用户名: 密码: 验证码:
轴向柱塞泵配流副润滑特性的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,轴向柱塞泵的发展趋势是:高压化、高速化、大流量化。要实现这些
    目标的关键问题之一是要合理设计轴向柱塞泵中的各种类型的摩擦副,使之形成
    适当的油膜,以提高柱塞泵的工作效率和寿命。配流副是轴向柱塞泵中最关键的
    摩擦副之一,也是最容易磨损失效的部件。因此,为了设计性能优良的高压、高
    速、大流量轴向柱塞泵,研究配流副的润滑特性机理是十分重要的。
     本论文以轴向柱塞泵配流副的润滑特性为研究对象,建立了轴向柱塞泵配流
    副润滑特性的数学模型,该数学模型的建立可以从理论上详细地描述典型配流副
    油膜彤成的动态过程。对配流副油膜形成进行了数值求解和仿真分析,可以得出
    不同工况对润滑膜厚度、泄漏流量及支承力的影响规律:其他工况一定时,油膜
    的平均厚度随着供油压力和油液温度的变大而变小。油膜的形成速度随着供油压
    力的变大而变快。油温越高,配流副泄漏流量越大;其他工况一定,配流副转速
    增加时,由于供油和停油周期都变短,油膜不易形成,即使形成也易遭到破坏,
    当转速达到3000 r/min时,盲孔个数应为6,盲孔包角应为12°;或者盲孔个
    数为12,盲孔包角选为15°;其他工况一定时,油膜的平均厚度随着盲孔包角
    的变大而变大;其他工况一定,盲孔个数增多时,油膜的振荡幅度越大。
     研制了研究配流副润滑性能的轴向柱塞泵配流副润滑特性试验台,并对试验
    台进行了性能分析和实验调试。对微米级电液位置控制系统进行了仿真与实验研
    究,得出如何选取并优化影响微米级电液位置反馈控制系统性能的参数值。通过
    频域仿真分析得出不带PID控制的电液位置控制系统是不稳定的,加入PID控制
    的电液位置控制系统是稳定的。
     对轴向柱塞泵配流副润滑特性进行了机理实验,可以得出:供油压力P14增
    大时,加载力P26随之增大。此时,如果配流副油膜厚度一定,泄漏流量则变大;
    供油压力P14越大,系统压力脉动越大,配流副油膜越难形成;油液温度增加时,
    配流副平均油膜厚度减小;配流副相对转速越大,配流副的摩擦扭矩越大,配流
    副更容易磨损,油膜很难建立,而且不易形成稳定的油膜;转子(摩擦盘)在压
    上和压下过程中,其所受的合力矩是不平衡的,高速旋转的转子将发生倾斜,油
    膜厚度随着变化,产生反馈作用,若将不平衡力矩控制在一定范围,且油膜刚度
    足够大,可使转子倾斜角度较小,不致引起摩擦副的局部接触;考察供油压力对
    配流副润滑特性的影响规律,对确定最佳剩余压紧力系数提供实验依据。
The trend of development of axial piston pump is high pressure high rotating speed and high flow. For achieving those goals, one of the key problems is optimum design of the frictional pairs in axial piston pump. The lubricating film must be formed in frictional pairs to improve the volume efficiency and working life of axial piston pump. The port plate/cylinder block friction pair is one of the most important frictional pairs in axial piston pump, and it is easiest to be worn out. So researching for lubrication mechanism is significant to design excellent performance axial piston pump having high pressure high rotating speed and high flow characteristics etc.In the paper, researching lubrication of port plate/cylinder block friction pair is the main object. The main achievements include the contents as follow. The mathematic model of lubrication of port plate/cylinder block frictional pair was established. The formation of the lubricating film thickness is described through the theory models. The formation of the lubricating film thickness was researched and simulated. The influence of working pressure, temperature, rotating speed and structure on the lubrication can be researched through simulation. When other working condition is invariable, the lubricating film thickness decreases as the oil pressure or oil temperature increases. The film forms fast as the oil pressure increases. When the oil temperature increases, the leakage of frictional pair increases. When other working condition is invariable, the supplying oil time and stopping oil time decrease, the lubricating film is difficult to form. When the rotary speed is 3000 r/min, the blind hole in port plate should be 6 and the wrap angle of blind hole should be 12° . Or the blind hole should be 12 and the wrap angle of blind hole should be 15° . When other working condition invariable, the lubricating film thickness increases as the wrap angle of blind hole increases, and the amplitude of lubricating film increase as the number of blind hole.The lubrication test system has been designed. The performance of the lubrication test system is analyzed. The functions feature and principle of the lubrication test system are summarized. The mathematic model of the micron electrohydraulic displacement feedback control system was established and simulated. The parameters of V0/B Kce and PID are selected and optimized. The control
    system is stabilized with PID feedback controlling, otherwise the control system is not stabilized.The lubrication mechanics experiment of typical port plate /cylinder block frictional pair was finished through the lubrication test system. The loading force increases as supplying oil pressure P14 increases. If the lubricating film thickness is invariable, the leakage of port plate will increase. When the P14 increase, the pressure ripple increases, and the lubricating film is difficult to form. The lubricating film thickness decreases as the oil temperature increases. The torque of frictional pair increases as the rotary speed increases, and the frictional pair is easy to be worn out. In this time, the lubricating film is not steady. When the cylinder block vibrates, the resultant moment is not balanced. The cylinder block will sloping. So the lubricating film is variable, and the feedback force occurs. If the resultant moment is limited in certain scope, and the lubricating film rigidity is large enough, the sloping angle of the cylinder block will be small and the concentrated wear will be avoided.The key problems and research domain have been discussed in this paper. The developing process of axial piston pump and research present state of port plate/cylinder block frictional pair were summarized. In the paper, the main research contents were determined according to the difficult problems in researching lubrication of port plate/cylinder block frictional pair in axial piston pump.The mathematic models of damp groove type continuous oil supply port plate /cylinder block and semi-perimeter double oil groove type periodical oil supply port plate /cylinder block frictional pair was established in the paper. The mathematic model of the lubricating film formation was established to illustrate the lubricating film variation and pressure and flow characteristic in the damping groove and pressure groove. The relation between lubricating film thickness and force acting on port plate was described with the mathematic models and variation regularity of the lubricating film can be acquired.In the paper, the simulation model of port plate/cylinder block frictional pair in which the lubricating film forms was established according to force balance equation and flow continuity equation with SIMULINK of MATLAB. The frictional pair includes of damp groove type continuous oil supply port plate /cylinder block frictional pair and semi-perimeter double oil groove type periodical oil supply port plate /cylinder block frictional pair. The formation of the lubricating film thickness
    was researched and simulated in all kinds of different working condition.The lubrication test system has been designed in the paper. And the lubrication test system has been developed by author which consists of pump station > lubrication test apparatus and signal measure and control system. The lubrication characteristics of port plate/cylinder block in axial piston pump such as film thickness, bearing support capability and leakage can be measured through the lubrication test system. And the influence of working pressure, temperature, rotating speed and structure on the lubrication can be testec as well. The optimal matched pair of material and structure of the port plate pair of water hydraulic axial piston pump can be achieved through the lubrication test system, which can provide a good base for developing water hydraulic axial piston pump.The mathematic model of the micron electrohydraulic displacement feedback control system was established in the paper. The dynamic properties of the micron electrohydraulic displacement feedback control system were simulated. The simulation results are conformed to the experimental results. It is suggested that the value selection of vo/ -, Ka and PID coefficient is significant for the design of themicron electrohydraulic feedback control system. The measurement error was guaranteed to be less than lum by using the high-accuracy electric eddy micro-displacement sensors. The thickness of micron dimension lubricating film was feedback controlled with PID algorithm.In the paper, the lubrication mechanics experiment of typical port plate /cylinder block frictional pair was finished through the lubrication test system. From the experiment results, the lubrication parameters of port plate/cylinder block frictional pair can be acquired. The lubrication characteristics of port plate/cylinder block in axial piston pump such as film thickness, bearing support capability and leakage can be measured. And the influence of working pressure, temperature, rotating speed and structure on the lubrication can be tested as well. The experiment results were conformed to the simulation results through comparison research.
引文
[1] 赵大庆.轴向柱塞泵配流状况的研究现状与发展.机床与液压,1990,(5):2~5
    [2] 马运水.轴向柱塞泵—油膜—配油盘周期间歇激振系统分析与试验研究.中国矿业大学硕士论文,1982
    [3] 许耀铭.油膜理论与液压泵和马达的摩擦副设计.北京:机械工业出版社,1987
    [4] 宋俊,王淑莲.液压元件优化.北京:机械工业出版社,1999
    [5] 翟培祥.斜盘式轴向柱塞泵设计.北京:煤炭工业出版社,1978
    [6] 徐绳武.柱塞式液压泵.北京:机械工业出版社,1985
    [7] 曾祥荣.液压噪声控制.哈尔滨:哈尔滨工业大学出版社,1988
    [8] 何存兴.液压元件.北京:机械工业出版社,1981
    [9] 周华,杨华勇.轴向柱塞式纯水液压泵的研究分析.机床与液压,1999,(1):28~30
    [10] Hukkanen P, et al, BETWEEN OIL AND WATER HYDRAULICS, The Eighth Scandinavian International Conference on Fluid Power, SICFP'03, Tampere, Finland, 2003:117~128
    [11] Vilenius M. J, Koskinen K. T, Virvalo T. K, WATER AND MOBILE HYDRAULICS RESEARCH IN FINLAND, Proceeding of the Fifth International Conference on Fluid Power Transmission and Control (ICFP'2001), Hangzhou, China, 2001:12~27
    [12] Zhou Hua, Yang Huayong, Olli Pohls, WATER HYDRAULIC TEST RIG, Proceeding of the Fifth International Conference on Fluid Power Transmission and Control (ICFP'2001), Hangzhou, China, 2001:457~461
    [13] Lu Yongxiang, New Achievements And Preview of Fluid Power Engineering, Proc. of 4th Int. Conf. on FPTC, Hangzhou, Sept. 9-10, 1997:16~23
    [14] Wolfgang Backe, Water- or Oil- Hydraulics in the Future, Proceeding of 6th Scandinavian Int. Conf. on Fluid Power, SICFP'99, Talnpere, Finland, May 26-28, 1999:21~34
    [15] Franco N. Pump design by force balance. Hydraulics Pneum, 1961, 14(5), 101~107
    [16] Shute N A, Turnbull D E. The thrust balancing of axial piston machines. Part 1. B. H. R. A., R. R. 772, 1963
    [17] Mckeown J, Mech. E. G I, Milner D Aet al. Hydrodynamic factors offering the design of valve plates and thrust bearings. Proceedings of the Institute of Mechanical Engineers (Part1), 1966, 181(24): 653~666
    [18] Yamaguchi A. Pressure distribution on valve plate of axial plunger pumps and motors. SEISAN-KENKYU 18. 1966: 18~20
    [19] Hooke C J. A note on the effect of shaft and casing stiffness on the port plate lubrication film of a particular slipper-pad axial piston pump. 4th int. Fluid Power Symp, 1972, paper B2.
    [20] Yamaguchi A, Fujitani Y, Isoda Y et al., Characteristics of fluid film between a valve plate and a cylinder block of axial piston pumps and motors. Japan Hydraulics and Pneumatics Society, 1984, 15(4): 314~322
    [21] Yamaguchi A. Formation of a fluid flow between a valve plate and a cylinder block of piston pumps and motors(1st Report, a valve plate with hydrodynamic pads). Bul. JSME, 1986, 29(251): 1494-1498
    [22] Yamaguchi A and Shimizu S. Design method for fluid lubrication on valve plate of axial piston pumps and motors. Proceedings of 7th International Fluid Power Syposium, 1986, paper 3: 19~27
    [23] 盛敬超.液压流体力学.北京:机械工业出版社,1980
    [24] Pan H C, Sheng J C, Lu Y X. Finite difference computation of valve plate fluid film flows in axial piston machines. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCE, 1989, 31(10): 779~791
    [25] 潘华辰.膜厚为常数时的轴向柱塞泵配流副油膜稳态压力场的计算.流体工程,1989(3):27~31
    [26] 李元勋.液压马达新型端面配流副理论、实验及CAD研究:[博士学位论文].哈尔滨:哈尔滨工业大学,1996
    [27] Edge K A, Darling J. The Pumping Dynamics of Swash Plate Piston Pumps. Journal of Dynamic Systems, Measurement, and Control, 1989, 111 (6): 307~312
    [28] 陈卓如,范莉,金朝铭等.液压马达新型端面配流副液压分离力的数值求解及分析.机床与液压,2000,(2):7~9
    [29] RICHARD OBEREM. Entwicklung eines Schragscheiben-motors fur die Wasserhydraulik. Olhydraulik und Pneumatik, 1998(2): 105~109
    [30] Ramo J, Hyonen M, Mantyla T et al. Wear resistance of materials in water hydraulics. The Sixth Scandinavian International Conference on Fluid Power, May, 1999: 26~28
    [31] Koc E, Hooke C J. Considerations in the design of partially hydrostatic slipper bearings. Tribology International, 1997, 30(11): 815~823
    [32] Koc E, Hooke C J. An analysis of the lubrication mechanisms of the bush-type bearings in high pressure pumps. Tribology International, 1997, 30(8): 553~560
    [33] 许耀铭.轴向柱塞泵滑靴和配流盘摩擦副的设计与实验研究.液压与气动,1977.(2):3~12
    [34] 谈宏华,陈卓如.新型端面配流副机理实验台设计及实验研究.液压气动与密封,1998,(3):2~6
    [35] 谈宏华,陈卓如,李元勋,金朝铭.倾侧力矩全平衡端面配流副机理实验研究,中国机械工程,1998(10):46~49
    [36] 曾祥荣,马六成.轴向柱塞泵摩擦副综合设计法的应用和试验研究.机床与液压,1984,(1):9~15
    [37] 周士瑜,段占旭.轴向柱塞泵配流副间隙的实验研究.液压与气动,1986,(3):12~14
    [38] 李方俊,方佳雨.轴柱塞泵配流副油膜间隙的试验研究.中国矿业大学学报,1993,(4):58~61
    [39] 郑炜,禤有雄,鲁宝香.轴向柱塞泵配流副油膜的实验研究.润滑与密封,1995,(5):37~39
    [40] 杨华勇,艾青林,周华.轴向柱塞泵配流副润滑特性的研究进展.中国机械工程,2004,15(17):1578~1593
    [41] 艾青林,周华,杨华勇.轴向柱塞泵配流副润滑特性的数值分析.农业机械学报,2004,35(6):78~81
    [42] 艾青林,周华,杨华勇.轴向柱塞泵配流副润滑特性试验系统的建立及仿真研究.煤炭学报,2004(6):731~735
    [43] 艾青林,周华,杨华勇.轴向柱塞泵配流副与滑靴副润滑特性试验系统的研制.液压与气动,2004(11):22~24
    [44] 王晨,艾青林,周华.精密位置反馈控制系统的仿真研究.机床与液压,2004(10):20~22
    [45] 那成烈.轴向柱塞泵液压回冲的控制方法.机床与液压,1986,(1):29~40
    [46] 叶敏.轴向柱塞泵流量脉动的理论分析.机床与液压,1990,(2):41~46
    [47] 陈兆能,陆元章.液压柱塞泵流量脉动测试的试验研究.机床与液压,1992,(4):187~193
    [48] 常真卫.带斜盘夹角的轴向柱塞泵流量脉动分析.液压气动与密封,1999, (4): 26~28
    [49] McConnachie J, Fagan M J. Design and Analysis of the Cylinder Block of an Axial Piston Pump. The Third Scandinavian International Conference on Fluid Power, 1993, (1): 75~93
    [50] 郑炜,禤有雄,冯洪江.柱塞泵配油盘变形的有限元计算.机床与液压,1990,(3):23~24
    [51] 韩光法,王汝传.基于MATLAB的Simulink库管理方法研究与实现.南京邮电学院学报:自然科学版,2003,23(4):80~84
    [52] 周洪,钟明慧.控制系统的一种简单实时在线仿真方法.系统仿真学报,2003,15(12):1753~1755
    [53] 吴晓燕,李彦彬,赵敏荣等.基于MATLAB的控制系统优化设计.空军工程大学学报:自然科学版,2001,2(2):37~40
    [54] 马福军,赵国军等.MATALB软件在控制系统的仿真与分析中的应用.计算机仿真,2003,20(3):80~82
    [55] 施阳.MATLAB语言精要及动态仿真工具SIMULINK.西安:西北工业大学出版社,1997
    [56] 张志涌.掌握和精通MATLAB.北京:北京航空航天大学出版社,1997
    [57] 高俊斌.MATLAB 5.0语言与程序设计.武汉:华中理工大学出版社,1999
    [58] 楼顺天.MATLAB程序设计语言.西安:西安电子科技大学出版社,1997
    [59] 韩九强.MATLAB高级语言及其在控制系统中的应用.西安:西安交通大学出版社,1997
    [60] 魏克新.MATLAB语言与自动控制系统设计.北京:机械工业出版社,1997
    [61] 薛定宇.MATLAB语言及应用.北京:清华大学出版社,1996
    [62] 程卫国.MATLAB 5.3应用指南.北京:人民邮电出版社,1999
    [63] 柳承茂.MATLAB 5.x入门与应用.北京:科学出版社,1999
    [64] 郑锦聪,庄镇嘉.MATLAB进阶.哈尔滨:哈尔滨工程大学出版社,1999
    [65] 陈怀琛.MATLAB及其在理工课程中的应用指南.西安:西安电子科技大学出版社,2000
    [66] 丁红,吴志,马秋明.使用MATLAB软件实现控制系统的分析与设计.烟台师范学院学报:自然科学版,2003,19(4):313~315,319
    [67] 李杰,唐晓泉,张一鸣等.基于MATLAB的分析测试系统.仪表技术,2004,(1):42~43
    [68] 汪涛.MATLAB在控制系统仿真中的应用实例.仪器仪表用户,2004,11(2):49~50
    [69] Glavatskih, Sergei B., Uusjtalo, Qsten, Spohn, Daniel J. Simultaneous monitoring of oil film thickness and temperature in fluid bearings. Tribology International, 2001, (34): 853~857.
    [70] Webster James, Mcgee, Joseph. A. An investigation into a modified port-plate seal of an axial piston water pump. Wear, 1988, (127): 85~99
    [71] 卢文祥,润生.机械工程测试·信息·信号分析(第二版).武汉:华中理工大学出版社,1999
    [72] 刘乐善.微型计算机接口技术原理及应用.武汉:华中理工大学出版社,1996
    [73] 艾青林,周华,杨华勇.纯水液压试验台的信号采集与处理.工程设计,2002,9(2):94~96
    [74] 宋宇峰.Labwindows/CVI逐步深入与开发实例.北京:机械工业出版社,2003
    [75] 刘君华.虚拟仪器编程语言LabWindows/CVI教程.北京:电子工业出版社,2001
    [76] 张毅刚,乔立岩.LabWindows/CVI 6.0编程指南.北京:机械工业出版社,2002
    [77] 张易知.虚拟仪器的改计与实现.西安:西安电子科技大学出版社,2002
    [78] 刘君华.基于LabWindows/CVI的虚拟仪器设计.北京:电子工业出版社,2003
    [79] 陆廷金,唐浩.LabWindows/CVI开发环境及其应用.微计算机应用,2001,22(1):50~50
    [80] 郭丽丽.LabWindows/CVI中数据采集函数库的合理使用.第四军医大学学报,2003,24(2):138~138
    [81] 吴晞.基于LabWindows/CVI 5.0平台的八通道数据采集系统.世界产品与技术,2000,(4):58~60
    [82] 王敬喜,李裕能,牛玉新.基于LabWindows/CVI的网络化虚拟仪器.仪器仪表与分析监测,2003,(4):29~31
    [83] 周星,孟晨,魏保华.基于LabWindows/CVI自动测试系统软件界面设计.电子测量技术,2003,(1):5~6
    [84] 高亚东,傅周东.基于虚拟仪器的液压元件通用测试系统.液压与气动,2003,(4):35~37
    [85] 徐艳,孙晓娜.虚拟仪器技术在实验室中的应用研究.河南师范大学学报:自然科学版,2003,31(4):102~105
    [86] 李欣,王郁萍,贾世明.虚拟仪器实现多任务和多参量的环境监测.哈尔滨工业大学学报,2003,35(8):974~976
    [87] 程刚,姚永和.在LabWindows/CVI环境下开发虚拟仪器自动测试系统.实用测试技术,2002,28(3):27~28
    [88] 陶永华.新型PID控制及其应用.北京:机械工业出版社,2002
    [89] 夏红,宋建成.模糊PID控制器的发展.化工时刊,2003,17(1):1~4
    [90] 王伟,张晶涛.PID参数先进整定方法综述.自动化学报,2000,26(3):347~355
    [91] 蒋静评.实时控制系统.杭州:浙江大学出版社,1992
    [92] 张旺,王世鎏.自动控制原理.北京:北京理工大学出版社,1994
    [93] 卢长耿,李金良.液压控制系统的分析与设计.北京:煤炭工业出版社,1991
    [94] 刘长年.液压伺服系统的分析与设计.北京:科学出版社,1985
    [95] 胡良谋,李景超,曹克强.基于MATLAB/SIMULINK的电液伺服控制系统的建模与仿真研究.机床与液压,2003(3):230~231,246
    [96] 张金姣.基于Matlab的控制系统仿真.湖北工学院学报,2004,19(3):152~153,156
    [97] 陈静,高殿斌.基于MATLAB的控制系统稳定性分析.仪器仪表用户,2004,11(5):51~52
    [98] 王立红.基于MATLAB的控制系统滞后补偿器设计.辽宁工学院学报,2003,23(4):27~27,34
    [99] 宋志安,乔志刚,王永安.基于MATLAB的四通伺服滑阀理论分析方法.山东科技大学学报:自然科学版,2003,22(3):62~65
    [100] 余斌,钟振龙,方宁.基于Matlab的液压节流调速性能仿真研究.计算机仿真,2003,20(9):142~144
    [101] 阎庆华,林大钧.结合Matlab软件分析节流阀流量特性.液压与气动,2004(1):54~55
    [102] 李大明,王野牧.液压位置、力伺服系统的SIMULINK仿真方法.沈阳工业大学学报,2004,26(4):419~421,425
    [103] 李中复.用MATLAB计算电液伺服阀特性曲线.机床与液压,2003(5):199~200

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700