用户名: 密码: 验证码:
好氧颗粒污泥及颗粒化动态膜生物反应器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
好氧颗粒污泥技术是目前最有发展前景的污水处理工艺之一,具有沉降性能好、有机负荷高、同步硝化反硝化能力强、生物除磷效果好等优点,但它存在系统不稳定、出水浊度波动大的不足。本研究在SBR反应器内,对好氧颗粒污泥的低温培养、生物相分布和稳定性等方面进行了试验研究;并以此为基础,将好氧颗粒污泥工艺与膜分离技术相结合,拟开发出一套稳定、高效的可持续污水处理工艺。主要研究成果包括:
     (1)GSBR反应器中好氧颗粒污泥特征的研究
     在低温条件下,好氧颗粒污泥能够在SBR反应器快速的培养成功,并实现稳定的运行,同时表现出沉降性能好、EPS含量高和有机物去除速率大、丝状菌生长旺盛等特点。在常温条件下,停运闲置对好氧颗粒污泥的影响不大,且颗粒污泥恢复速度快;但进水氨氮浓度和COD浓度对好氧颗粒污泥的影响较大。酵母菌和霉菌是好氧颗粒中的主要微生物种群,而细菌和放线菌也是其重要的组成部分之一。在单一好氧条件下,颗粒化SBR反应器对TP的去除是通过“富营养释磷”和“贫营养吸磷”实现的。
     (2)SBGDMBR反应器的研究
     试验在高氨氮、偏碱性条件下,成功地培养出了在高氨氮条件下能稳定生存、硝化反硝化能力强的好氧颗粒污泥,并将其接种到序批式动态膜生物反应器中,构成了SBGDMBR。试验结果表明,SBGDMBR反应器具有良好的处理高氨氮、低C/N污水效果。且当膜通量为普通动态膜反应器膜通量的5-30倍时,动态膜能够稳定运行20多天,不用进行膜清洗,分离效果良好。试验采用高压水冲洗的方式对被污染动态膜进行恢复性清洗,膜通量能够100%的恢复。试验还研究了动态膜在超高膜通量下的过滤特征,分析了膜出水规律以及排泥频率和出水方式对SBGDMBR的影响。
     (3)CFGDMBR反应器的研究
     试验以粒径选择压法成功地培养出了适应于连续流运行模式的好氧颗粒污泥,并将其接种到新型的连续流动态膜生物反应器中,构成了CFGDMBR反应器。试验结果表明,好氧颗粒污泥能够在CFGDMBR反应器内稳定存在,但粒径小、沉降性较差、结构松散和丝状菌生长旺盛。
     在70多天的运行期间,CFGDMBR反应器表现出良好的有机物和氨氮去除效果,COD和NH_4~+-N的去除率分别85%和75%左右;具有一定的反硝化和好氧除磷去除效果,TN和TP的去除率分别为67%和58%左右。同时,系统表现出较好的稳定性,有较强的抗水力负荷冲击和有机负荷冲击的能力;动态膜膜阻力小、运行周期长。最后还建立了动态膜的形成与污染的机理,提供了动态膜膜面最佳错流流速和最佳清洗曝气量的计算方法
Aerobic granulation is a promising technology that has great potential in the wastewater treatment due to the advantages of excellent biomass settleability, highly organic loading rate, simultaneous nitrification and denitrification and biological phosphorus removal. However, the effluents of the granular sludge reactors are often not stable, resulting from the washout of mixed liquor suspended solids (MLSS). Therefore, firstly, in the SBR, the cultivating method at low temperature, main microorganism and stability of aerobic granules were studied. Then, based on the research results, aerobic granulation technology was combined with the membrane bioreactor for developing a sustainable technology of low energy consumption, low investment cost, low running cost and high efficiency. This paper includes following research works:
     (1) Characteristics of aerobic granular sludge in the GSBR
     At low temperature, aerobic granules could be cultivated quickly in SBR. And the cultivated aerobic granules dominated by filamentous have good settleability, high content of extracellular polymeric substances (EPS), and good removal efficiency of organic matters. At normal temperature, the influences of operation disruption and ammonia and COD concentrations in influent on aerobic granules were studied, the main microorganism in granules was isolated and cultured, and mechanism of phosphorus removal in the sole aerobic condition was analyzed. It indicated that aerobic granules could be slightly influenced by operation disruption, but could be seriously influenced by ammonia and COD concentrations in influent. Yeast and mould were found to be the main microorganism. Finally, a two-stage mechanism of phosphorus removal was simulated in the granular SBR and then testified systematically.
     (2) Characteristics of SBGDMBR
     Under alkalescent and high ammonia concentration environment, aerobic granules with highly nitrification and denitrification potential and accommodating to high ammonia concentration were successfully cultivated. Then, the SBGDMBR was developed by seeding this kind of aerobic granules in the SBDMBR. Results showed that SBGDMBR had great ability in disposing cesspool wastewater. And when the membrane flux was 5-30 times of that in the common DMBR, dynamic membrane could operate normally more than 20 days without membrane cleaning, and membrane flux could be 100% recovered by the washing of high pressure water. Moreover, the influences of sludge discharging frequency and effluent discharging mode on SBGDMBRR were studied.
     (3) Characteristics of CFGDMBR
     Aerobic granular sludge accommodating to continuous-flow mode was successfully cultivated under the selective pressure of granule size in SBR. And a novel continuous-flow granular dynamical membrane bioreactor (CFGDMBR) was developed by seeding this kind of aerobic granules into the continuous-flow dynamical membrane bioreactor. The aerobic granules existing stably in the CFGDMBR had the characteristics of small particle size, bad settleability, loose structure and high water content.
     During the operation period of more than 70 days, CFGDMBR presented good organic and ammonia removal capabilities, 85% and 75%, respectively. Moreover, when DO was about 3.0-6.0 mg/L, CFGDMBR had TN and TP removal rates of 67% and 58%, respectively. Furthermore, the CFGDMBR system presented the characteristics of stability, strong anti-shocking of organic and hydraulic loading, low membrane resistance and long operation cycle. At last, the mechanisms of formation and fouling of dynamic membrane was built, and the methods for calculating the optimum cross-flow rate on the membrane surface and aeration gas amount for controlling membrane fouling were provided.
引文
[1] 高廷耀.水污染控制工程.北京:高等教育出版社,1999:164-165.
    [2] 谢珊,李小明.好氧颗粒污泥的性质及其在脱氮除磷中的应用.环境污染治理技术与设备,2003,4(7):317-321.
    [3] Peng D C, Nicola S B, Jean Philipped. Aerobic granular sludge: a case report [J]. Wat. Res., 1999, 33(3): 890-893.
    [4] Morgenrot H E, Sherdent. Aerobic granular sludge in a sequencing batch reactor [J].Wat. Res., 1997, 31(12): 3191-3194.
    [5] Beun, Hendrik SA. Aerobic granulation in a sequencing batch reactor [J].Wat Res, 1999, 33(10): 2283-2290.
    [6] 竺建荣,刘纯新,何建中等.厌-好氧交替工艺的生物除磷特性研究[J].环境科学学报,1999,19(4):394-398.
    [7] 竺建荣,刘纯新.好氧颗粒污泥的培养及理化特性研究.环境科学[J],1999,20(2):38-41.
    [8] M. Belmonte, J.R.V(?) zquez-Pad(?)n, M. Figueroa, et al. Characteristics of nitrifying granules developed in an air pulsing SBR. Process Biochemistry, 2009, 44: 602-606.
    [9] Tay JH, Liu QS, Liu Y. Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors. Environ Technol., 2002, 23: 931-936.
    [10] Yang S F, Liu Y, Tay J H. A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater. J Biotechnol, 2003, 106: 77-86.
    [11] Qin L, Tay J H, Liu Y, Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process Biochem, 2004, 39:579-584.
    [12] Beun JJ, Van Loosdrecht MCM. Aerobic granulation in a sequencing batch reactor. Water Res., 2002, 36(3): 702-712.
    [13] 阮文权,陈坚.同步硝化反硝化好氧颗粒污泥脱氮过程初步研究.安全与环境学报,2003,3(S):3-6.
    [14] Jang A M, Yoon Y H. Characterization and evaluation of aerobic granules in sequencing batch reactor. J. of Biotechnology, 2003, 105:71-82
    [15] Wang Q, Du G C, Chen J. Aerobic granular sludge cultivated under the selective pressure as a driving force. Process Biochemistry, 2004, 39:557-563
    [16] 王芳,杨凤林,报兴文等.SBAR中培养条件对好氧颗粒污泥特性影响.大连理工大学学报,2005,4S(6):808-813
    [17] Liu Yu, Liu Q S. Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors. Biotechnology Advances, 2006, 24: 115-127.
    [18] 刘宏波,杨昌柱,濮文虹等.好氧颗粒污泥活性恢复的试验研究.中国给水排水,2008,24(19):16-19.
    [19] Liu Y, Tay J.H. State of art of biogranulation technology for wastewater treatment. Biotechnol. Adv., 2004, 22(7):533-563.
    [20] Liu Q S, Tay J H, Liu Y. Substrate concentration-independent aerobic granulation in sequential aerobic sludge blanket reactor [J]. Environ Technol., 2003, 24(10): 1235-1243.
    [21] Moy B Y P, Tay J H, Toh S K, et al. High organic loading influences the physical characteristics of aerobic sludge granules [J]. Lett Appl Microbiol, 2002, 34(6): 407-412.
    [22] Liu Y, Yang S F, Liu Q S, et al. The role of cell hydrophobicity in the formation of aerobic granules [J].Current Microbiology, 2003, 46(4): 270-274.
    [23] Wan Junfeng, Sperandio Mathieu. Possible role of denitrification on aerobic granular sludge formation in sequencing batch reactor. Chemosphere, 2009, 75: 220-227.
    [24] Wirtz R A, Dague R R. Enhancement of granulation and start-up in the anaeraobic sequencing batch reactor [J]. Wat Env Res, 1996, 68(5): 883-892
    [25] 陈坚,王强,堵国成.好氧颗粒污泥的形成及其性质[J].无锡轻工大学学报,2002,21(3):317-321.
    [26] Mishimak, Nakamuram. Self-immobilization of aerobic activated sludge-a pilot study of the aerobic upflow sludge blanket process in municipal sewage treatments [J].Water Sci. technol., 1991.23: 981-990.
    [27] 陈新明,申毅蓉.不同进水基质好氧颗粒污泥性状研究.天津建设科技,2008,1: 47-49.
    [28] Peng D. Aerobic granular sludge-a case report [J]. Wat. Res., 1999, 33(3):890-893.
    [29] Sunil S. Adav, Duu-Jong Lee, Juin-Yih Lai. Treating chemical industries influent using aerobic granular sludge: recent development. Journal of the Taiwan Institute of Chemical Engineers In press.
    [30] Guang-Hui Yu, Pin-Jing He, Li-Ming Shao. Characteristics of extracellular polymeric substances (EPS) fractions from excess sludges and their effects on bioflocculability. Bioresource Technology, 2009, 100: 3193-3198.
    [31] 竺建荣,刘纯新.好氧颗粒活性污泥的培养及理化特性研究[J].环境科学,1999,3(2):38-40.
    [32] 杨麒,李小明,曾光明等.好氧颗粒污泥实现同步硝化反硝化[J].城市环境与城市生态,2003,16(1):40-42.
    [33] 胡林林.好氧颗粒污泥的培养、特性及应用研究[D].北京:清华大学,2004.
    [34] 王荣昌,文湘华,钱易.生物膜反应器中好氧颗粒污泥的形成机理[J].中国给水排水,2004(3):8-11.
    [35] 王琳,孙磊,林跃梅.好氧颗粒污泥系统快速启动试验研究[J].中国海洋大学学报,2006,36(2):299-302
    [36] X.H. Wang, H.M. Zhang, F.L. Yang, L.P. Xia, M.M. Gao. Improved stability and performance of aerobic granules under stepwise increased selection pressure. Enzyme and Microbial Technology, 2007, 41:205-211
    [37] 杨国靖.好氧颗粒污泥形成过程及形成机理的探讨.浙江万里学院学报,2008,2(21):99-102.
    [38] 易诚,湛含辉,程胜高等.好氧颗粒污泥颗粒化研究进展及发展趋势[J].环境科学导刊,2007,26(5):1-6.
    [39] Liu Y, Hailou X, Shufang Y, et al. Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor [J]. Wat. Res., 2003, 37: 661-673.
    [40] L W Hulshoff Pol, S I de Castro Lopes, Lettinga G, et al. Anaerobic sludge granulation [J].Wat. Res, 2004, 38:1376-1389.
    [41] 姜峰,董丽,冯辉霞等.影响好氧颗粒污泥形成的因素及其机理的探讨.化学 与生物工程,2009,26(1):15-17.
    [42] 仲海涛,胡勇有,张宪宁.颗粒污泥技术在污水处理中的应用研究进展.江苏环境科技,2006,4(19):35-38.
    [43] 王强,陈坚,堵国成.选择压法培育好氧颗粒污泥的试验[J].环境科学,2003,24(4):99-104.
    [44] Fang Wang, Feng Lin Yang,Xing-wen Zhang, et al. Effects of cycle time on p roperties of aerobic granules in sequencing batch airlift reactors[J].World Journal of Microbiology & Biotechnology, 2005,21:1379-1384.
    [45] Tay J H, Liu Q S, Liu Y. The effects of shear force on the formation, structure and metabolism of aerobic granules [J]. Appl. Microbiol. Biotechnol., 2001, 57(1-2): 227-233.
    [46] Liu Y, Tay J H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge [J]. Wat. Res., 2002, 36:1653-1665.
    [47] Schmidt J E and Ahring B K. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactor [J]. Biotech. Bioeng., 1996, 49(3):229-246.
    [48] Tay J H and Xu H L. Molecular mechanism of granulation: H~+ translocation-dehydration theory [J]. Journal of Environ. Eng., 2000, 126(5): 403-410.
    [49] Mahoney E M, Varagu L K, Caims W L, Kosaric N, Murray R G E. The effect of calcium on microbial aggregation during UASB reactor start-up [J]. Wat.Sci.Tech. 1987, 19:249-260.
    [50] Teo K C, Xu H L, Tay J H. Molecular mechanism of granulation: proton translocation activity [J]. J Environ Eng, 2000, 126:411-418.
    [51] Tay J H, Yang S F, Liu Y. Hydraulic selection pressure-induced nitrifying granulation in sequencing batch reactors. Appl Microbiol Biotechnol, 2002, 59: 332-337.
    [52] Yang S F, Tay J H, Liu Y. Effect of substrate N/COD ratio on the formation of aerobic granules. J Environ Eng., 2005, 131(1):86-92.
    [53] Jiang H L, Tay J H, Tay S T L. Changes in structure, activity and metabolism of aerobic granules as a microbial response to high phenol loading. Appl Microbiol Biotechnol, 2004, 63:602-608.
    [54] Lodi A, Solisoio C, Converti A, Del Borghi M. Cadmium, zinc, copper, silver and chromium (Ⅲ)removal from wastewaters by Sphaerotilus natans. Bioprocess Eng, 1998, 19:197-203.
    [55] Taniguchi J, Hemmi H, Tanahashi K, et al. Zinc biosorption by a zinc-resistant bacterium, Brevibacterium sp. Strain, HZM-1. Appl Microbiol Biotechnol, 2000, 54:581-588.
    [56] Valdman E, Leite S G F.Biosorption of Cd, Zn and Cu by Saragssum sp. waste biomass. Bioprocess Eng, 2000, 22:171-173.
    [57] 林跃梅.好氧颗粒污泥中细菌藻酸盐的研究.博士论文,中国海洋大学,2007.
    [58] Liu Y, Yang S F, Tan S F, et al. Aerobic granules: a novel zinc biosorbent. Lett Appl Microbiol, 2002, 35: 548-551.
    [59] J.J. Beun, van Loosdrecht M. C. M., Heijnen J. J. Aerobic granulation [J]. Wat. Sci, Tech., 2000, 41(4): 41-48.
    [60] 阮文权,陈坚.同步硝化与反硝化(SND)好氧颗粒污泥脱氮过程初步研究.安全与环境学报.2003,5(3):3-7.
    [61] 阮文权,陈坚.好氧颗粒污泥同步硝化反硝化脱氮过程中N_2O的产生.无锡轻工大学学报,2004,4(23):37-63.
    [62] Lin Y M, Liu Y, Tay J H. Development and characteristics of phosphorus-accumulating microbial granules in sequencing batch reactors [J]. Applied Microbiology and Biotechnology, 2003, 62(4): 430-435.
    [63] De Kreuk M K, van Loosdrecht M C M. Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Science & Technology, 2004, 49(11-12): 9-19.
    [64] 刘倩倩,李小明,杨麒等.Mg~(2+)对SBR中好氧颗粒污泥培养的影响研究.中国给水排水,2008,17(24):31-35.
    [65] 方芳,朱润晔,张丽丽等.好氧颗粒污泥共代谢降解MTBE及微生物群落研究.环境科学学报,2008,11(28):2206-2212.
    [66] 杨国靖,李小明,曾光明.SBR系统同步脱氮除磷好氧颗粒污泥的培养.中国给水排水,2008,9(24):33-37.
    [67] 沈祥信,李小明,杨麒等.预加好氧颗粒对SBR中好氧颗粒污泥形成的影响.环境科学,2008,11(28):2467-2472.
    [68] 陈雪松,夏四清,刘贵春.SBR好氧颗粒污泥的理化性质研究.中国给水排水,2007,5(23):99-102.
    [69] 刘建国,张栋华,王曙光.好氧颗粒污泥的性质及形成机理的探讨.山东大 学学报(工学版),2006,3(36):116-119.
    [70] 张栋华,岳钦艳,王曙光.序批式反应器的好氧颗粒污泥特性研究.中国给水排水,2006,1(22):80-83.
    [71] Qin L, Liu Y, Tay J H. Effect of settling time on aerobic granulation in sequencing batch reactor [J]. Biochemical Engineering Journal, 2004(21): 47-52.
    [72] Zeng R J., Lemaire R, Yuan Z, Keller J. Simultaneous nitrification, denitrification and phosphorus removal in a lab-scale sequencing batch reactor. Biotech. Bioeng., 2003, 84(2): 170-178.
    [73] 王芳.SBAR中好氧颗粒污泥的培养及其特性研究.博士论文,大连理工大学,2004.
    [74] 王景峰,王暄,季民等.好氧颗粒污泥膜生物反应器污泥性状研究.环境科学,2008,5(28):1033-1038.
    [75] Shin H S, Lim K H, Park H S. Effect of shear stress on granulation in oxygen aerobic upflow sludge bed reactors [J]. Water Sci. Technol., 1992, 26(3-4): 601-605.
    [76] 梁洋,宋志伟.好氧颗粒污泥的国内外研究进展.环境科学与管理,2007,11(32):93-97.
    [77] 杨洋,左剑恶,卜德华等.好氧颗粒污泥亚硝化工艺的启动与运行特性研究.环境科学,2007,11(28):2462-2466.
    [78] 孙寓姣,左剑恶,杨洋等.好氧亚硝化颗粒污泥中硝化细菌群落结构分析.环境科学,2006,9(27):1858-1861.
    [79] 李媛,沈耀良,孙立柱.采用CSTR反应器培养好氧颗粒污泥的研究.中国给水排水,2008,5(24):10-13.
    [80] 王景峰.好氧颗粒污泥脱氮除磷及颗粒污泥膜生物反应器研究.博士毕业论文,天津大学,2006.
    [81] 孟凡生,王业耀.膜生物反应器在我国的研究发展展望.水资源保护,2005,21(4):1-3.
    [82] 崔丽英,杨成永,武红霞.MBR在水处理中的应用与发展.山西建筑,2003,29(18):103-104.
    [83] Stephenson T, Judd S, Jefferson B, et al. Membrane Bioreactors for Wastewater Treatment. IWA Publishing, London, UK, 2000.
    [84] 程钟,邱谨楠.膜生物反应器的研究及在废水处理中的应用.污染防治技术,2006,3(19):30-33.
    [85] Be lag, Li pat. Environmental Engineers Hand book [M]. Radnor, Chilton Book Company, 1975, 1105, 19(3):30-33
    [86] Stephenson T,Judd S,Jefferson B,et al.膜生物反应器污水处理技术.张树国,李咏梅,译.北京:化学工业出版社,2003.
    [87] 夏明芳,吴志超,姜伟立.废水膜生物处理技术研究进展.污染防治技术,2002,15(2):16-20.
    [88] 今运华.日本水综合再生利用系统90计划的进展概要.环境科学研究,1990,3(2):55-57.
    [89] 冯斐,周文斌,汤贵兰.MBR工艺处理维生素C制药废水的中试实验.环境工程,2006,24(6):16-18.
    [90] 王辉,苏志远.MBR技术在石化污水处理中的应用.石油化工环境保护,2006,29(3):1-4.
    [91] 何义亮,吴志超,李春杰.厌氧膜生物反应器处理高浓度食品废水的应用.环境科学,1999,20(6):53-55.
    [92] 刘旭东,王恩德.应用膜生物反应器处理屠宰废水的中试研究,环境保护科学,30(122):15-18.
    [93] 熊向阳,蔡辉.厌氧-膜生物反应器-反渗透处理粪便污水.市政技术,2006,24(6):413-415.
    [94] 魏源送,郑祥,刘俊新.国外膜生物反应器在污水处理中的研究进展.工业水处理,2003,23(1):1-7.
    [95] Stephenson T. Types of membrane bioreactors for wastewater treatment-An introduction. Proceedings of the 1st International Meeting on Membrane Bioreactors for Wastewater Treatment. Canfield University. Canfield, UK, 1997.
    [96] 尤朝阳,张军,吕伟娅.加填料的膜生物反应器处理效能研究.中国给水排水,2004,20,55-56.
    [97] Boubabila E H, Aim R B, Buisson H F. Fouling characterizations in membrane bioreactor. Sep. Purif. Technol, 2001, 2223:123-132
    [98] Lee J, Abnw Y, Lee C H. Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor. Water Res., 2001, 35(10):2435-2445
    [99] 范彬,黄霞,文湘华等.动态膜生物反应器对城市污水的处理.环境科学,2002,23(6):51-56.
    [100] 吴盈禧,陈福泰,黄霞.高通量自生动态膜生物反应器的运行特性.中国给水排水,2004,20:5-7.
    [101] 陈英文,张利民,夏明芳等.高效混凝-膜生物反应器工艺处理印染废水的研究.环境污泥与防治,2004,26(4):293-295.
    [102] 徐慧芳,樊耀波.气升循环分体式膜生物反应器再生回用厕所污水的研究.环境科学,2003,24(2):125-129.
    [103] 王宝贞,尚琳,王琳.膜生物反应器投加PAC处理生活污水效能的试验.城市环境与城市生态,2003,16(6):128-129.
    [104] 付国楷,余健,郑宪明,杜海春.膜生物反应器的研究与展望.工业水处理.2003,10(23):1-4.
    [105] 袁志容,赵敏.膜生物反应器技术及膜污染的探讨.环境科学与管理,2005,30(6):77-79.
    [106] 王维军,周红星,刘大江.污水再生利用处理技术-膜生物反应器.河北建筑工程学院学报,2005,23(3):9-10.
    [107] 李凤亭,王亮,刘华等.膜生物反应器在水处理中的应用与新发展.工业水处理,2005,25(1):10-13.
    [108] 顾小红,黄种买,吴浪.在污水处理中存在问题的研究[J].西南给排水,2003,25(1):16-19.
    [109] 付国楷,余健,郑宪明等.膜生物反应器的研究与展望.工业水处理,2003,23(10):1-4.
    [110] 付国楷,余健,郑宪明等.MBR在水处理中的应用研究.净水技术,2004,(2):34-38.
    [111] Zheng Xiang, Fan Yao-bo, WeiI Yuan-song. A pilot scale anoxic/oxic membrane bioreactor (A/O/MBR) for woolen mill dyeing wastewater treatment. Journal of Environmental Science, 2003, 15(4): 449-455
    [112] 蔡惠如等.膜生物反应器与SBR法处理染料废水的比较.水处理技术,2002,28(6):347-349.
    [113] 余健,郑宪明,梁军等.氧化沟膜生物反应器处理城市污水试验研究.湖南大学学报,2005,32(2):71-75.
    [114] 郑斐,朱文亭.生物膜法新工艺-无泡曝气膜生物反应器.工业用水与废水,2004,35(3):11-14.
    [115] 张颖,张铁峰,王爱杰.膜生物反应器(MBR)技术关键及应用.东北农业大学学报,2002,33(1):96-99.
    [116] 许宜平,陈少华,陈明.厌氧-膜生物反应器处理垃圾渗滤液中多环芳烃的研究.环境化学,2004,23(6):691-694.
    [117] 邓雁平,叶亚平,钱维兰等.不同物理清洗方式对一体式膜生物反应器过滤特性的影响.环境科学研究,2005,18(6):59-63.
    [118] 孙振龙,陈绍伟,吴志超.一体式平片膜-生物反应器运行过程中膜性能的研究.环境工程,2003,21(2):7-9.
    [119] 刘锐,黄霞,汪诚文等.一体式膜-生物反应器长期运行中的膜污染控制.环境科学,2000,(2):58-61.
    [120] 徐国华,杨德武,王冬冬等.脉冲过滤实验研究.过滤与分离,2003,13(3):10-11.
    [121] 李军,夏定国,赵琦等.淹没复合式膜生物反应器技术.城市环境与城市生态,2001,14(4):5-7.
    [122] Ahmed T. and Semmens M. J. Use of sealed end hollow fibers for bubbleless membrane aeration: experimental studies. J. Mem. Sci., 1992, (8):54-56
    [123] 张再利,朱宛华,江荣.膜分离技术及膜生物反应器的发展和展望.安徽化工,2001,(2):24-27.
    [124] 郑领英.膜分离与分离膜.高分子通报,1999,(3):134-137.
    [125] L. M. Freitas dos Santos, G. Lo Biundo. Treatment of pharmaceutical industry process wastewater using the extractive membrane bioreactor. Environmental progress. 1999, (16): 105-107.
    [126] 沈树宝,陈英文,夏明芳等.仿生膜生物反应器处理高浓度有机农药废水的研究.工业水处理,2003,23(3):40-43.
    [127] Tanny G B. Dynamic membranes in ultrafiltration and reverse osmosis. Sep. Purif. Methods, 1978, 7(2): 183-220.
    [128] 邱宪锋.新型动态膜生物反应器的研究与应用.硕士学位论文,山东大学,2007.
    [129] 熊江磊.动态膜生物反应器在废水处理中的研究.中国市政工程,2008,6:78-92.
    [130] 陈忠.动态膜技术及对印染废水脱色的研究.硕士学位论文,南京工业大学,2006.
    [131] 余坷,董滨,周增炎,屈计宁.动态膜生物反应器的工艺研究现状及发展方向.净水技术,2006,2(25):14-18.
    [132] Yoshiaki kiso, Yong-Jun Jung, Takashi Ichinari, et al. Wastewater treatment performance of a filtration bioreactor equipped with a mesh as a filter material[J]. Wat. Res., 2000, 34(17): 4143-4150.
    [133] G.T.Seo, B.H.Moom, T.S.Lee, et al. Non-woven fabric filter separation activated sludge reactor for domestic wasterwater reclamation [J]. Water Science and Technology, 2002, 47(1):133-138.
    [134] 范彬.黄霞,文湘华等.动态膜-生物反应器对城市污水的处理[J].环境科学,2002,23(6):51-56.
    [135] Galjaard G, Buijs P, Beerendonk E, et al. Pre-coating UF membranes for direct treatment of surface water [J]. Desalination, 2001, 139(1-3): 305-316.
    [136] 魏奇锋,刘东海,张威等.预涂PAC动态膜生物反应器长期运行特性研究.辽宁化工,2007,2(36):96-99.
    [137] 张捍民,乔森等.预涂动态膜-生物反应器处理生活污水试验研究.环境科学学报,2005,25(2):249-253.
    [138] 叶茂盛,张捍民,魏奇锋等.利用边界层理论确定预涂动态膜生物反应器稳定曝气量的试验研究.环境科学,2006,10(27):1-6
    [139] 叶茂盛,张捍民,杨凤林等.动态膜-生物反应器中新型预涂剂的抗污染特性研 究.环境科学,2007,11(28):2494-2499.
    [140] 刘宏波,杨昌柱,濮文虹等.自生生物动态膜反应器在城市污水处理中的应用.水处理技术,2007,11(33):67-70.
    [141] 李晓波,胡保安,顾平.动态膜分离技术研究进展.膜科学与技术,2008,4(27):91-95.
    [142] 罗鸿兵,刘晓玲,罗麟.我国动态膜技术在水处理中的研究进展,水处理技术,2008,5(38):1-19.
    [143] Hongbo Liu, Changzhu Yang, Wenhong Pu. Removal of nitrogen from wastewater for reusing to boiler feed-water by an anaerobic/aerobic/membrane bioreactor. Chemical Engineering Journal, 2008, 140(1-3): 112-129.
    [144] 毛艳梅,杨泽志,奚旦立.优化设计制备动态膜及其对印染废水的深度处理.净水技术,2006,5(26):38-42.
    [145] 范彬,黄霞.动态膜-生物反应器对城市污水的处理[J].环境科学,2002,23(6):51-56.
    [146] 张建,邱宪锋,高宝玉等.动态膜生物反应器-混凝工艺处理草浆中段废水.中国造纸,6(26):8-11
    [147] 武小鹰,郑平,徐红亮.动态膜技术及其在环境工程中的应用.膜科学与技术,2003.3:49-53.
    [148] Lei Ji, Jiti Zhou. Influence of aeration on microbial polymers and membrane fouling in submerged membrane bioreactors. Journal of Membrane Science, 2006, 276: 168-177.
    [149] Seong-Hoon Yoona, Hyung-Soo Kimb, Ik-Tae Yeom. The optimum operational condition of membrane bioreactor (MBR): cost estimation of aeration and sludge treatment. Water Research 2004, 38: 37-46.
    [150] Igor Ivanovic, TorOve Leiknes. Impact of aeration rates on particle colloidal fraction in the biofilm membrane bioreactor (BF-MBR). Desalination, 2008, 231: 182-190.
    [151] 范彬;黄霞;栾兆坤.出水水头对自生生物动态膜过滤性能的影响.环境科学,2003,5(24):65-69.
    [152] Libing Chu, Shuping Li. Filtration capability and operational characteristics of dynamic membrane bioreactor for municipal wastewater treatment. Separation and Purification Technology 2006, 51: 173-179.
    [153] Yoshiaki Kisoa, Yong-Jun Junga, Min-Soo Parka. Coupling of sequencing batch reactor and mesh filtration: Operational parameters and wastewater treatment performance. Water Research 2005, 39: 4887-4898.
    [154] 吴志超,田陆梅,王旭.动态膜-生物反应器处理城市污水的运行特性研究.环境污染与防治,2008,5(30):47-50.
    [155] 李俊,奚旦立,石勇.动态膜处理污水时阻力分布及污染机理.化工学报.2008,9(53):2309-2314.
    [156] Jung-Goo Choi, Tae-Hyun Bae, Jung-Hak Kim. The behavior of membrane fouling initiation on the crossflow membrane bioreactor system. Journal of Membrane Science, 2002, 203: 03-113.
    [157] 傅大放,林玉蛟.几种不同基材动态膜生物反应器污泥层性质分析.化工学报,2008,10(59):2596-2600.
    [158] Hongbo Liu, Changzhu Yang,Wenhong Pu. Formation mechanism and structure of dynamic membrane in the dynamic membrane bioreactor. Chemical Engineering Journal, 2008, In press.
    [159] Mart Altman, Raphael Semiat, David Hasson. Removal of organic foulants from feed waters by dynamic membrane. Desalination, 1999, 125:65-75.
    [160] 范彬,黄霞,文湘华等.动态膜-生物反应器对城市污水的处理[J].环境科学,2002,23(6):51-56.
    [161] Fan B, Huang X. Characteristics of self-forming dynamic membrane when coupled with bioreactor for domestic wastewater treatment [J]. Environ. Sci. Tech.,2002, 36: 5245-5251.
    [162] 熊丽,濮文虹,杨昌柱等.动态膜生物反应器处理生活污水的特性[J].化学与生物工程,2005,22(1):31-33.
    [163] 吴季勇,华敏洁,高运川.自生生物动态膜反应器处理市政污水的特性[J].上海师范人学学报(自然科学版),2004,33(4):89-95
    [164] 董春松,樊耀波,李刚等.新型管式动态膜生物反应器及处理垃圾渗滤液的研究.环境科学,2007,4(28):747-753.
    [165] 刘宏波.自生生物动态膜反应器在城市污水处理中的应用研究.硕士学位论文,华中科技大学,2008.
    [166] Li N, Liu Z Z, Xu S G.. Dynamically formed Poly (vinyl alcohol) ultrafiltration membranes with good anti-fouling characteristics [J]. Journal of Membrane Science, 2000, 169 (1): 17-28.
    [167] Cai B, Ye H, Yu L. Preparation and separation performed of a dynamically formed MnO_2 membrane [J].Desalination, 2000, 128: 247-256.
    [168] Kryvoruchko A, Atamanenko I, Kornilovich B. A role of the clay minerals in the membrane purification process of water from Co (Ⅱ)-ions [J]. Separation and Purification Technology, 2001, 25: 487-492.
    [169] Xu X T, Gaddis J L, Spencer H G. Dynamic formation of a self-formed membrane by nanofiltration of a high-formula-weight dye [J]. Desalination, 2000, 129: 237-245.
    [170] Rumyantsev M, Shauly A, Yiantsios S G. Parameters affecting the properties of dynamic membranes formed by Zr hydroxide colloids[J]. Desalination, 2000, 131:189-200.
    [171] 王洪洋,朱雁伯.生物脱氮除磷常规工艺及新发展[J].天津市政工程,2003,15(3):25-28.
    [172] 付春平,钟成华,邓春光.废水的生物脱氮除磷新工艺的设想[J].重庆环境科学,2003,25(2):39-41.
    [173] 邱慎初,丁堂堂.探讨城巾污水生物处理出水的总磷达标问题[J].中国给水排水,2002,18(9):23-25.
    [174] 李勇,吕炳南,黄勇.改进A2/O法的设想[[J].中国给水排水,2001,17(8):31-33.
    [175] 华光辉.张波.城市污水生物除磷脱氮工艺中的矛盾关系及对策[J].给水排水.2000,26(12):1-4.
    [176] Jonsson K, Johansson P, Magnus Christensson, et al. Operational factors affecting enhanced biological phosphorus removal at the wastewater treatment plant in Helsingborg, Sweden [J], Tech, 1996, 34(3):67- 74.
    [177] Dawen Gao, Yongzhen Peng, Baikun Li. Shortcut nitrification-denitrification by real-time control strategies. Bioresource Technology, 2009, 100: 2298-2300.
    [178] Qi Zhong, Daping Li, Yong Tao. Nitrogen removal from landfill leachate via ex situ nitrification and sequential in situ denitrification. Waste Management 2009, 29, 1347-1353.
    [179] Zhimin Fu, Fenglin Yang, Yingyu An. Simultaneous nitrification and denitrification coupled with phosphorus removal in a modified anoxic/oxic-membrane bioreactor (A/O-MBR). Biochemical Engineering Journal, 2009, 43: 191-196.
    [180] Huihui Chen, Sitong Liu, Fenglin Yang. The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal. Bioresource Technology, 2009, 100: 1548-155.
    [181] 杨麒,李小明,曾光明等.SBR系统中同步硝化反硝化好氧颗粒污泥的培养.环境科学,2003,24(4):94-98
    [182] 程翔.好氧颗粒污泥同步硝化反硝化处理高浓度氨氮废水研究.哈尔滨工业大学,硕士学位论文.2006.
    [183] 吕其军,施永生.同步硝化反硝化脱氮技术.昆明理工大学学报(理工版).2003,28(6):91-95
    [184] 程翔.好氧颗粒污泥同步硝化反硝化处理高浓度氨氮废水研究.哈尔滨工业大学硕士学位论文.2006
    [185] Teck Wee Tana, How Yong Ng. Influence of mixed liquor recycle ratio and dissolved oxygen on performance of pre-denitrification submerged membrane bioreactors. Water Research, 2008, 42: 1122-1132.
    [186] H A Painter. Microbial transformations of inorganic nitrogen. Prog. Wat. Tech., 1977, 8(4/5):3-29
    [187] P Bliss and D Barnes. Modeling nitrification in plant scale activated sludge. Wat.Sci. Tech., 1986, 18(6): 139-148
    [188] E V Munch, P A Lant, J Keller. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. Wat. Res., 1996, 30(2): 277-284
    [189] 邹联沛.MBR中DO对同步硝化反硝化的影响.中国给水排水.2001,17(6):10-14
    [190] Klangduen Pochana, J(u|¨)rg Keller. Study of factors affecting simultaneous nitrification and denitrification (SND). Water Science and Technology, 1999, 6(39): 61-68.
    [191] J. L.Barnard. Design and retrofit of wastewater treatment plants for biological nutrient removal. Technomic Publishing, Pennsylvania. 1992.
    [192] S. H. Isaacs, M.Henze. Controlled carbon source addition to an alternating nitrification-denitrification wastewater treatment process including biological P removal. Wat. Res., 1994, 29: 77-89.
    [193] S.K. Watanak, YOkake, Hirata K. Simultaneous removal of organic materials and nitrogen in micro-aerobic flims. Wat. Sci. Tech. 1995, 31(1): 195-203.
    [194] Klangduen Pochana, Jurg Keller. Study of factors affecting simultaneous nitrification and denitrification (SND). Wat. Sci. Tech., 1999, 39(6): 61-68.
    [195] A.D.Andreadakis. Physical and chemical properties of activated sludge flocs. Wat. Res., 1993, 27: 1707-1714.
    [196] G Tchobanoglous, F L Burton Eds. Wastewater engineering-treatment, disposal and reuse. New York, McGraw-Hill, Inc. 1991.
    [197] Kuba T, Vanloosdrecht M C M, Heijnen J J. Biological dephosphatation by activated sludge under denitrifying conditions: pH influence and occurrence of denitrifyong dephosphatation in a full-scale waste water treatment plant [J]. Wat. Sci Tech, 1997, 36(12):75-82.
    [198] 万金保,王建永.反硝化除磷理论及运用现状.水处理技术,2008,3(34):7-10.
    [199] Smolders G J D. Model of the Anaerobic Metabolism of the Biological Phosphorus Removal Process: Stoichiometry and pH Influence. Biotechnology and Bioengineering, 1994, 1(43): 461-470.
    [200] Arvin E., Kristensen G. H. Exchange of organics, phosphate and cations between sludge and water in biological phosphorus and nitrogen removal processes. Wat. Sci. Technol., 1985, 1 (7):147-162.
    [201] Tomonori Matsuo. Metabolism of organic substances in anaerobic phase of biological phosphate uptake process. Wat. Sci. Tech., 1992, 25(6):83-92.
    [202] 张宝.反硝化除磷工艺及其微生物学原理.应用能源技术,2007,8:5-7.
    [203] Wanner J. New process design for biological nutrient removal [J]. Wat Sci Tech., 1992, 25(4/5): 445-448.
    [204] 邹伟国,杨小红,张辰.双污泥脱氮除磷工艺用于老厂达标改造.中国给水排水,2006,2(22):20-22.
    [205] Bortone G. Biological anoxic phosphorus removal-the dephanox process [J]. Wat Sci Tech., 1996, 34(12):119-128.
    [206] T Kuba, M C M van Loosdrecht, J J Heijnen. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two sludge system [J]. Water Research, 1996, 30(7):1702-1710.
    [207] 罗宁,罗固源,吉方英等.新型双泥生物反硝化除磷脱氮系统中微生物的组成[J].给水排水,2003,29(8):33-35.
    [208] Van Loosdreeht M CM. Upgrading of wastewater treatment process for integrated nutrient removal: BCFS process [J]. Water Sci. Techno1., 1998, 37 (9):209-217.
    [209] Brodisch K E U, Joyner S J. The role of microorganisms in biological phosphate removal [J]. Wat. Sci. Tech., 1983, 15: 117-125.
    [210] 卢峰,杨殿海.反硝化除磷上艺的研究开发进展[J].中国给水排水,2003,19(9):32-34.
    [211] Bortone G, Saltare lli R, A lonso V, et al.. Biological anoxic phosphorus removal-the Dephanox process [J]. Water Science and Technology, 1996, 34(1-2): 119-128.
    [212] 许明,操家顺,常飞.BCFS工艺处理低C/N比城市污水的中试研究.水处理技术,2007,27(33):46-48.
    [213] Li Z.H., Kuba T., Kusuda T. The influence of starvation phase on the properties and the development of aerobic granules. Enzyme and Microbial Technology, 2006, 38: 670-674.
    [214] Wang Z.P., Liu L.L, Yao J. Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors. Chemosphere, 2006, 63: 1728-1735.
    [215] Mosquera-Corrala A., M.K. de Kreukb, Heijnenb J.J., Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor. Water Research, 2005, 39: 2676-2686.
    [216] Claudio Di Iaconi, Roberto Ramadori, Antonio Lopez. Influence of hydrodynamic shear forces on properties of granular biomass in a sequencing batch biofilter reactor. Biochemical Engineering Journal, 2006, 30: 152-157.
    [217] Li Z.H., Kuba T., Kusuda T. Selective force and mature phase affect the stability of aerobic granule: An experimental study by applying different removal methods of sludge. Enzyme and Microbial Technology, 2006, 39: 976-981.
    [218] De Kreuk M.K., Pronk M., van Loosdrecht M.C.M. Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures. Water Research, 2005, 39: 4476-4484.
    [219] S.E.P.A. Water and Wastewater Monitoring Methods. Chinese Environmental Science Publishing House, 1997, China, Beijing.
    [220] 张云霞,季民,李超等.好氧颗粒污泥胞外聚合物(EPS)的生化性研究.环境科学,2008,11(29):3124-3127.
    [221] 李建武.生物化学实验原理和方法.第二版.北京:北京大学出版社,1994,174-176.
    [222] 宁正祥.食品成分分析手册[M].北京:中国轻工业出版社,1998.26.
    [223] Grotenhuis JTC, Smit M, Plugge CM, et al. Bacteral composition and structure of granular sludge adapted to different substrates. Appl Environ Microbiol, 1991, 57: 1942-1949.
    [224] Bishop P L, Zhang T C, Fu Y C. Effects of biofilm structure, microbial distributions and mass transport on biodegradation processes. Water Sci. Technol., 1995, 31: 143-152.
    [225] Beun J J, Loosdrecht M C M., Van Heijnen J J. Aerobic granulation in a sequencing batch airlift reactor. Water Res., 2002, 36: 702-712.
    [226] Picioreanu C, Van Loosdrecht M, Heijnen J J. Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study. Biotechnol Bioeng, 2000, 69: 504-515.
    [227] Yu T, Bishop L. Stratification of microbial metabolic processes and redox potential change in an aerobic biofilm studied using micro-electrodes. Water Sci. Technol. 1998, 37: 195-198.
    [228] Zhu J R. The bacterial numeration and an observation of a new association between H_2~- producing acetogenic bacteria and methanogenic bacteria for granular sludge. 8th International Conference on Anaerobic Digestion.Sendai, Japan, 1997. 532-539
    [229] Zhu J.R., Liu C.X., He J.Z. The study on the phosphorus removal in the anaerobic/aerobic alternative technique. Journal of environmental science (China)1999, 19: 394-398.
    [230] 苏玉民,杨云龙,王增长等.脉冲上流式厌氧污泥床反应器的应用.环境科学 1996.17(1):50-54.
    [231] Hu L L, Wang J L, Wen X G, The formation and characteristics of aerobic granules in sequencing batch reactor (SBR) by seeding anaerobic granules. Process Biochemistry, 2005, 40: 5-11.
    [232] 陈福霞,荣丽丽.比耗氧速率的测定及其在污水厂的应用.石油化工安全环保技术,2007,3(23):31-33.
    [233] C.T.M.J. Frijters, D.H. Eikelboom, A. Mulder, et al. Treatment of municipal wastewater in a CIRCOX airlift reactor with integrated denitrification. Water Sci. Technol., 1997, 36: 173-181.
    [234] P. Kumar, I. Mehrotra, T. Viraraghavan. Journal of Cold Regions Engineering, 1996, 10: 63-76.
    [235] L. Eriksson, B. Alm. Study of flocculation mechanisms by observing effects of a complexing agent on activated sludge properties. Water Sci. Technol. 1991, 24:21-28.
    [236] B. Frφlund, T. Griebe, P.H. Nielsen. Enzymatic activity in the activatedsludge floc matrix. Appl. Microbiol. Biotechnol., 1995, 43: 755-761.
    [237] J H Tay, Q S Liu, Y. Liu. The role of cellular polysaccharides in the formation and stability of aerobic granules. Lett. Appl. Microbiol., 2001, 33: 222-226.
    [238] Comeau, Y., Hall K.J., Hancock R.E.W. et al. Biochemical model for biological enhanced phosphorus removal. Water Res., 1986, 20, 1511-1521.
    [239] Wentzel M.C., Loewenthal R.E., Ekama G.A., et al. Enhanced polyphosphate organism cultures in activated sludge system. Water SA 1988, 14, 81-92.
    [240] Tsuneda S, Naano T, Hoshino T Hoshino T, et al. Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor. Water Res 2003, 37, 4965-4973.
    [241] Yao Chen, Wenju Jiang, David Tee Liang, et al. Aerobic granulation under the combined hydraulic and loading selection pressures. Bioresource Technology, 2008, in press.
    [242] In S. Kim, Sung-Min Kim, Am Jang. Characterization of aerobic granules by microbial density at different COD loading rates. Bioresource Technology, 2008, 99: 18-25.
    [243] 高景峰.沉淀时间及生物膜对实际生活污水形成好氧硝化颗粒污泥的影响.环境科学,2007,28(6):1245-1251.
    [244] Tay JH, Pan S, He YX, Tay STL. Effect of organic loading rate on aerobic granulation Ⅰ: reactor performance. J. Environ. Eng., 2004, 130:1094-1101.
    [245] Liu YQ, Tay JH. Influence of starvation time on formation and stability of aerobic granules in sequencing batch reactors. Bioresour. Technol., 2008, 99: 980-985.
    [246] S. Villaverde, F. Fdz-Polanco, P.A. Garcia. Nitrifying biofilm acclimation to free ammonia in submerged biofilters: start-up influence. Water Res., 2000, 34: 602-610.
    [247] K.H. Hansen, I. Angelidaki, B.K. Ahring. Anaerobic digestion of swine manure: inhibition by ammonia. Water Res., 1998, 32: 5-12.
    [248] M.B. Jenkins, D.D. Bowman, W.C. Ghiorse. Inactivation of Cryptosporidium parvum oocysts by ammonia. Appl. Environ. Microbiol. 1998, 64: 784-788.
    [249] W. Bae, S. Baek, J. Chung, Y. Lee. Optimal operational factors for nitrite accumulation in batch reactors, Biodegradation 2001, 12: 359-366.
    [250] Y. Liu, J.H. Tay. Factors affecting nitrite build-up in nitrifying biofilm reactor. J. Environ. Sci. Health, 2001, 36: 1027-1040.
    [251] Shu-Fang Yang, Joo-Hwa Tay, Yu Liu. Inhibition of free ammonia to the formation of aerobic granules. Biochemical Engineering Journal 2004, 17: 41-48.
    [252] Cassidy D P, Belia E. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge [J]. Water Res., 2005, 39: 4817-4823
    [253] Lin Y M, Liu Y, Tay J H. Development and characteristics of phosphorus accumulating microbial granules in sequencing batch reactors [J]. Appl. Microbiol. Biotechnol, 2003, 62: 430-435.
    [254] Schonborn C, Bauer H D, Isolderoske. Stability of enhanced biological phosphorus removal and composition of polyphosphate granules [J]. Wat. Res., 2001, 35:3190-3196.
    [255] 孙永利,张宇,赵琳.影响城镇污水处理产业发展的关键问题及对策建议.水工业市场,2008,(1):19-22.
    [256] Zhu J R, Wilderer P A. Effect of extended idle condition on structure and activity of granular activated sludge. Water Research, 2003, 37: 2013-2018.
    [257] Panswad T, Doungchai A, Anotai J. Temperature effect on the microbial community of enhanced biological phosphorus removal [J]. Water Res., 2003, 37: 409-415.
    [258] 阮文权,陈坚.同步脱氮好氧颗粒污泥的特性及其反应过程.中国环境科学,2003,23(4):380-384.
    [259] Wang F, Liu YH, Yang FL, et al. Study on the stability of aerobic granules in SBAR-effect of superficial upflow air velocity and carbon source. Presented in IWA Workshop on Aerobic Granular Sludge, Munich, Germany, 2004.
    [260] 王志平.好氧颗粒污泥脱氮特性及其过程研究.博士学位论文,哈尔滨工业大学,2006.
    [261] 周群英,高廷耀.环境工程微生物学.高等教育出版社,北京,2002.
    [262] Richard, M.R., Collins, S.B.F. Activated sludge microbiology problem and their control. Presented at the 20th USEPA National Operator Trainers Conference, Buffalo, NY, 2003.
    [263] Rossetti, S., Tomei, M.C., Levantesi, C., et al. Microthrix parvicella: a new approach for kinetic and physiological characterization. Water Sci. Technol., 2002, 46: 65-72.
    [264] Wang, F., Liu, Y.H., Yang, F.L., et al. Study on the stability of aerobic granules in SBAR-effect of superficial upflow air velocity and carbon source. Presented in IWA Workshop on Aerobic Granular Sludge, 2004, Munich, Germany.
    [265] Wei, J.C., Fungal identifying manual, 1979. Shanghai science and technology publishing house, China.
    [266] Liu, Y.Q., Wu, W.W., Tay, J.H, et al. Formation and long-term stability of nitrifying granules in a sequencing batch reactor. Bior. Technol., 2008, 99, 3919-3922.
    [267] Liu, H.B., Yang, C.Z., Pu, W.H., et al. Removal of nitrogen from wastewater for reusing to boiler feed-water by an anaerobic/aerobic/membrane bioreactor. Chem. Eng. J., 2008, 140, 122-129.
    [268] Heijnen, J J, van Loosdrecht, M C M, Mulder R, et al. Development and scale-up of an aerobic biofilm air-lift suspension reactor. Wat. Sci. Tech., 1993, 27, 23-26.
    [269] Schmidt, J.E. Granule formation in upflow anaerobic sludge bed (UASB) reactors. Biotech. Bioeng., 1996, 49, 229-246.
    [270] MacLeod F A, Guiot S R, Costerton J W. Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Appl. Environ. Microbiol., 1990, 56 (6), 1598-1607.
    [271] Van de Hoek. Granulation of denitrifying sludge: Granular aerobic sludge. Pusoc Wageningen the Netherlands, 1988, 203-210
    [272] 李俊,奚旦立,石勇.动态膜处理污水时阻力分布及污染机理.化工学报,2008,9(59):2309-2315.
    [273] 魏奇锋,刘东海,张威等.预涂PAC动态膜生物反应器长期运行特性研究.辽宁化工,2007,2(36):96-99.
    [274] 叶茂盛,杨凤林,王江伟.聚乙烯醇微球抗污染动态膜的制备及性能.化工学报,2008,12(59):3158-3164.
    [275] FenWang, Shan Lu, YanjieWei. Characteristics of aerobic granule and nitrogen and phosphorus removal in a SBR. Journal of Hazardous Materials, 2009, 164(2-3): 1223-1227.
    [276] Lei Qin, Yu Liu. Aerobic granulation for organic carbon and nitrogen removal in alternating aerobic-anaerobic sequencing batch reactor. Chemosphere, 2006, 63: 926-933.
    [277] A. Laguna, A. Ouattara, R.O. Gonzalez, et al. A simple and low cost technique for determining the granulometry of upflow anaerobic sludge blanket reactor sludge. Water Science and Technology, 1999, 8(40): 1-8.
    [278] Yarlagadda V. Nancharaiah, Hiren M. Joshi, Vayalam P. Venugopalan. Formation of aerobic granules in the presence of a synthetic chelating agent. Environmental Pollution, 2008, 1(153): 37-43.
    [279] Yong-Qiang Liu, Joo-Hwa Tay. Influence of cycle time on kinetic behaviors of steady-state aerobic granules in sequencing batch reactors. Enzyme and Microbial Technology, 2007, 41: 516-522
    [280] Tae-Hyun Bae, Tae-Moon Tak. Interpretation of fouling characteristics of ultrafiltration membranes during the filtration of membrane bioreactor mixed liquor.Journal of Membrane Science, 2005, 264: 151-160.
    [281] Li Xiu-Fen, Li Yan-Jun, Liu He. Correlation between extracellular polymeric substances and aerobic biogranulation in membrane bioreactor. Separation and Purification Technology, 2008,1(59): 26-33.
    [282] Sunil S. Adava, Duu-Jong Lee, Joo-Hwa Tay. Extracellular polymeric substances and structural stability of aerobic granule. Water Rearch, 2008, 6(42): 1644-1650.
    [283] Lili Zhang, Xinxing Feng, Nanwen Zhu. Role of extracellular protein in the formation and stability of aerobic granules. Enzyme and Microbial Technology,2007, 41: 551-555.
    [284] Zhiwei Wang, Zhichao Wu, Shujuan Tang. Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor. Water Research, 2009, In Press.
    [285] B. Arrojo, A. Mosquera-Corra, J.M. Garrido, R. Mdndez. A membrane coupled to a sequencing batch reactor for water reuse and removal of coliform bacteria.Desalination, 2005,179: 109-116.
    [286] Qiyong Yang, Jihua Chen, Feng Zhang. Membrane fouling control in a submerged membrane bioreactor with porous, flexible suspended carriers. Desalination, 2006,189: 292-302.
    [287] Chang I. S., Lee, C.H. Membrane filtration characteristics in membrane coupled activated sludge system-the effect of physiological states of activated sludge on membrane fouling. Desalination, 1998,120 (3): 221-233.
    [288] S.F. Yang, X.Y. Li, H.Q. Yu. Formation and characterization of fungal and bacterial granules under different feeding alkalinity and pH conditions. Process Biochemistry, 2008, 43: 8-14
    [289] Qiang Wang, Guocheng Du, Jian Chen. Aerobic granular sludge cultivated under pressure as a driving force. Process Biochemistry, 2004, 39: 557-563.
    [290] Yong-Qiang Liu, Joo-Hwa Tay. Influence of cycle time on kinetic behaviors of steady aerobic granules in sequencing batch reactors. Enzyme and Microbial Technology, 2007, 41: 516-522.
    [291] Zhang Xi-heng. Treatment of wastewater by anaerobic biological engineering [M]. Beijing: China Environmental Science Publishing House; 1996
    [292] Gu Xia-sheng. Mathematical model of biological Treatment of wastewater [M]. Beijing, China: Tsinghua Science and Technology Publishing House, 1993. 200
    [293] 高艳玲,许春生.生物脱氮反应器同步硝化反硝化研究.低温建筑技术,2006,6:131-133.
    [294] 蒋胜韬,王三秀,万金保.同步硝化反硝化研究进展.江西科学,2008,6(28):905-945.
    [295] 王会芳,张仕立.膜生物反应器及其在生活污水与回用水中的研究进展.工业经纬,2007,2(4):65-68.
    [296] Bui Xuan Thanh, Chettiyappan Visvanathan, Roger Ben Aim. Characterization of aerobic granular sludge at various organic loading rates. Process Biochemistry, 2009, 2(44): 242-245.
    [297] An-jie Li, Shu-fang Yang, Xiao-yan Li, Ji-dong Gu. Microbial population dynamics during aerobic sludge granulation at different organic loading rates. Water Research, 2008, 13(42): 3552-3560
    [298] 史晓慧,刘芳,刘虹,竺建荣.进料负荷调控培养好氧颗粒污泥的试验研究.环境科学,2007,5(28):1026-1030.
    [299] 张胜,徐立荣,李慧琴.膜序批式间歇反应器的膜污染特性及控制.环境科学,2009,1(30):166-171.
    [300] 杨昌柱,刘宏波,濮文虹等.自生动态膜生物反应器处理城市污水.中国给水排水,2006,1(22):105-108.
    [301] T.H. Bae, T.M. Tak. Interpretation of fouling characteristics of ultrafiltration membranes during the filtration of membrane bioreactor mixed liquor. Journal of Membrane Science, 2005, 264: 151-160.
    [302] Y. Ye, E. Le Clech, V. Chen. Fouling mechanisms of alginate solutions as model extra cellular polymeric substances. Desalination, 2005,175: 7-20.
    [303] J. Hermia. Constant pressure blocking filtration laws-application to power-law non-Newtonian fluids. Trans. IchemE, 1982, 60:183-187.
    [304] J. Tao, D. Maria, Kennedy. The role of blocking and cake filtration in MBR fouling.Desalination, 2003,157: 335-343.
    [305] Y. Zhou. Research on low C/N and high ammonia nitrogen content sewage by self-forming bio-dynamic membrane reactor. Paper for master degree, Huazhong University of Science and Technology (China), 2006: 20-21.
    [306] J. Y. Wu, Research on the Sself-forming bio-dynamic membrane reactor for urban wastewater treatment. Master thesis, Normal school of Shanghai, Shanghai, China,2004.
    [307] Owen G., Bandi M., Howell J. A. et al. Economic assessment of membrane processes for water and wastewater treatment. Membrane Science, 1995, (102):77-91
    [308] Davis W. J., Le M. S., Heath C. R. Intensified activated sludge process with submerged membrane Micro-filtration. War. Sci. Tech., 1998, 38(45):421-428.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700