用户名: 密码: 验证码:
甘肃省气象科学数据共享平台及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科学数据共享平台建设可以最大限度地发挥科学数据资源效益,在为政府部门提供决策服务、气象业务自身发展、地学相关领域的科学研究、地方国民经济建设等领域都具有很强的科学意义和重要的现实意义。基于元数据技术构建的科学数据共享平台,充分展示了数据资源与数据共享的融合。平台有着完整的构建策略,数据资源分布存放而又有序存取,满足多用户并发访问及流量疏导,极大地提高了共享数据资源的可获取性;同时,遵循数据本身的内在关联,强调数据之间的联系,为平台各级各类用户提供翔实可靠的数据。
     本文以甘肃省气象科学数据为研究对象,构建了甘肃省气象科学数据共享平台,取得如下成果:遵循区域地带性与非地带性相结合、综合性和主导因素相结合的原则,应用数据质量控制技术首次研制了一批西北气象科学数据集,主要包括西北地区地面气象、高空气象、气象灾害、气象辐射、历史气候代用资料等五大类资料,共31个数据集;平台构建中采用了元数据技术、GIS等技术,建立了以气象专题数据集为基本数据,以商用分布式数据库为基础平台,为用户提供了结构化和非结构化数据的透明访问存取,通过元数据系统和根据统一元数据标准建立的元数据库,系统实现了共享网不同分节点的元数据发布和元数据搜索导航机制。将元数据技术应用于成熟应用系统中,这在国内是不多见的;平台开发采用了分布式的数据存储,处理了数据分散存储而集中存取的问题,提出了以统一的元数据为数据的宏观描述,通过计算机科学中分布式系统的理论和方法,建立各个系统分节点协同机制;平台开发的技术思路和应用系统,已经向湖北、江西、新疆、宁夏等省气象部门推广应用,也可广泛应用于科技基础条件平台建设中的地学数据资源共享系统建设,为甘肃省地学领域的科学数据共享起到示范和带动作用。
     文中利用共享平台提供的基础数据,作了多种相关研究:首先进行甘肃省气候区划研究;接着提出了一种空间插值方法(ISTDW)并将其应用到雷达数据的数据的异常值处理中;同时,深入研究了多元雷达时间序列相似性匹配问题并给出了一种相似性匹配算法;最后,应用人工智能相关算法(仿生优化算法(PSO(粒子群)算法、鱼群算法(AFSA))和预测算法(BP神经网络、最小二乘支持向量机))进行应用研究,取得如下结果:提出一种甘肃省气候区划方案;设计的ETL过程实现了雷达测量数据和地面常规观测数据的时空粒度一致性,应用DIRE(动态增量规则引擎)实现异常值检测及ISTDW插值方法进行数据清洗,三种措施确保了雷达测量数据的数据质量,为气象数据仓库的建设提供了“清洁”的数据;提出的多元雷达时间序列相似性匹配算法(SBMDTSM)综合考虑了异常数据、序列形变、季节等方面对距离度量的影响,给出了形式化的距离度量模型,验证了SBMDTSM相似性匹配算法在漏报率、多报率和准确性方面均优于APCA和DWT算法,较好地解决了多元雷达时间序列相似性搜索这一研究难题;利用人工鱼群算法具有快速跟踪变化能力及不容易陷入局部最小值的优点(即具有很强的跳出局部极值的能力)来自动寻找最优的最小二乘支持向量机的参数;提出一种新颖的算法——粒子群与鱼群混合的新算法,取名为AFSA-PSO-parallel-hybrid evolutionary(APPHE) algorithm,用粒子群与鱼群混合的新算法来训练BP神经网络,提出的新算法具有较好的稳定性,比传统的BP神经网络更稳定,这对于分类问题尤为重要。
The construction of scientific data sharing platform has a strong scientificsignificance and practical significance to maximize the effectiveness of data resourcesand provide to local governments in the decision-making services, meteorologicaloperation self-development, scientific research in earth science-related fields, localeconomic construction, and so on. The platform has a complete strategy for datastorage, which greatly enhancing the shared data resources accessibility by thecombination of distribution and orderly access to meet the multi-user concurrentaccess and traffic flow. At the same time, the platform follow data own internalrelationship to stress data links between the various types data and provide real datareliability for users at all levels.
     Based on meteorological data in Gansu Province as an example, the platformachieved the following results: Following regional and non-regional areas combined,integrated and dominant principle of combining factors, developed a number ofmeteorological data sets, including the northwest ground, agrological, meteorologicaldisasters, air radiation, the history climate proxy data. All five categories, contains atotal of 31 data sets, apply data quality control technology to ensure data quality. Theplatform largely used metadata technology and GIS technology to establish a basicplatform, which based on meteorological thematic data sets and built onbusiness-based distributed database platforms, to provide users with transparentaccess for structured data access and unstructured data access. Based on unifiedmetadata standard, the metadata system established by the platform provided anavigation mechanism for different sub-node and benefits the deployment ofmeta-data, which is rarely reported in China. The Platform used distributed datastorage, which bridge the contradictions of data distributed storage and concentrateaccess by proposed to unify metadata description for the Entity Data and established a coordination mechanism of various systems sub-node. The Technology and methodsof platform development has been introduced to the Hubei, Jiangxi, Xinjiang, Ningxiaand other provinces to promote the application of meteorological services. Theplatform is an important part of the scientific and technological base platform ofGansu Province and will provide rich content and reliable data quality for theearth-related fields of scientific research, government decision-making meteorologicalservices, public weather services, the national economic construction and localresearch and project construction. The paper's results, developed platform andsystems can be widely used in the construction of other resource sharing system forGansu Province and can play a leading role model.
     In this paper, a variety of related research is held by the sharing platform: First ofall, climatic regionalization of Gansu Province is carried out; and then a spatialinterpolation method (ISTDW) is applied to radar data for dealing with abnormal dataand absence data; At the same time, in-depth study of the multi-radar time-seriessimilarity matching problem and gives a similarity matching algorithm; Finally, someartificial intelligence algorithms, such as bionic optimization algorithm (PSO (PSO))algorithm, fish-swarm algorithm (AFSA) and the prediction algorithm (BP neuralnetwork, least squares support vector machine)), is studied. By the research, thefollowing results are made: a climatic regionalization program in Gansu Province isprovided; a well-designed ETL processes for space-time particle size consistency ofradar data and ground observation data is held out and perform good; the DIRE(dynamic incremental rule engine) to detect abnormal data and the ISTDWinterpolation method for data cleansing ensured the data for meteorological datawarehouse is "clean"; the multi-radar time-series similarity matching algorithm(SBMDTSM), deeply considered the abnormal data, sequence of deformation and theseason in terms of the impact of distance measure, given a formal model of thedistance measure and has been verified that the similarity SBMDTSM matchingalgorithm in false dismissals rate, the false alarms rate and accuracy rate are betterthan APCA and DWT algorithm. Artificial Fish Swarm Algorithm (AFSA) isproposed to choose the parameters of least squares support vector machine (LS-SVM) automatically in time series prediction. A novel hybrid evolutionary algorithm basedon AFSA and PSO, also referred to as AFSA-PSO-parallel-hybrid evolutionary(APPHE) algorithm, has been used in FNN training. Compared to FNN trained byLMBP algorithm, FNN training by the novel hybrid evolutionary algorithm showsatisfactory performance, converges quickly towards the optimal position, convergentaccuracy, high stability and can avoid overfitting in some extent. FNN training bythe novel method has been testified by using in Iris data classification and the resultsare much more accurate and stable than by Levenberg-Marquardt back-propagationalgorithm.
引文
[1]Aila Sarkka,Eric Renshaw. The analysis of marked point patterns evolving throuth space and time[J], Dec. 2006, 51(3): 1698-1718.
    [2]Alkis Simitsis, Mapping conceptual to logical mo dels for ETL processes, Nov. 2005,Proceedings of the 8th ACM international workshop on Data warehousing and OLAP,67-76.
    [3]Anthony J.T Lee, Ruey-Wen Hony, Wei-Min Ko,etc.Mining spatial association rules in image databases[J].Information Sciences: an International Journal, Apr. 2007,177(7):1593-1608.
    [4]Bill Chiu, Eamonn Keogh, Stefano Lonardi. Probabilistic Discovery of Time Series Motifs.SIGKDD '03, August 24-27, 2003, Washington, DC, USA
    [5]B.-K. Yi, H. V. Jagadish, C. Faioutsos,"Efficient Retrieval of Similar Time Sequences Under Time Warping", Proc. IEEE ICDE, pp. 201-208, 1998.
    [6]Bruce L.Bowerman,Richard T.O’Connel.Forecasting and Time Series:An Applied Approach,Third Edition.机械工业出版社,2003年7月第一版第一次印刷.
    [7]C. Bettini, X. Wang, S. Jajodia, and J. Lin, "Discovering Frequent Event Patterns with Multiple Granularities in Time Sequences,"IEEE Trans. Knowledge and Data Eng., vol.10, no. 2, pp. 222-237,Mar./Apr. 1998.
    [8]C. Cortes, K. Fisher, D. Pregibon, and A. Rogers. Hancock: a language for extracting signatures from data streams. InACM SIGKDD Intl. Conf.on Knowledge Discoveryand Data Mining, pages 9-17, 2000.
    [9]C. FaJoutsos~ M. Rzmganath~n~ Y. Ma~zlopoulos,"Fast Subsequence Matching in Time-SeriesDatabases", Proc. ACId SIGMOD, pp. 419-429, 1994.
    [10]Chotirat Ann Ratanamahatana, Eamonn Keogh. Making Time-series Classification More Accurate Using Learned Constraints.
    [11]Chung, F.-l., Fu, T.-C., Luk, R. W. P., and Ng, V. (2001).Flexible time series pattern matching based on perceptually important points.In IJCAI-01 Workshop on Learning from Temporal and Spatial Data, pages 1-7,Seattle, USA.
    [12]C.Shababi,X.Tian,and W.Zhao,Tsa-tree: A wavelet-based approach to improve the efficiency of multi-level surprise and trend queries.In Proc, 12th International Conference on Scientific and Statistical Database Management,2000.
    [13]D. 3. Berndt, J. Clifford, "Finding Patterns in Time Series: A Dynamic Programming Approach",Aduancea in Knowledge Discovery and Data Mining, AAAT/MIT, pp. 229-248, 1996.
    [14]David Hand,Heikki Mannila,Padhraic Smyth著,张银奎等译.Principles of Data Mining.机械工业出版社,2003年4月第1版第1次印刷.
    [15]David Loshin,Rule based data quality, Nov. 2002,Proceedings of the eleventh internatio nal conference on Information and knowledge management:614-616.
    [16]Derya Birant,Alp Kut,ST-DBSCAN:An algorithm for clustering spatial-temporal data[J].Data & Knowledge Engineering,Jan.2007, 60(1):208-221.
    [17]D. Q. Goidin, P. C. Kameilakis, "On Similarity Queries for Time-Series Data: Constraint Specification amd Implementation", Proc. Conatraint Programming, pp. 137-153, 1995.
    [18] D. Rxfiei, A. Mendelzon, "Similarity-Based Queries for Time-Series Data", Prec. ACM SIGMOD, pp.13-24, 1997.
    [19]Eamonn Keogh, Chotirat Ann Ratanamahatana. Exact indexing of dynamic time warping. Springer-Verlag London Ltd. (?) 2004, Knowledge and Information Systems (2004)
    [20]Eamonn J. Keogh(?), Michael J. Pazzani(?).Derivative Dynamic Time Warping. www.cs.rutgers.edu/~mlittman/courses/lightai03/DDTW-2001.pdf
    [21]Eamonn J. Keogh, Michael J. Pazzani. Scaling up Dynamic Time Warping for Datamining Applications. KDD 2000, Boston, MA USA
    [22]Eamonn Keogh,Stefano Lonardi,Bill 'Yuan-chi' Chiu.Finding Surprising Patterns in a Time Series Database in Linear Time and Space,SIGKDD '02,July,23-26 2002, Edmonton, Alberta,Canada.
    [23]Environmental Systems Research Institute, Inc. Understanding GIS-The ARC/INFO Method. Redlands California, UAS: 1995.
    [24]Gautam Das, King-Ip Lin, Heikki Mannila, rule discovery from time series.Gopal Renganathan, Padhraic Smyth Knowledge Discovery and Data Mining (1998)
    [25]G. Das, D. Gunopulas, H. Mannila, "Finding SimilarTime Series ", Proc. PKDD, pp. 88-100, 1997.
    [26]H. Galhardas, D. Florescu, D. Shasha, E. Simon. AJAX: an extensible data cleaning tool[A] in Proceeding of the ACM SIGMOD International Conference on the Management of Data[C]. Dallas: TX, 2000.
    [27]H. M. Zhang, Z. N. Wei, "A short-term load forecasting approach based on PSO support vector machine," RELAY, vol.34, no. 3, pp: 28-31, 2006.
    [28]H(o|¨)ppner, F. (2001). Discovery of temporal patterns--learning rules about the qualitative behavior of time series. In Proceedings of the 5~(th) European Conference on Principles and Practice of Knowledge Discovery in Databases. Freiburg, Germany, pp 192-203.
    [29]http://www.w3.org/TR/rdf-primer
    [30]J.A.K.Suykens and J.Vandewalle, Recurrent least squares support vector machines, IEEE Trans, Circuits and Systems I, Vol. 47, pp:1109-1114, July 2000.
    [31]J.A.K.Suykens, T.Van Gestel, J.De Brabanter, B.De Moor, and J. Vandewalle, Least Squares Support Vector Machines, Singapore: World Scientific,2002.
    [32]J. A. K. Suykens and J. Vandewalle, Least squares support vector machine.
    [33]James M.Lattin,J.Douglas Carroll,Paul E.Green.Analyzing Multivariate Data.机械工业出版社,2003年7月.
    [34]Jessica Lin, Eamonn Keogh, Stefano Lonardi,Bill Chiu. A Symbolic Representation of Time Series, with Implications for Streaming
    [35]Jessica Lin, J. Keogh, E. Patel, P. & Lonardi, S. (2002). Finding motifs in time series. In the 2~(nd) Workshop on Temporal Data Mining, at the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Alberta, Canada
    [36]J. Han, G. Dong, and Y. Yin, "Efficient Mining of Partial Periodic Patterns in Time Series Databases," Proc. 15th Int'l Conf. Data Eng.,1999.
    [37]J. Han, W. Gong, and Y. Yin, "Mining Segment-Wise Periodic Patterns in Time-Related Databases," Proc. Fourth Int'l Conf.Knowledge Discovery and Data Mining, 1998.
    [38]Jiawei Han,Micheline Kamber著.Data Mining Conception and Techniques.范明,孟小峰等译.机械工业出版社,2001年8月第1版。
    [39]J Kennedy, R C Eberhart. Particle Swarm Optimization[C]. Proceedings of the IEEE International Conference on Neural Networks, 1995, 1942-1948.
    [40]J. L. Tong, The Course of Grey System Theory, The Publication Institute of Haw Jon University, 1989
    [41]J. M. Hellerstein, M. Stonebraker, R. Caccia. Independent, open enterprise data integration [J]. Bull. Techn. Committee Data Engineering, 1999, 22(1): 31-36.
    [42]J. T. Yang, The Grey System Theory and Application, The Science Press, China, 1991.
    [43]Lam David. Hybrid Expert System and Neural Network Application to Environment Modelling: GIS Applications in the RAISON System. In: Proceedings of the HydroGIS '96 Conference.
    [44]Lin ZhongHui,Xia XingGuo,Li HongXuan,etc. Comparison of Three Spatial Interpolation Methods for Climate Variables in China, Geography Journal,2002,57(1):27-56.
    [45]Keogh, E. (2004). Exact indexing of dynamic time warping. In 28th International Conference on Very.Large Data Bases. Hong Kong. pp. 406-417.
    [46]Kim S, Park S, Chu W (2001) An index-based approach for similarity search supporting time warping in large sequence databases. In: Proceedings of the 17th international conference on data engineering,
    [47]K.S.Shin, T.S.Lee and H.J. Kim, An application of support vector machines in bankruptcy prediction model, Expert System with Applications,28(2005)127-135.
    [48]K. W. Chu, M. H. Wong, "Fast Time-Series Searching with Scading and Shifting", Proc. ACMPODS, pp.237-246, 1999.
    [49]Lei Chen, M. Tamer Ozsu. Similarity-based Retrieval of Time-Series Data Using Multi-Scale Histograms. Technical Report CS-2003-31 Sept 2003.
    [50]Li Xiaolei, Shao Zhijiang, Qian Jinxin. An optimizing method base on autonomous animates fish-swarm algorithm [J]. Systems Engineering Theory and Practice.2002, 11:32-38.
    [51]Maguire D J. An Overview and Definition of GIS, Geographic Information System. London: Longman Inc, 1991: 9-19
    [52]Mehmed Kantardzic著.闪四清,陈茵,程雁等译.Data Mining Concepts,Models,Methods,and Algorithms.清华大学出版社2003年第1版第1次印刷.
    [53]M. Jarke, M.A. Jeusfeld, C. Quix, P. Vassiliadis. Architecture and quality in data warehouses: an extended repository approach[J]. Information Systems, 1999, 24(3): 229-253.
    [54]OCLC/NCSA Metadata Workshop Report. Stuard Weibel,Jean Godby,Eric Miller,and Ron Daniel(June,1995) http://ifla.inist.fr/documents/libraries/cataloging/metadata/oclcmeta.htm
    [55]Panos Vassiliadis, Alkis Simitsis,Spiros Skiadop oulos. Conceptual modeling for ETL processe s,Nov. 2002, Proceedings of the 5th ACM international workshop on Data Warehousing and OLAP.
    [56]Panos Vassiliadis, Zografoula Vagena, Spiros Skiadopoulos, Nikos Karayannidis, Timos Sellis. ARKTOS: towards the modeling, design, control and execution of ETL processes[J]. Infornation Systems, 2001, 26(8):537-561.
    [57]Park S, Chu W, Yoon J, Hsu C (2000) Efficient searches for similar subsequences of different lengths in sequence databases. In: Proceedings of the 16th IEEE international conference on data engineering,
    [58]Pavel Berkhin.Survey Of Clustering Data Mining Techniques 2002. http://citeseer.nj.nec.com/cs.2002
    [59]Poatetslu-Shapiro,Discovery,analysis,and presentation of strong rules. In G. Piatetsky-Shapiro and WJ Frawley, editors, Knowledge Discovery in Databases, 229-238. AAAI/MIT Press, 1991.
    [60]Povinelli, R. J. (2000). Identifying temporal patterns for characterization and prediction of financial time series events. In Roddick, J. and Hornsby, K., editors, Proc. of the 1st Int. Workshop on Temporal, Spatial, And Spatio-Temporal Data Mining, number 2007 in LNAI, pages 46-61.
    [61]P.S.Bradley,Usama M.Fayyad.Refining Initial Points for K-Means Clustering[M].1998。
    [62]P. Vassiliadis, C. Ouix, Y. Vassiliou, A model for data warehouse thoperational processes[C], Proceedings of the 12 Conference on Advanced Information Systems Engineering (CaiSE!00), Stockholm, Sweden, 2000.
    [63]P. Vassiliadis, M. Bouzeghoub, C. Quix. Towards quality-oriented data warehouse usage and evolution[J], Information Systems, 2000, 25(2): 89-115.
    [64]R. Agrawal, C- Faloutsos, A. Swami, "EfficientSimilarity Search in Sequence Databases", Proc.FODO, pp. 69-84, 1993.
    [65]R. Agrxwai, K- Lin, H. S. Sawhney, K. Shim,"Fast Similarity Search in the Presence of Noise, Scaring,and Trenslation in Time-Series Databases", Proc.VLDB, pp. 490-501, 1995.
    [66]Richard J. Povinelli, Xin Feng, A New Temporal Pattern Identification Method for Characterization and Prediction of Complex Time Series Events. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 2, MARCH/APRIL 2003.
    [67]R.O.Duda,P.E.Hart.Classification and Scene Analysis[M].New York: John Wiley andSonsk,1973
    [68]R.Y. Wang, V.c. Storey, C.P. Firth, A framework for analysis of data quality research[J]. IEEE Transactions on Knowledge and Data Engineering, 1995, 7(4): 623-640.
    [69]Sang-Wook Kim, Jeehee Yoon. Shape-Based Retrieval of Similar Subsequences in Time-Series Databases. Copyright 2002 ACM 1-58113-445-2/02/03
    [70]Sarasua, Wayne A. Knowledge-Based Geographic Information System for Safety Analysis at Rail-Highway Grade Crossings. In: Transportation Research Record, 2001.
    [71]Sergios Theodoridis,Konstantinos Koutroumbas著.Pattern Recognition,Second Edition.李晶皎等译.电子工业出版社,2004年8月第一次印刷。
    [72]S. Park, W. W. Chu, J. Yoon, C. Hau, "Efficient Searches for Similar Subsequences of Different Lengths in Sequence Databases", Proc. IEF-E ICDE, pp. 23-32,2000.
    [73]S- Park, S. W. Kim, J. S. Cho, S. Parlmanabhan,"Prefix-Querying: An Approach for Effective Subsequence Matching Under Time Warping in Sequence Databases", Proc. ACM CIKM, 2001.
    [74]S. Park, S. W. Kim, W. W. Chu, "Segment-Based Approach for Subsequence Searches inSequence Databases", Proc. ACM,SAG, pp. 248-252, 2001.
    [75]Tassos Argyros, Charis Ermopoulos.Efficient Subsequence Matching in Time Series Databases Under Time and Amplitude Transformations
    [76]The Dublin Core Metadata Initiative.http:pud.org/dc.
    [77]The Warwick Metadata Workshop:A framework for the deployment of resource description. Lorcan Dempsey and Stuart Weibel.DLib Magazine,July/August 1996
    [78]Vapnik V N. Statistical Learning Theory[M]. New York;Wiley,1998.
    [79]V. Borkar, K. Deshmuck, S. Sarawagi, Automatically extracting structure from free text addresses[J]. Bull. Techn. Committee Data Engineering, 2000, 23 (4): 27-32.
    [80]V. Guralnik, D. Wijesekera, and J. Srivastava, "Pattern Directed Mining of Sequence Data," Proc. Int'l Conf. Knowledge Discovery and Data Mining, pp. 51-57, 1998.
    [81]V. Raman, J. Hellerstein, Potters wheel: an interactive framework for data cleaning and transformation[R], Technical Report, University of California at Berkeley, Computer Science Division, 2000.
    [82]Walid G. Aref, Mohamed G. Elfeky, and Ahmed K. Elmagarmid."Incremental,Online, and Merge Mining of Partial Periodic Patterns in Time-Seres Databases". IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO.2, FEBRUARY 2004.
    [83]W H.Inmon著.王志海等译.Building the Data Warehouse(Second Edition)[M].北京:机械工业出版社.2000.5.
    [84]Wei-Guang Teng, Ming-Syan Chen, Philip S. Yu.A Regression-Based Temporal Pattern Mining Scheme for Data Streams. Proceedings of the 29th VLDB Conference, Berlin, Germany, 2003.
    [85]W- K. Lob, S. W. Kim, K. Y. Wha-ag, "Index Interpolation: A Subsequence Matching Algorithm Supporting Moving Average Transform of Arbitrary Order in Time-Series Databases", IEICE Trans. on Information and Sgstems, Vol. E84-D, No. 1, pp.76-86, Jan. 2001.
    [86]W. K. Lob, S. W. Kim, K. Y. Whang, "Index Interpolation: An Approach for Subsequence Matching Supporting Nermaiization Transform in Time-Series Databases", Proc. ACM GIKM, pp. 480-487, 2000.
    [87]X.L.Li, Y.C.Xue, F.Lu and G.H.Tian, "Parameter estimation method based on artificial fish school algorithm", Journal of Shangdong University (Engineering Science), vol.34, no.3, pp.84-87, 2004.
    [88]Yang Yubin,Lin Hui,GuoZhong yang.A meteorol ogyical conceptual modeling approach based on spatial data mining and knowledge discovery [c].Innovations in Applied Artificial Intelligence, Bari, Italy: Springer-Verlag GmbH, Jun. 2005,490-499.
    [89]Y.N.Liu, S.L.Pang and D.Liu, "Short-term load forecasting method based on artificial fish-swarm algorithm of neural network", Advanced Technology of Electrical Engineering and Energy, vol.24, no.4, pp: 5-8, 2005.
    [90]Yunyue Zhu. High Performance Data Mining in Time Series: Techniques and Case Studies.http://www.google.com.
    [91]柴晓路、梁宇奇.Web Services技术、架构和应用[M].北京:电子工业出版社.2003
    [92]程变爱.论述资源描述框架(RDF)[J].现代图书情报技术,2000,(6).
    [93程喜荣.元数据及SGML在数字图书馆中的应用[J].现代图书情报技术,2001,(4).
    [94]丁根度.试论元数据的开发与应用[J].江苏图书馆学报,2001,(6).
    [95]地球系统科学数据共享网平台研发组,地球系统科学数据共享网总体技术方案,2005.12
    [96]段海滨,王道波,于秀芬.几种新型仿生优化算法的比较研究.计算机仿真,2007年3月,第24卷第3期,pp:169-172.
    [97]范金城,梅长林著,数据分析,科学出版社2002年7月第一版.
    [98]方裕,周成虎,景贵飞等.第四代GIS软件研究.中国图像图形学报.2001,Vol.6(A),No.9:817-823.
    [99]冯项云等.国外常用元数据标准比较研究[J].大学图书馆学报,2001,(4).
    [100]龚健雅、贾文钰、陈玉敏、解吉波,从平台GIS到跨平台互操作GIS的发展,武汉大学学报·信息科学版,Vol.29,No.11,2004,P986-990
    [101]国家科学数据网建设规范(征求意见稿),中华人民共和国科学技术部,2004.1
    [102]何雄涛,BP神经网络研究及其地学应用,软件导刊,2007年11月号.
    [103]贺亚锋.基于资源发现领域的元数据(Metadata)标准[J].网络资源建设,2000,(6).
    [104]黄鼎成、郭增艳主编.科学数据共享管理研究.北京:中国科学技术出版社.2002:162-196
    [105]蒋景瞳等,国家标准《地理信息元数据》研制与实现若干问题,地理信息世界,Vol.01 No.5 2
    [106]贾文珏、陈玉敏、龚健雅等.基于WebService的0GC地图服务实现方法[J].测绘信息与工程.2004,29(4):34-35
    [107]金毅等.元数据在电子化学位论文中的应用探讨[J].大学图书馆学报,2002,(2).
    [108]科学数据共享工程办公室.科学数据共享概念与术语(培训教材).2005.12
    [109]科学数据共享工程专题实施方案研究组(黄鼎成、李晓波执笔).科学数据共享工程实施方案专题研究报告.2003.12
    [110]梁娜等.关于数字信息长期保存的元数据[J].四川图书馆学报,2002,(1).
    [111]李宏,陈松乔,王建新.基于时序模式关联的股票走势分析研究.计算机工程与研究2001.13
    [112]李慧.元数据在数字图书馆中的应用[J].情报理论与实践,2001,(1).
    [113]粟慧.元数据、HTML和都柏林核心集--关于WEB网页的编目[J].情报科学,2001,19,(12).
    [114]李集明、熊安元,气象科学数据共享系统研究综述,应用气象学报,Vol.15,2004.12(增刊),P1-8
    [115]李军、周成虎.地球空间数据元数据标准初探.地理科学进展.1998.17(4)
    [116]林海青.数字化图书馆的元数据体系[J].中国图书馆学报,2000,(4).
    [117]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法.系统工程理论与实践,2002,22(11):32-38.
    [118]刘嘉.元数据:理念与应用[J].中国图书馆学报,2001,(5).
    [119]刘俊熙等.传统文献编目·元数据·都柏林核心集理论探讨[J].现代图书情报技术,2001,(1).
    [120]刘黎明,肖红飞.神经网络在煤与瓦斯突出预测中的应用,矿业安全与环保,2003年2月,第30卷第1期.
    [121]刘耀年,庞松岭,刘岱.基于人工鱼群算法神经网络的电力系统短期负荷预测.电工电能新技术,2005年10月,第24卷第4期.
    [122]刘源等.元数据及其格式研究[J].图书馆论坛,2002,22,(3).
    [123]马珉.元数据--组织网上信息资源的基本格式[J].情报科学,2002,20,(4).
    [124]区颖薇.网络环境下资源管理模式--元数据[J].图书馆学研究,2002,(1).
    [125]盛小平.元数据的互操作研究[J].图书馆,2002,(2).
    [126]沈体雁、程承旗.地理元数据技术系统的设计与实现.武汉测绘科技大学学报.Vol.24,No.4,
    [127]史忠植.知识发现[M].北京:清华大学出版社,2002.
    [128]孙广芝.元数据:网络资源共享的基础[J].情报科学,2001,19,(7).
    [129]孙九林、施慧中.中国地球系统科学数据共享服务网的构建.中国基础科学.No.1,2003:76-82
    [130]孙枢,地球数据是地球科学创新的重要源泉--从地球科学谈科学数据共享,中国基础科学,N2003
    [131]孙媛.元数据--数字图书馆的编目规则[J].现代图书情报技术,1999,(5).
    [132]王国复,徐枫,吴增祥.气象元数据标准与信息发布技术研究.应用气象学报.Vol.16, No.1,2005:114-121
    [133]王晔等.基于元数据的Web信息检索研究[J].情报学报,2001,(6).
    [134]王卷乐.科学数据交换中心元数据关键问题研究-以中国地球系统科学数据共享网为例[D].北京:中国科学院地理科学与资源研究所博士论文.2005.5
    [135]王卷乐,游松财,RDF/XML在地学数据共享中的应用,地理信息科学与数字城市论坛论文集,北国科学技术出版社,2004.8
    [136]王卷乐、游松财、诸云强.基于元数据的地理空间信息Web服务及其开发研究.地理信息世界.No.1,2005:23-27
    [137]翁颖钧,朱仲英.基于分段线性动态时间弯曲的时间序列聚类算法研究。微型电脑应用2003年第19卷第9期。
    [138]吴开华等.数字图书馆元数据研究[J].中国图书馆学报,2002,(3).
    [139]邬伦,刘瑜,张晶等.地理信息系统-原理,方法和应用.北京:科学出版社.2001:22-26.
    [140]吴信才.地理信息系统的基本技术与发展动态.地球科学.1998,Vol.23,No.4:7-33.
    [141]吴政睿.三个元数据格式的比较分析[EB].http://dimes.links.fju.edu.tw/units.
    [142]肖珑等.中文元数据标准框架及其应用[J].大学图书馆学报,2001,(5).
    [143]肖珑.元数据格式在数字图书馆中的应用[J].大学图书馆学报,1999,(4).
    [144]徐红.元数据在期刊信息描述组织中的应用[J].现代情报,2002,(6).
    [145]徐佳宁.DC元数据在网络资源学科导航体系中的应用研究[J].图书馆建设,2002,(1).
    [146]闰滨,周晶.大坝安全监控及评价的智能神经网络模型研究,大连理工大学博士学位论文。
    [147]杨杰,吴中如,顾冲时.大坝变形监测的BP网络模型与预报研究.西安理工大学学报,2001,17(1):25-29
    [148]游湘涛,史忠植.多策略通用数据采掘工具MSMiner[J].计算机研究与发展,2001,38(5):581-586.
    [149]张立、龚健雅,地理空间元数据管理的研究与实现,武汉测绘科技大学学报,Vol.25 No.5 2002
    [150]张敏等.元数据(Metadata)的发展和相关格式[J].四川图书馆学报,2000,(2).
    [151]张晓林.元数据开发应用的标准化框架[J].现代图书情报技术,2001,(1).
    [152]张学福等.元数据及其在网络信息资源组织开发中的应用[J].现代情报,2002,(5).
    [153]赵慧勤.网络信息资源组织--Dublin Core元数据[J].情报科学,2001,19,(4).
    [154]赵慧勤.网络信息资源组织--元数据[J].情报理论与实践,2000,(6).
    [155]赵慧勤.相关元数据比较研究[J].情报科学,2002,20,(5).
    [156]赵宇星.都柏林核心(DC)元数据与图书馆编目数据[J].四川图书馆学报,2001,(6).
    [157]真溱.矛盾重重的元数据世界[J].中国图书馆学报,2001,(6).
    [158]中国科学院《中国自然地理编辑委员会》.中国自然地理-气候.北京:科学出版社,1985.1-161
    [159]中央气象局.中华人民共和国气候图集.北京:地图出版社,1979.222-223.
    [160]中央气象局.中国气候资源地图集.北京:中国地图出版社,1994.277-278
    [161]中央气象局.中华人民共和国气候图集.北京:气象出版社,2002.6-7
    [162]周宁等.都柏林核心元数据研究的新进展[J].情报科学,2000,18,(6).
    [163]朱慧等.元数据的新贵:都柏林核心[J].情报资料工作,1999,(5).
    [164]朱慧.万维网的元数据结构RDF[J].江苏图书馆学报,2001,(1).
    [165]诸云强,分布式地球系统科学数据共享关键技术研究[D].北京:中国科学院地理科学与资源研究所博士论文.2006.6
    [166]祖彩霞、苗放、董樵、施仕平,基于元数据的信息共享管理系统的安全控制,Vol.25,No.4,2003.11,P377-379.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700