,43:397-399.
    [27] Park J, Canam T, Kang K, et al. Over-expression of an arabidopsis family A sucrosephosphate synthase (SPS) gene alters plant growth and fibre development[J]. Transgenic Research.2008,17:181-192.
    [28]毛达如,申建波.植物营养研究方法[M].北京:中国农业大学出版社,2004.
    [29]刘金梁.东北5个树种根系结构研究[D].东北林业大学硕士学位论文,2008.
    [30]牛建新.葡萄根域限制栽培的肥水管理[J].北方园艺.1996,35-38(3).
    [31]严小龙,廖红,戈振扬,等.植物根构型特性与磷吸收效率[J].植物学通报.2000,17(6):511-519.
    [32] Zhang Y, Turner J G. Wound-induced endogenous jasmonates stunt plant growth byunhibiting mitosis[J]. PloS ONE.2008,11(3):1-9.
    [33] Climent J, Alonso J, Gil L. Short note: root restriction hindered early allometricdifferentiation between seedlings of two provenances of canary island pine[J]. Silvae Genetica.2008,4(5):187-193.
    [34] Schaffer B, Whiley A W, Searle C. Atmospheric CO2Enrichment, Root Restriction,Photosynthesis, and Dry-matter Partitioning in Subtropical and Tropical Fruit Crops[J].Hortscience.1999,34(6):1033-1037.
    [35] Petersona A, Krizeka D T. A flow‐through hydroponic system for the study of rootrestriction[J]. Journal of Plant Nutrition.1992,15(6-7):893-911.
    [36]师恺.果菜类蔬菜根系限制下能量代谢变化及其调控机制[D].浙江大学博士学位论文,2007.
    [37] Wasielewski J, Campbell R J. Horticultural methods for reducing root restrictions in nurseryand field-planted jackfruit[J]. Proc. Fla. Hort. Soc.1998,111:313-314.
    [38] Rieger M. Responses of young peach trees to root confinement[J]. J. AMER. SOC. HORT.SCI.1994,119(2):223-228.
    [39] Thomas R B, Strain B R. Root restriction as a factor in photosynthetic acclimation of cottonseedlings grown in elevated carbon dioxide[J]. Plant Physiol.1991,96:627-634.
    [40] Peterson C M, Klepper B, Pumphrey F V, et al. Restricted Rooting Decreases Tillering andGrowth of Winter Wheat[J]. Agronomy journal.1984,76(5):861-863.
    [41] Dominguez-Leren S, Sierra N H, Manzano I C, et al. Container characteristics influencePinus pinea seedling development in the nursery and field[J]. Forest Ecology And Management.2006,221:63-71.
    [42] Peterson T A, Reinsel M D, Krizek D T. Tomato (Lycopersicon esculentum Mill cv BetterBush) plant response to root restriction1. Alteration of plant morphology.[J]. Journal OfExperimental Botany.1991,42:1233-1240.
    [43] van Iersel M. Root restriction effects on growth and development of Salvia (Salviasplendens)[J]. Hortscience.1997,32(7):1186-1190.
    [44] Peterson T A, Reinse M D, Krizek D T. Tomato (Lycopersicon esculentum Mill., cv.'BetterBush') plant response to root restriction[J]. Journal of Experimental Botany.1991,42(243):1241-1249.
    [45]张承林,Bravdo Ben Ami.根系限制对酿酒葡萄生长发育的影响[J].园艺学报.2001,28(5):448-450.
    [46]杨天仪,王世平,刘晓清,等.根域限制对葡萄营养生长与结果状况的影响[J].中外葡萄与葡萄酒.2007,5:4-6.
    [47]杨天仪.根域限制葡萄树氮素与碳素代谢机制研究[D].上海交通大学博士学位论文,2007.
    [48] Boland A M, Jerie P H, Mitchell P D, et al. Long-term effects of restricted root volume andregulated deficit irrigation on peach:I. growth and mineral nutrition[J]. Journal of the AmericanSociety for Horticultural Science.2000,125(1):135-142.
    [49] Boland A M, Jerie P H, Mitchell P D, et al. Long-term effects of restricted root volume andregulated deficit irrigation on peach: II. productivity and water use[J]. Journal of the AmericanSociety for Horticultural Science.2000,125(1):143-148.
    [50] Hess L, De Kroon H. Effects of rooting volume and nutrient availability as an alternativeexplanation for root self/non-self discrimination[J]. Journal of Ecology.2007,95:241-251.
    [51] Robbins N S, Pharr D M. Effect of restricted root growth on carbohydrate metabolism andwhole plant growth of Cucumis sativus L[J]. Plant Physiol.1988,87:409-413.
    [52] Clemens J, Henriod R E, Bailey D G, et al. Vegetative phase change in Metrosideros Shootand root restriction[J]. Plant Growth Regulation.1999,28:207-214.
    [53] Zhu L, Wang S, Yang T, et al. Vine growth and nitrogen metabolism of ‘Fujiminori’grapevines in response to root restriction[J].2006,107:143-149.
    [54]安慧,上官周平.根域限制和氮素水平对连翘幼苗生长的影响[J].生态学报.2007,27(4):1323-1332.
    [55] Dubik S P, Krizekd D T, Stimartabe D P, et al. Growth analysis of spreading euonymussubjected to root restriction[J]. Journal of Plant Nutrition.1992,15(4):469-482.
    [56] Boland A, Mitchell P D, Goodwin I, et al. The effect of soil volume on young peach treegrowth and water use[J]. Journal of the American Society for Horticultural Science.1994,119(6):1157-1162.
    [57] Mooney H A, Fichtner K, Schulze E D. Growth, photosynthesis and storage of carbohydratesand nitrogen in Phaseolus lunatus in relation to resource availability[J]. Oecologia.1995,104:17-23.
    [58] Will R E, Teskey R O. Effect of elevated carbon dioxide concentration and root restriction onnet photosynthesis, water relations and foliar carbohydrate status of loblolly pine seedlings[J].Tree Physiology.1997,17:655-661.
    [59] Krizek D T, Carmi A, Mirecki R M, et al. Comparative effects of soil moisture stress andrestricted root zone volume on morphogenetic and physiological responses of soybean [Glycinemax (L.) Merr.][J]. Journal of Experimental Botany.1985,36(162):25-38.
    [60] Hameed M A, Reid J B, Rowe R N. Root confinement and its effects on water relations,growth and assimilate partitioning of tomato (Lycopersicon esculentum Mill)[J].1987,59:685-692.
    [61] Authorskarni L, Aloni B, Bar-Tal A, et al. The effect of root restriction on the incidence ofblossom-end rot in bell pepper (Capsicum annuum L.).[J]. Journal of Horticultural Science andBiotechnology.2000,75(3):364-369.
    [62] Bar-Tal A, Pressman E. Root Restriction and Potassium and Calcium SolutionConcentrations Affect Dry-matter Production, Cation Uptake, and Blossom-end Rot inGreenhouse Tomato[J]. Journal of the American Society for Horticultural Science.1996,121(4):649-655.
    [63] Hameed M A, Reid J B, Rowe R N. Root confinement and its effects on the water realations,growth and assimilate partitioning of tomato (Lycopersicon esculentum Mill)[J]. Annals of Botany.1987,59(6):685-692.
    [64] Aloni B, Pashkar T, Karni L. Partitioning of [14C]sucrose and acid invertase activity inreproductive organs of pepper plants in relation to their abscission under heat stress[J]. Annals ofBotany.1991,67(5):371-377.
    [65] Passioura J B.'Soil conditions and plant growth'[J]. Plant, Cell and Environment.2002,25:311-318.
    [66] Nesmith D S. Summer squash response to root restriction under different light regimes[J].Journal of Plant Nutrition.1993,16(5):765-780.
    [67]潘静娴,黄丹枫,王世平,等.根域体积对甜瓜幼苗生长及光合特性的影响[J].西北植物学报.2001,21(4):637-643.
    [68] Pezeshki S R, Santos M I. Relationships among Rhizosphere Oxygen Deficiency, RootRestriction, Photosynthesis, and Growth in Baldcypress (Taxodium Distichum L.) Seedlings[J].Photosynthetica.1998,35(3):381-390.
    [69] Wardlaw I F. The control of carbon partitioning in plants[J]. New Phytologist.1990,116(3):341-381.
    [70] Praxedes S C, Damatta F A M, Loureiro M E, et al. Effects of long-term soil drought onphotosynthesis and carbohydrate metabolism in mature robusta coffee(Coffea canephora Pierrevar.kouillou) leaves[J]. Enviromental and Experimental Botany.2006,56:263-273.
    [71]陈晓亚,汤章城.植物生理与分子生物学[M].北京:高等教育出版社,2007.
    [72] Hurley M B, Rowarth J S. Resistance to root growth and changes in the concentrations ofABA within the root and xylem sap during root-restriction stress[J]. Journal of ExperimentalBotany.1999,50(335):799-804.
    [73]谢兆森,李勃,许文平,等.根域限制对葡萄果实发育和主要营养物质含量的影响[J].植物生理学通讯.2008,44(5):927-930.
    [74] Hawver G, Bassuk N. Improved adventitious rooting in Quercus through the use of amodified stoolbed technique[J]. Combined Proceeding International Plant Propagator' Society.2000,20:307-313.
    [75] Ismail M R, Davies W J, Awad M H. Leaf growth and stomatal sensitivity to ABA indroughted pepper plants[J]. Scientia Horticulturae.2002,96:313-327.
    [76] Shi K, Ding X, Dong D, et al. Root restriction-induced limitation to photosynthesis in tomato(Lycopersicon esculentum Mill.) leaves[J]. Scientia Horticulturae.2008,117:197-202.
    [77] Nesmitha D S, Bridgesb D C, Barbourb J C. Bell pepper responses to root restriction[J].Journal of Plant Nutrition.1992,15(12):2763-2776.
    [78]方金豹,顾红,陈锦永,等.根域限制对幼年桃树生长发育的影响[J].中国农业科学.2005,39(4):779-785.
    [79] Nesmith D S. Influence of root restriction on two cultivars of summer squash (Cucurbitapepo L.)[J]. Journal of Plant Nutrition.1993,16(3):421-431.
    [80] Carmi A. Effects of root zone volume and plant density on the vegetative and reproductivedevelopment of cotton[J]. Field Crops Research.1986,13:25-32.
    [81] Xu G, Wolf S, Kafkafi U. Interactive effect of nutrient concentration and container volumeon flowering, fruiting, and nutrient uptake of sweet pepper[J]. Journal of Plant Nutrition.2001,24(3):479-501.
    [82] Xie Z, Li B, Forney C F, et al. Changes in sugar content and relative enzyme activity in grapeberry in response to root restriction[J]. Scientia Horticulturae.2009,123:39-45.
    [83]王灿磊,孙亮,冷平,等.无纺布限根栽培对西瓜根域温度_植株生长和果实品质的影响[J].中国农业大学学报.2011,16(3):81-86.
    [84] Korner C, Pelaez M S, John P. Why are bonsai plants amall? a consideration of cell size[J].Australian Journal of Plant Physiology.1989,16(5):443-448.
    [85]谢兆森.根域限制对葡萄果实发育、源库器官及其输导组织结构的影响[D].上海交通大学,2010.
    [86]李嘉珏,张西方,赵孝庆,等.中国牡丹[M].北京:中国大百科全书出版社,2011.
    [87]朱崇胜.盆栽牡丹[J].林业科技通讯.2000(2).
    [88]李嘉珏.中国牡丹与芍药[M].北京:中国林业出版社,1999.
    [89] Zaharah S S, Razi I M. Growth, stomata aperture, biochemical changes and branch anatomyin mango (Mangifera indica) cv. Chokanan in response to root restriction and water stress[J].Scientia Horticulturae.2009,123:58-67.
    [90] Williamson J G, Coston D C, Cornell J A. Root restriction affects shoot development ofpeach in a High-density orchard[J]. Journal of the American Society for Horticultural Science.1992,117(3):362-367.
    [91] Haver D, Schuch U. Influence of root restriction and ethylene exposure on apicaldominanceof petunia (Petunia xhybrida Hort. Vilm.-Andr.)[J]. Plant Growth Regulation.2001,35:187-196.
    [92]Sakimin S Z. Effects of root restriction and water stress on growth performance, andphysiological and biochemical responses of mango (mangifera indica cv. chokanan)[D]. UniversitiPutra Malaysia,2006.
    [93]苏晶,徐迎春,潘易萍,等.应用控根容器火箭盆培育牡丹嫁接苗的研究[J].江苏农业科学.2007(2):108-111.
    [94]郭世荣.固体栽培基质研究、开发现状及发展趋势[J].农业工程学报.2005,21(增刊):1-4.
    [95]李谦盛,郭世荣,李式军.利用工农业有机废弃物生产优质无土栽培基质[J].自然资源学报.2002,17(4):515-519.
    [96]孙守如,杨秋生,董晓宇,等.玉米秸有机栽培基质矿质营养及理化性质分析[J].农业工程学报.2008,24(6):41-44.
    [97]陈晓亚,汤章城.植物生理与分子生物学[M].北京:高等教育出版社,2007.
    [98] Hermans C, Hammond J P, White P J, et al. How do plants respond to nutrient shortage bybiomass allocation[J]. Trends in Plant Science.2006,11(12):610-617.
    [99] L. N K, P. L J, G. J A, et al. Carbon cost of root systems:an architectural approach[J]. Plantand Soil.1994,165(1):161-169.
    [100]刘凌霄,沈法富,卢合全,等.蔗糖代谢中蔗糖磷酸合成酶_SPS_的研究进展[J].分子植物育种.2005,3(2):275-281.
    [101] Goldschmidt E E, Huber S C. Regulation of photosynthesis by end-product accumulation inleaves of plants storing starch, sucrose, and hexose sugars[J]. Plant Physiol.1992,99(4):1443-1448.
    [102] Huber S C, Huber J L. Role and regulation of sucrose-phosphate synthase in higher plants[J].Annual Review of Plant Physiology and Plant Molecular Biology.1996,47:431-444.
    [103] Coleman H D, Beamish L, Reid A, et al. Altered sucrose metabolism impacts plant biomassproduction and flower development[J]. Transgenic Research.2010,19:269-283.
    [104] van der Merwe M J, Groenewald J, Stitt M, et al. Downregulation of pyrophosphate:D-fructose-6-phosphate1-phosphotransferase activity in sugarcane culms enhances sucroseaccumulation due to elevated hexose-phosphate levels[J]. Planta.2010,231:595-608.
    [105] Sturm A. Invertases. primary structures, functions, and roles in plant development andsucrose partitioning[J]. Plant Physiology.1999,121:1-7.
    [106] Sturm A, Tang G. The sucrose-cleaving enzymes of plants are crucial for development,growth and carbon partitioning[J]. Trends in Plant Science.1999,4(10):401-407.
    [107] Roitsch T, Lez M G. Function and regulation of plant invertases:sweet sensations[J]. Trendsin Plant Science.2004,9(12):1360-1385.
    [108] Dorion S, Lalonde S, Saini H S. lnduction of male sterility in wheat by meiotic-stage waterdeficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism inanthers[J]. Plant Physiology.1996,111:137-145.
    [109] Nguyen-Quoc B, Foyer C H. A role for ‘futile cycles' involving invertase and sucrosesynthase in sucrose metabolism of tomato fruit[J]. Journal of Experimental Botany.2001,52(358):881-889.
    [110]刘慧英,朱祝军.转化酶在高等植物蔗糖代谢中的作用研究进展[J].植物学通报.2002,19(6):666-674.
    [111]张明方,李志凌.高等植物中与蔗糖代谢相关的酶[J].植物生理学通讯.2002,38(3):289-295.
    [1] Miller W B. Carbohydrate metabolism and dry weight partitioning in the easter lily(liliumlongiflorum thunb.)[D]. Cornell University,1986.
    [2] Shu Q Y, Wischnitzki E, Liu Z A, et al. Functional annotation of expressed sequence tags asa tool to understand the molecular mechanism controlling flower bud development in treepeony[J]. Physiologia Plantarum.2009,135:436-449.
    [3]李嘉珏,张西方,赵孝庆,等.中国牡丹[M].北京:中国大百科全书出版社,2011.
    [4]章银柯,包志毅.园林苗木容器栽培及容器类型演变[J].中国园林.2005,21(4):55-58.
    [5]高志民,王莲英.牡丹催花后复壮栽培根系生长及光合特性研究[J].林业科学研究.2004,17(4):479-483.
    [6]刘志敏,孔德政,李永华,等.盆栽和地栽'洛阳红'牡丹根系的碳氮代谢动态[J].林业科学.2008,44(9):162-164.
    [7]翟敏,李永华,杨秋生.盆栽和地栽牡丹光合特性的比较[J].园艺学报.2008,35(2):251-256.
    [8] Shi K, Ding X, Dong D, et al. Root restriction-induced limitation to photosynthesis in tomato(Lycopersicon esculentum Mill.) leaves[J]. Scientia Horticulturae.2008,117:197-202.
    [9] Mataa M, Tominaga S. Effects of root restriction on tree development in ponkan mandarin(Citrus Reticulata Blanco)[J]. Journal of the American Society for Horticultural Science.1998,123(4):651-655.
    [10] Byers R E, Carbaugh D H, Combs L D. The influence of root restriction on flowering,fruiting, tree growth, yields, and fruit quality of apple trees[J]. Hortscience.2000,35(3):418.
    [11] Zhu L, Wang S, Yang T, et al. Vine growth and nitrogen metabolism of ‘Fujiminori’grapevines in response to root restriction[J].2006,107:143-149.
    [12] Zaharah S S, Razi I M. Growth, stomata aperture, biochemical changes and branch anatomyin mango (Mangifera indica) cv. Chokanan in response to root restriction and water stress[J].Scientia Horticulturae.2009,123:58-67.
    [13] Yong J W H, Letham D S, Wong S C, et al. Effects of root restriction on growth andassociated cytokinin levels in cotton (Gossypium hirsutum)[J]. Functional Plant Biology.2010,37:974-984.
    [14] Yeh D M, Chiang H H. Growth and flower initiation in hydrangea as affected by rootrestriction and defoliation[J]. Scientia Horticulturae.2000,91:123-132.
    [15] Yang T, Zhu L, Wang S, et al. Nitrate uptake kinetics of grapevine under root restriction[J].Scientia Horticulturae.2007,111:359-364.
    [16] Xie Z, Li B, Forney C F, et al. Changes in sugar content and relative enzyme activity in grapeberry in response to root restriction[J]. Scientia Horticulturae.2009,123:39-45.
    [17] Williamson J G, Coston D C, Cornell J A. Root restriction affects shoot development ofpeach in a High-density orchard[J]. Journal of the American Society for Horticultural Science.1992,117(3):362-367.
    [18] Will R E, Teskey R O. Effect of elevated carbon dioxide concentration and root restriction onnet photosynthesis, water relations and foliar carbohydrate status of loblolly pine seedlings[J].Tree Physiology.1997,17:655-661.
    [19] Wasielewski J, Campbell R J. Horticultural methods for reducing root restrictions in nurseryand field-planted jackfruit[J]. Proceedings of the Florida State Horticultural Society.1998,111:313-314.
    [20] van Iersel M. Root restriction effects on growth and development of Salvia (Salviasplendens)[J]. Hortscience.1997,32(7):1186-1190.
    [21] Tschaplinski T J, Blake T J. Effects of root restriction on growth correlations, water relationsand senescence of alder seedlings[J]. Physiologia Plantarum.1985,2(64):167-176.
    [22] Thomas T H. Effects of root restriction and growth regulator treatments on the growth ofcarrot (Daucus carota L.) seedlings[J]. Plant Growth Regulation.1993,13:95-101.
    [23] Thomas R B, Strain B R. Root restriction as a factor in photosynthetic acclimation of cottonseedlings grown in elevated carbon dioxide[J]. Plant Physiol.1991,96:627-634.
    [24] Schaffer B, Whiley A W, Searle C. Atmospheric CO2Enrichment, Root Restriction,Photosynthesis, and Dry-matter Partitioning in Subtropical and Tropical Fruit Crops[J].Hortscience.1999,34(6):1033-1037.
    [25] Schaffer B. Leaf gas exchange,dry matter partitioning and mineral element concentration inmango as influenced by elevated atmospheric carbon dioxide and root restriction[J]. Journal of theAmerican Society for Horticultural Science.1997,122(6):849-855.
    [26] Sakimin S Z. Effects of root restriction and water stress on growth performance, andphysiological and biochemical responses of mango (mangifera indica cv. chokanan)[D]. UniversitiPutra Malaysia,2006.
    [27] Pezeshki S R, Santos M I. Relationships among Rhizosphere Oxygen Deficiency, RootRestriction, Photosynthesis, and Growth in Baldcypress (Taxodium Distichum L.) Seedlings[J].Photosynthetica.1998,35(3):381-390.
    [28] Peterson T A, Reinse M D, Krizek D T. Tomato (Lycopersicon esculentum Mill., cv.'BetterBush') plant response to root restriction[J]. Journal of Experimental Botany.1991,42(243):1241-1249.
    [29] Peterson A, Krizek D T. A flow‐through hydroponic system for the study of rootrestriction[J]. Journal of Plant Nutrition.1992,15(6-7):893-911.
    [30] Nesmitha D S, Bridgesb D C, Barbourb J C. Bell pepper responses to root restriction[J].Journal of Plant Nutrition.1992,15(12):2763-2776.
    [31] Nesmith D S. Influence of root restriction on two cultivars of summer squash (Cucurbitapepo L.)[J]. Journal of Plant Nutrition.1993,16(3):421-431.
    [32] Slewinski T L, Braun D M. Current perspectives on the regulation of whole-plantcarbohydrate partitioning[J]. Plant Science.2010,178:341-349.
    [33] Peleg Z, Blumwald E. Hormone balance and abiotic stress tolerance in crop plants[J]. CurrentOpinion in Plant Biology.2011,14:290-295.
    [34] Ray J D, Sinclair T R. The effect of pot size on growth and transpiration of maize andsoybean during water deficit stress[J]. Journal of Experimental Botany.,49(325):1381-1386.
    [35]何兴元,吴清凤,周玉芝,等.刺槐共生菌盆栽接种试验[J].林业科学.2002,38(4):78-83.
    [1]宋敏丽,温祥珍,李亚灵.根际高温对植物生长和代谢的影响综述[J].生态学杂志.2010,29(11):2258-2264.
    [2] Tschaplinski T J, Blake T J. Effects of root restriction on growth correlations, water relationsand senescence of alder seedlings[J]. Physiologia Plantarum.1985,2(64):167-176.
    [3] Mataa M, Tominaga S. Effects of root restriction on tree development in ponkan mandarin(Citrus Reticulata Blanco)[J]. Journal of the American Society for Horticultural Science.1998,123(4):651-655.
    [4] Byers R E, Carbaugh D H, Combs L D. The influence of root restriction on flowering,fruiting, tree growth, yields, and fruit quality of apple trees[J]. Hortscience.2000,35(3):418.
    [5] Kharkina T G, Ottosen C O, Rosenqvist E. Effects of root restriction on the growth andphysiology of cucumber plants[J]. Physiologia Plantarum.1999,105:434-441.
    [6] Nishizawa T, Saito K. Effects of rooting volume restriction on the growth and carbohydrateconcentration in tomato plants[J]. Journal of the American Society for Horticultural Science.1998,123(4):581-585.
    [7] Saito T, Fukuda N, Likubo T, et al. Effects of root-restriction and salinity on the fruit yieldand quality of processing tomato[J]. The Japanese Society for Horticultural Science.2008,77(2):165-172.
    [8] Yong J W H, Letham D S, Wong S C, et al. Effects of root restriction on growth andassociated cytokinin levels in cotton (Gossypium hirsutum)[J]. Functional Plant Biology.2010,37:974-984.
    [9] Yeh D M, Chiang H H. Growth and flower initiation in hydrangea as affected by rootrestriction and defoliation[J]. Scientia Horticulturae.2000,91:123-132.
    [10]李嘉珏,张西方,赵孝庆,等.中国牡丹[M].北京:中国大百科全书出版社,2011.
    [11] Haver D, Schuch U. Influence of root restriction and ethylene exposure on apicaldominanceof petunia (Petunia xhybrida Hort. Vilm.-Andr.)[J]. Plant Growth Regulation.2001,35:187-196.
    [12]高志民,雁王,李振坚,等.牡丹开花前后营养变化分析研究[J].林业科学研究.2007,20(3):390-393.
    [13] Krizek D T, Carmi A, Mirecki R M, et al. Comparative effects of soil moisture stress andrestricted root zone volume on morphogenetic and physiological responses of soybean [Glycinemax (L.) Merr.][J]. Journal of Experimental Botany.1985,36(162):25-38.
    [1] Shu Q Y, Wischnitzki E, Liu Z A, et al. Functional annotation of expressed sequence tags asa tool to understand the molecular mechanism controlling flower bud development in treepeony[J]. Physiologia Plantarum.2009,135:436-449.
    [2]李嘉珏,张西方,赵孝庆,等.中国牡丹[M].北京:中国大百科全书出版社,2011.
    [3]刘志敏,孔德政,李永华,等.盆栽和地栽'洛阳红'牡丹根系的碳氮代谢动态[J].林业科学.2008,44(9):162-164.
    [4]翟敏,李永华,杨秋生.盆栽和地栽牡丹光合特性的比较[J].园艺学报.2008,35(2):251-256.
    [5]杨天仪.根域限制葡萄树氮素与碳素代谢机制研究[D].上海交通大学博士学位论文,2007.
    [6]杨天仪,王世平,刘晓清,等.根域限制对葡萄营养生长与结果状况的影响[J].中外葡萄与葡萄酒.2007,5:4-6.
    [7]谢兆森.根域限制对葡萄果实发育、源库器官及其输导组织结构的影响[D].上海交通大学博士学位论文.
    [8]谢兆森,李勃,许文平,等.根域限制对葡萄果实发育和主要营养物质含量的影响[J].植物生理学通讯.2008,44(5):927-930.
    [9] Xie Z, Li B, Forney C F, et al. Changes in sugar content and relative enzyme activity in grapeberry in response to root restriction[J]. Scientia Horticulturae.2009,123:39-45.
    [10]王灿磊,孙亮,冷平,等.无纺布限根栽培对西瓜根域温度_植株生长和果实品质的影响[J].中国农业大学学报.2011,16(3):81-86.
    [11] Slewinski T L, Braun D M. Current perspectives on the regulation of whole-plantcarbohydrate partitioning[J]. Plant Science.2010,178:341-349.
    [12]史国安,郭香凤,张国海,等.牡丹开花和衰老期间花瓣糖代谢的研究[J].园艺学报.2009,36(8):1184-1190.
    [13]高志民,王雁,李振坚,等.牡丹开花前后营养变化分析研究[J].林业科学研究.2007,20(3):390-393.
    [14]丰亚南,郑国生,王宗正,等.牡丹开花前后碳水化合物的分配与光合速率的关系[J].园艺学报.2007,34(1):153-156.
    [15]李小方,张志良,瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社,2009.
    [16]米国全,刘丽英,金宝燕,等.弱光对不同生态型黄瓜幼苗光合速率及蔗糖代谢相关酶活性的影响[J].华北农学报.2011,26(1):146-150.
    [17] Sturm A, Tang G. The sucrose-cleaving enzymes of plants are crucial for development,growth and carbon partitioning[J]. Trends in Plant Science.1999,4(10):401-407.
    [18] Sturm A. Invertases. primary structures, functions, and roles in plant development andsucrose partitioning[J]. Plant Physiology.1999,121:1-7.
    [19]张明方,李志凌.高等植物中与蔗糖代谢相关的酶[J].植物生理学通讯.2002,38(3):289-295.
    [20] Huber S C, Huber J L. Role and regulation of sucrose-phosphate synthase in higher plants[J].Annual Review of Plant Physiology and Plant Molecular Biology.1996,47:431-444.
    [21] Paul M J, Foyer C H. Sink regulate of photosynthesis[J]. Journal of Experimental Botany.2001,1383-1400(52).
    [22] Chaumont M, Morot-Gaudry J, Foyer C H. Seasonal and diurnal changes in photosynthesisand carbon partitioning in Vitis vinifera leaves in vines with and without fruit[J]. Journal ofExperimental Botany.1994,45(278):1235-1243.
    [23] Barrett D J, Gifford R M. Acclimation of photosynthesis and growth by cotton to elevatedCO2: interactions with severe phosphate deficiency and restricted rooting volume.[J]. AustralianJournal of Plant Physiology.1995,22(6):955-963.
    [24] Paul M J, Pellny T K. Carbon metabolite feedback regulation of leaf photosynthesis anddevelopment[J]. Journal of Experimental Botany.2003,54(382):539-547.
    [25] Izaguirre-Mayorala M L, de Mallorca M S. Responses of Rhizobium-inoculated andnitrogen-supplied Phaseolus vulgaris and Vigna unguiculata plants to root volume restriction[J].Australian Journal of Plant Physiology.1999,26:613-623.
    [26]潘静娴,黄丹枫,王世平,等.根域体积对甜瓜幼苗生长及光合特性的影响[J].西北植物学报.2001,21(4):637-643.
    [27] Hawver. G. Influence of root restriction and drought stress on container-grown trees:Impactson plant growth and physiology[D]. CorneIl University,1997.
    [28] Campostrini E, Yamanishi O K, Maldonado J F, et al. Influence of root restriction onchlorophyll and carotenoids concentrations in leaves of four papaya (carica papaya l.)genotypes[J]. Agronomia.2002,36:1-6.
    [29] Signora L, Galtier N, Sk t L, et al. Over-expression of sucrose phosphate synthase inArabidopsis thaliana results in increased foliar sucrose/starch ratios and favours decreased foliarcarbohydrate accumulation in plants after prolonged growth with CO2enrichment[J]. Journal ofExperimental Botany.1998,49(321):669-680.
    [30] Westgate M E, Grant D L. Water deficits and reproduction in maize: response of thereproductive tissue to water deficits at anthesis and mid-grain fill.[J]. Plant Physiology.1989,91(3):862-867.
    [31] Smith A M, Zeeman S C, Smith S M. Starch Degradation[J]. Annual Review of PlantBiology.2005,56(6):73-98.
    [32] van Iersel M. Root restriction effects on growth and development of Salvia (Salviasplendens)[J]. Hortscience.1997,32(7):1186-1190.
    [33] Ronchi C A P, Damatta F A M, Batista K D, et al. Growth and photosyntheticdown-regulation in Coffea arabica in response to restricted root volume[J]. Functional PlantBiology.2006,33:1013-1023.
    [34] Shi K, Fu L, Dong D, et al. Decreased energy synthesis is partially compensated by a switchto sucrose synthase pathway of sucrose degradation in restricted root of tomato plants[J]. PlantPhysiology And Biochemistry.2008,46:1040-1044.
    [35] Shi K, Ding X, Dong D, et al. Root restriction-induced limitation to photosynthesis in tomato(Lycopersicon esculentum Mill.) leaves[J]. Scientia Horticulturae.2008,117:197-202.
    [36] Rieger M. Responses of young peach trees to root confinement[J]. Journal of the AmericanSociety for Horticultural Science.1994,119(2):223-228.
    [37] Yong J W H, Letham D S, Wong S C, et al. Effects of root restriction on growth andassociated cytokinin levels in cotton (Gossypium hirsutum)[J]. Functional Plant Biology.2010,37:974-984.
    [38] Thomas R B, Strain B R. Root restriction as a factor in photosynthetic acclimation of cottonseedlings grown in elevated carbon dioxide[J]. Plant Physiol.1991,96:627-634.
    [39] Goldschmidt E E, Huber S C. Regulation of photosynthesis by end-product accumulation inleaves of plants storing starch, sucrose, and hexose sugars[J]. Plant Physiol.1992,99(4):1443-1448.
    [40] Schaffer B, Whiley A W, Searle C. Atmospheric CO2Enrichment, Root Restriction,Photosynthesis, and Dry-matter Partitioning in Subtropical and Tropical Fruit Crops[J].Hortscience.1999,34(6):1033-1037.
    [41] Peterson T A, Reinsel M D, Krizek D T. Tomato (Lycopersicon esculentum Mill cv BetterBush) plantresponse to root restriction1. Alteration of plant morphology.[J]. Journal Of Experimental Botany.1991,42:1233-1240.
    [42] Iglesias D J, Lliso I, Tadeo F R, et al. Regulation of photosynthesis through source sinkimbalance in citrus is mediated by carbohydrate content in leaves[J]. Physiologia Plantarum.2012,116(4):563-572.
    [43] Park J, Canam T, Kang K, et al. Over-expression of an arabidopsis family A sucrosephosphate synthase (SPS) gene alters plant growth and fibre development[J]. Transgenic Research.2008,17:181-192.
    [44] Nguyen-Quoc B, Foyer C H. A role for ‘futile cycles' involving invertase and sucrosesynthase in sucrose metabolism of tomato fruit[J]. Journal of Experimental Botany.2001,52(358):881-889.
    [45] Campbell D R. Variation in sex allocation and floral morphology in ipomopsis aggregata(polemoniaceae)[J]. American Journal of Botany.1992,79(5):516-521.
    [46] Rodrigo J, Herrero M. Effects of pre-blossom temperatures on flower development and fruitset in apricot[J]. Scientia Horticulturae.2002,92(2):125-136.
    [47] Kudo G, Molau U. Variations in reproductive traits at inflorescence and flower levels of anarctic legume, Astragalus alpinus L. Comparisons between a subalpine and an alpine population[J].Plant Species Biology.1999,14(3):181-191.
    [1] Dolferus R, Ji X, Richards R A. Abiotic stress and control of grain number in cereals[J]. PlantScience.2011,181:331-341.
    [2] Shi K, Fu L, Dong D, et al. Decreased energy synthesis is partially compensated by a switchto sucrose synthase pathway of sucrose degradation in restricted root of tomato plants[J]. PlantPhysiology And Biochemistry.2008,46:1040-1044.
    [3] Yeh D M, Chiang H H. Growth and flower initiation in hydrangea as affected by rootrestriction and defoliation[J]. Scientia Horticulturae.2000,91:123-132.
    [4] Nesmitha D S, Bridgesb D C, Barbourb J C. Bell pepper responses to root restriction[J].Journal of Plant Nutrition.1992,15(12):2763-2776.
    [5]方金豹,顾红,陈锦永,等.根域限制对幼年桃树生长发育的影响[J].中国农业科学.2005,39(4):779-785.
    [6] Bravdo B A, Levin I, Assaf R. Control of root size and root environment of fruit trees foroptimal fruit production[J]. Journal of Plant Nutrition.1992,15(6-7):699-712.
    [7] Nesmith D S. Influence of root restriction on two cultivars of summer squash (Cucurbitapepo L.)[J]. Journal of Plant Nutrition.1993,16(3):421-431.
    [8] Carmi A. Effects of root zone volume and plant density on the vegetative and reproductivedevelopment of cotton[J]. Field Crops Research.1986,13:25-32.
    [9]谢兆森,李勃,许文平,等.根域限制对葡萄果实发育和主要营养物质含量的影响[J].植物生理学通讯.2008,44(5):927-930.
    [10] Xie Z, Li B, Forney C F, et al. Changes in sugar content and relative enzyme activity in grapeberry in response to root restriction[J]. Scientia Horticulturae.2009,123:39-45.
    [11]王灿磊,孙亮,冷平,等.无纺布限根栽培对西瓜根域温度_植株生长和果实品质的影响[J].中国农业大学学报.2011,16(3):81-86.
    [12]杨天仪.根域限制葡萄树氮素与碳素代谢机制研究[D].上海交通大学,2007.
    [13] Nishizawa T, Saito K. Effects of rooting volume restriction on the growth and carbohydrateconcentration in tomato plants[J]. Journal of the American Society for Horticultural Science.1998,123(4):581-585.
    [14] Saito T, Fukuda N, Likubo T, et al. Effects of root-restriction and salinity on the fruit yieldand quality of processing tomato[J]. The Japanese Society for Horticultural Science.2008,77(2):165-172.
    [15] Miller W B. Carbohydrate metabolism and dry weight partitioning in the easter lily(liliumlongiflorum thunb.)[D]. Cornell University,1986.
    [16] van Doorn W G, van Meeteren U. Flower opening and closure: a review[J]. Journal ofExperimental Botany.2003,54(389):1801-1812.
    [17] Kumar N, Srivastava G C, Dixit K. Flower bud opening and senescence in roses (Rosahybrida L.)[J]. Plant Growth Regulation.2008,55(2):81-99.
    [18] Ranwala A P, Miller W B. Sucrose-cIeaving enzymes and carbohydrate pools in Liliumlongiflorum floral organs[J]. Physiologia Plantarum.1998,103:541-550.
    [19] Marcelis L F M, Heuvelink E, Hofman-Eijer L R B, et al. Flower and fruit abortion in sweetpepper in relation to source and sink strength[J]. Journal of Experimental Botany.2004,55(406):2261-2268.
    [20]翟敏,李永华,杨秋生.盆栽和地栽牡丹光合特性的比较[J].园艺学报.2008,35(2):251-256.
    [21]刘志敏,孔德政,李永华,等.盆栽和地栽'洛阳红'牡丹根系的碳氮代谢动态[J].林业科学.2008,44(9):162-164.
    [22]李小方,张志良,瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社,2009.
    [23]高志民,雁王,李振坚,等.牡丹开花前后营养变化分析研究[J].林业科学研究.2007,20(3):390-393.
    [24]史国安,郭香凤,张国海,等.牡丹开花和衰老期间花瓣糖代谢的研究[J].园艺学报.2009,36(8):1184-1190.
    [25] Marcelis L F M. Sink strength as a determinant of dry matter partitioning in the wholeplant[J]. Journal of Experimental Botany.1996,47(Special Issue):1281-1291.
    [26] Saini H S, Westgate M E. Reproductive Development in Grain Crops during Drought[J].Advances in Agronomy.1999,68:59-96.
    [27] Clement C, Burrus M, Audran J. Floral Organ Growth and Carbohydrate Content DuringPollen Development in Lilium[J]. American Journal of Botany.1996,83(4):459-469.
    [28] Kudo G, Molau U. Variations in reproductive traits at inflorescence and flower levels of anarctic legume, Astragalus alpinus L. Comparisons between a subalpine and an alpine population[J].Plant Species Biology.1999,14(3):181-191.
    [29] Yap Y, Loh C, Ong B. Regulation of flower development in Dendrobium crumenatum bychanges in carbohydrate contents, water status and cell wall metabolism[J]. Scientia Horticulturae.2008,119(1):59-66.
    [30] Ram H Y M, Rao I V R. Physiology of flower bud growth and opening[J]. Plant Science.1984,93(3):253-274.
    [31] Lebon G, Wojnarowiez G, Holzapfel B, et al. Sugars and flowering in the grapevine (Vitisvinifera L.)[J]. Journal of Experimental Botany.2008,59(10):2565-2578.
    [32] Fernie A R, Willmitzer L, Trethewey R N. Sucrose to starch: a transition in molecular plantphysiology[J]. Trends in Plant Science.2002,7(1):35-41.
    [33] Yamane K, Kotake Y, T. Okada R O. Export of14c-sucrose,3h-water, and fluorescent tracersfrom gladiolus florets to other plant parts associated with senescence[J]. ISHS Acta Horticulturae.1995,405.
    [34] van Meeteren U, van Gelder H. Aspects of carbohydrate balance during floret opening inFreesia[J]. ISHS Acta Horticulturae.1995,405(VI International Symposium on PostharvestPhysiology of Ornamental Plants).
    [35] Rodrigo J, Hormaza J I, Herrero M. Ovary starch reserves and flower development in apricot(Prunus armeniaca)[J]. Physiologia Plantarum.2000,108(1):35-41.
    [36] Mclaughlin J E, Boyer J S. Sugar-responsive Gene Expression, Invertase Activity, andSenescence in Aborting Maize Ovaries at Low Water Potentials[J]. Annals of Botany.2004,94(5):675-689.
    [37] Mclaughlin J E, Boyer J S. Glucose Localization in Maize Ovaries When Kernel NumberDecreases at Low Water Potential and Sucrose is Fed to the Stems[J]. Annals of Botany.2004,94(1):75-86.
    [38] Lim J D, Cho J, Park Y, et al. Sucrose transport from source to sink seeds in rice[J].Physiologia Plantarum.2006,126(4):572-584.
    [39] Eshghi S, Tafazoli E, Dokhani S, et al. Changes in carbohydrate contents in shoot tips, leavesand roots of strawberry (Fragaria×ananassa Duch.) during flower-bud differentiation[J]. ScientiaHorticulturae.2007,113:255-260.
    [40] Dorion S, Lalonde S, Saini H S. lnduction of male sterility in wheat by meiotic-stage waterdeficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism inanthers[J]. Plant Physiology.1996,111:137-145.
    [1] Ismail M R, Davies W J. Root restriction affects leaf growth and stomatal response: the roleof xylem sap ABA[J]. Scientia Horticulturae.1998,74:257-268.
    [2]王空军,董树亭,胡昌浩,等.我国玉米品种更替过程中根系生理特性的演进Ⅰ.根系活性与ATPase活性的变化[J].作物学报.2002,28(2):185-189.
    [3] Peleg Z, Blumwald E. Hormone balance and abiotic stress tolerance in crop plants[J]. CurrentOpinion in Plant Biology.2011,14:290-295.
    [4] A S, M E. The ubiquitin–proteasome system regulates plant hormone signaling[J]. The PlantJournal.2010,61:1029-1040.
    [5]师晨娟,刘勇,荆涛.植物激素抗逆性研究进展[J].世界林业研究.2006,19(5):21-27.
    [6] Yeh D M, Chiang H H. Growth and flower initiation in hydrangea as affected by rootrestriction and defoliation[J]. Scientia Horticulturae.2000,91:123-132.
    [7] Richards D, Rowe R N. Root-shoot interactions in peach: the function of the root[J]. Annalsof Botany.1977,41:1211-1216.
    [8] Hurley M B, Rowarth J S. Resistance to root growth and changes in the concentrations ofABA within the root and xylem sap during root-restriction stress[J]. Journal of ExperimentalBotany.1999,50(335):799-804.
    [9]谢兆森,李勃,许文平,等.根域限制对葡萄果实发育和主要营养物质含量的影响[J].植物生理学通讯.2008,44(5):927-930.
    [10] Hawver. G. Influence of root restriction and drought stress on container-grown trees:Impactson plant growth and physiology[D]. CorneIl University,1997.
    [11] Passioura J B.'Soil conditions and plant growth'[J]. Plant, Cell and Environment.2002,25:311-318.
    [12] Yong J W H, Letham D S, Wong S C, et al. Effects of root restriction on growth andassociated cytokinin levels in cotton (Gossypium hirsutum)[J]. Functional Plant Biology.2010,37:974-984.
    [13]高志民,王莲英.牡丹催花后复壮栽培根系生长及光合特性研究[J].林业科学研究.2004,17(4):479-483.
    [14]李嘉珏,张西方,赵孝庆,等.中国牡丹[M].北京:中国大百科全书出版社,2011.
    [15]王空军,董树亭,胡昌浩,等.我国玉米品种更替过程中根系生理特性的演进Ⅱ.根系保护酶活性及膜脂过氧化作用的变化[J].作物学报.2002,28(3):384-388.
    [16] Wen-Suo J I, Yu X, Cong-Ming L, et al. Signal transduction from water stress perception toABA accumulation[J]. Acta Botanica Sinica.2002,44(10):1135-1141.
    [17] Pagter M, Liu F, Jensen C R, et al. Effects of chilling temperatures and short photoperiod onPSII function, sugar concentrations and xylem sap ABA concentrations in two Hydrangeaspecies[J]. Plant Science.2008,175:547-555.
    [18] Oliver S N, Dennis E S, Dolferus R. ABA regulates apoplastic sugar transport and is apotential signal for cold-induced pollen sterility in rice[J]. Plant and Cell Physiology.2007,48(9):1319-1330.
    [19] Sharp R E, Lenoble M E. ABA, ethylene and the control of shoot and root growth underwater stress[J]. Journal of Experimental Botany.2002,53(366):33-37.
    [20] Liu F, Andersen M N, Jensen C R. Loss of pod set caused by drought stress is associated withwater status and ABA content of reproductive structures in soybean[J]. Functional Plant Biology.2003,30(3):271-280.
    [21] Liu A, Latimer J G. Water relations and abscisic acid levels of watermelon as affected byrooting volume restriction[J]. Journal of Experimental Botany.1995,46(289):1011-1015.
    [22] Krizek D T, Carmi A, Mirecki R M, et al. Comparative effects of soil moisture stress andrestricted root zone volume on morphogenetic and physiological responses of soybean [Glycinemax (L.) Merr.][J]. Journal of Experimental Botany.1985,36(162):25-38.
    [23] Carmi A. Growth, water transport and transpiration in root-restricted plants of bean, and theirrelation to abscisic acid accumulation[J]. Plant Science.1995,107:69-76.
    [24] Carmi A. Effects of root zone volume and plant density on the vegetative and reproductivedevelopment of cotton[J]. Field Crops Research.1986,13:25-32.
    [25] Ternesi M, Andrade A P, Jorrin J, et al. Root-shoot signalling in sunflower plants withconfined root systems[J]. Plant and Soil.1994,166(1):31-36.
    [26] Hurley M B, Rowarth J S. Resistance to root growth and changes in the concentrations ofABA within the root and xylem sap during root-restriction stress[J]. Journal of ExperimentalBotany.1999,50(335):799-804.
    [27] Zahir Z A, Asghar H N, Arshad M. Cytokinin and its precursors for improving growth andyield of rice[J]. Soil Biology and Biochemistry.2001,33(3):405-408.
    [28] Howell S H, Lall S, Che P. Cytokinins and shoot development[J]. Trends in Plant Science.2003,8(9):453-459.
    [29] Ha S, Vankova R, Yamaguchi-Shinozaki K, et al. Cytokinins metabolism and function inplant adaptation to environmental stresses[J]. Trends in Plant Science.2012,17(3):172-179.
    [30] Neuman D S, Rood S B, Smit B A. Does cytokinin transport from root-to-shoot in the xylemsap regulate leaf responses to root hypoxia?[J]. Journal of Experimental Botany.1990,41(10):1325-1333.
    [31] Moubayidin L, Di Mambro R, Sabatini S. Cytokinin–auxin crosstalk[J]. Trends in PlantScience.2009,14(10):557-562.
    [32] Torrey J G. Root hormones and plant growth[J]. Annual Review of Plant Physiology.1976,27:435-459.
    [33] Sauter A, Davies W J, Hartung W. The long‐distance abscisic acid signal in the droughtedplant the fate of the hormone on its way from root to shoot[J]. Journal of Experimental Botany.2001,52(363):1991-1997.
    [34] C B, A F, A M, et al. Does engineering ABA biosynthesis in Nicotiana plumbaginifoliamodify stomatal response to drought[J]. Plant, Cell and Enviroment.2001,24:477-489.
    [35] Wt F, M A. Phytohormones in soil[M]. New York, USA: Marcel Dekker,1995.
    [36] Degenhardt B, Gimmler H, Hose E, et al. Effect of alkaline and saline substrates on ABAcontents, distribution and transport in plant roots[J]. Plant and Soil.2000,225(1-2):83-94.
    [1] Davies W J, Zhang L. Root signals and the regulation of growth and development of plants indrying soil[J]. Annual Review of Plant Physiology.1991,42:55-76.
    [2]刘金梁.东北5个树种根系结构研究[D].东北林业大学硕士学位论文,2008.
    [3]毛达如,申建波.植物营养研究方法[M].北京:中国农业大学出版社,2004.
    [4]李冀南,李朴芳,孔海燕,等.干旱胁迫下植物根源化学信号研究进展[J].生态学报.2011,31(9):2610-2620.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700