用户名: 密码: 验证码:
摩擦式精密排种器的设计与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
排种器是精密播种机的核心部件,其性能是保证精密播种机工作质量的前提。随着现代农业科学技术的发展,播种机已成为实现高效、优质、低耗农业生产的关键性技术装备。本论文针对机械式排种器存在排种频率低、种子损伤率高等问题,结合黑龙江省教育厅科学技术研究项目(11551043),在对国内外相关技术研究的基础上,应用农业机械设计学、计算机仿真、高速摄影等理论和方法,对摩擦式排种器进行了理论分析、结构设计及试验研究。
     大豆种子物理力学特性研究为排种器的分析、设计提供了基本参数和设计依据。通过实验测试获得了部分大豆种子的长轴、短轴、中轴直径及单粒质量等数据,计算获得了大豆种子的算数平均径、几何平均径、单粒大豆体积、球形率、密度等基本物理参数;采用倾斜法测试了大豆与聚氯乙烯板、冷轧钢板、镀锌钢板、有机玻璃的静摩擦系数;采用直接剪切法测试了大豆籽粒的内摩擦角;采用注入法测试了大豆籽粒的休止角;通过对整粒大豆的挤压试验,获得了大豆籽粒的最大挤压力、名义抗压极限、弹性模量。
     提出了摩擦充种原理,基于该原理设计了新型排种器。通过可行性试验研究表明:依靠摩擦元件、型孔轮对种子的摩擦力使种子流动、受压,来提高排种频率是可行的;立式圆盘结构在充种空间、清种形式等方面优于外窝眼式结构。设计了摩擦型立式圆盘排种器总体结构及壳体、摩擦式排种盘、充种结构、清种钢丝、型孔防堵机构、投种装置等关键部件。
     通过对充种力理论分析,获得充种区内种子群各横截面及纵向截面的压力。选用电测法采用全桥单片组桥方案测试了压板对种子的正压力,采用二次正交旋转回归试验设计方法,研究了排种器参数对种子正压力的影响。通过高速影像研究发现,种子充填可以分为直接滑入型孔、慢速挤入型孔、高线速度滑入型孔三种情况;型孔与种子之间的适应性对排种均匀性有较大影响。研究了排种盘转速对充种空间内流出种子粒数及每转流出种子粒数的影响。
     基于滑出、滚出型孔的清种原理,设计了新型清种结构。通过对常用的刚性清种板、弹性清种板、旋转清种轮清种过程进行受力分析,把种子受力分为滑出型孔可清种、保持在型孔内不可清种、自锁运动清种三种受力状态,并对种子自锁时运动清种过程进行了分析,发现清种轮容易使种子滚出型孔的清种机理。设计了新型钢丝机械清种结构,对其清种过程进行受力分析及运动仿真分析,探索钢丝清种机理。针对摩擦型立式圆盘排种器提出了采用重力、机械(钢丝)联合清种的方式,通过高速影像观察该方式清种效果良好。
     为了提高摩擦型立式圆盘排种器投种的精确性,减小投种过程中种子与土壤接触时种子滑移、弹跳对播种均匀性的影响,在直接投种排种器的基础上设计了二次投种装置,来降低投种口高度,减小种子相对种沟的水平速度及下落速度,提高播种均匀性。对投种过程中的种子进行运动仿真分析及高速影像研究,研究了各因素对种子轨迹、速度、加速度及种子受力的影响,研究了排种盘转速对一次投种口位置、宽度及投种管长度的影响。
     采用三因素五水平二次正交旋转回归试验设计方法,对排种器参数进行了优化分析。摩擦型立式圆盘排种器结构简单、性能可靠、排种质量高,可以满足大豆作物高速精密播种的要求。
Planting is an important part of agricultural production process, according to agricultural technologyrequired to planting on time, adequate seeds, environmental conditions, to ensure crop growth anddevelopment. In order to ensure operational efficiency, reduce fuel consumption, supporting the rationalityof the timeliness and the large area planting requirements, the operating speed and seed frequency of seederreached higher requirements. To this end, the mechanical precision metering device has been researched. Tomeet the precision seeding performance, seed-filling acting and dropping frequency were improved. Thehigh-speed precision planting of small size crop or soybeans was expected.
     Research of physical properties of soybean seeds provides basic parameter and design basis of seedmetering device. Through experimental testing it is obtained the long-axis diameter of, short axis diameter,middle diameter, and single seed mass of soybean seed. According to the basic data it is obtained ofsoybean seed arithmetic even diameter, geometric even diameter, single seed volume, spherical rate,density and other physical parameters. Using the tilt test, static friction coefficient of soybean and such asPVC plate cold-roll steel sheets, galvanized steel sheet, polymethyl methacrylate are tested. Using directshear test method, soybean seed internal friction angle is tested. Using injection method, angle of repose ofsoybean seed is tested. Base on the whole soybean compressive test, it is obtained the soybean seedscompression properties, nominal compressive limit, and elastic modulus.
     The friction principle of seed was put forward, according to the friction principle a new typeseed-metering device was designed. Through friction seed-metering device of cell wheel feed type andvertical disc type was tested, the performance experiment demonstrated that the seeds were driven to flowby the friction on the friction part and model-hole and the filling power increased as well as the efficiencywas improved. The vertical plate precision seed-metering device is fined than cell wheel feed precisionseed-metering device on the seed entering space and seed-dropping device. A new type seed-meteringdevice was design on arranged structure, shell, friction seed-plate, seed entering space, seed-droppingdevice etc.
     Based on the theoretical analysis of filling force, seeds cross section and longitudinal cross-sectionpressure was obtained in the seed entering space. A central composite relatable orthogonal experimentaldesign of response surface methodology was employed to develop the second order polynomial regressionmodels.
     Positive pressure of seed was obtained in the electric measurement. Using high-speed imagingtechnique founded: seed filling is direct slide type-hole, slow squeezing type-hole, and high speed slidinginto the type-hole. And seeding uniformity is affected by the type-hole and seed shape, size. Seed fillingspace within the outflow of seed particle number and seed number per turn were investigated on the seedplate rotate speed.
     Based on slide-out, roll out seed-clearing principles, a new type of seed-clearing structure wasdesigned. The mechanical analysis for commonly seed-clearing structure of rigid clear plate, elastic clearplate, rotate wheel. The seed-clearing type is that seed slid off the hole to clearing-seed, seeds remain in thetype-hole can not be clear, seeds self-locking movement clearing-seed. The kinematics analysis ofself-locking seeds was analyzed. The rotate seed-clearing mechanism has been discovered. A new type ofwire machinery clearing-seed structure was designed. The mechanical and kinematics of seeds wereanalyzed in wire-steel seed-clearing process. Wire clear mechanism was explored. The clearing-seed ofjoint gravity and mechanical is used in the friction vertical plate precision seed-metering device. Usinghigh-speed imaging technique to observe, clearing-seed was fine.
     In order to improve accuracy of throwing of friction vertical plate precision seed-metering device,reduce the seed slipping, bouncing on seed uniformity influences of dropping process. twice droppingdevice was designed based on direct seed-dropping device. The dropping mouth height was reduced. TheSeed relative seed-ditch horizontal velocity and the falling speed were reduced. The seed space wasimproved uniformity. The seed of seed-dropping process was analyzed by motion simulation andhigh-speed image analysis. Seed trajectory, velocity, acceleration, and seeds force were analyzed on variousfactors. The direct seed-dropping mouth position and width, seed-dropping tube length was analyzed onvarious seed plate rotate speed. Seeds were collision and bouncing in the rotate seed-dropping tube.
     A central composite relatable orthogonal experimental design of response surface methodology wasemployed to develop the second order polynomial regression models. An optimum combination ofseed-metering device parameters was obtained. Friction vertical plate precision seed-metering device issimple structure, reliable performance, high quality, and high speed for precision seeding soybean crops.
引文
1. GB/T3543.6-1995.作物种子检验规程水分测试.
    2. GB/T6973-2005.单粒(精密)播种机试验方法.
    3. R.A凯普纳等著.崔安,张德骏译.1978.农业机械原理.北京:机械工业出版社.514-526.
    4.安凤秀,孟宪章,王雪莲,刘庆福.2008.玉米免耕播种机免耕播种试验研究.吉林农业大学学报,30(6):876-878.
    5.北京农业工程大学.1999.农业机械学.北京:中国农业出版社,180-213.
    6.蔡晓华,吴泽全,刘俊杰,谢玮,李源源.2005.基于计算机视觉的排种粒距实时检测系统.农业机械学报,36(8):41-44.
    7.曹文,丁俊华,李再臣.2009.机械式精密排种器的研究与设计.农机化研究,31(7):142-145.
    8.常金丽,张晓辉,陈艳巧,郭维春,朱磊.2007.气流式集中排种系统中排种定量器的设计.农机化研究,(6):66-67.
    9.常金丽,张晓辉.2011.2BQ-10型气流一阶集排式排种系统设计与试验.农业工程学报,27(1):136-141.
    10.陈晓光,左春柽,高峰.1993.直插式播种机的研究—直插式成穴器.农业工程学报,9(3):66-70.
    11.陈学庚,赵岩.2010.棉花双膜覆盖精量播种机的研制.农业工程学报,26(4):106-112.
    12.陈志.2004.中国农业机械化工程.北京:中国农业科学技术出版社,134-135.
    13.窦乐智,王广俊.2009.免耕播种机的应用与播种模式.农机科技推广,(9):21-22,24.
    14.付朝华,胡德贵,蒋小林.北京:材料力学实验.清华大学出版社,15-23.
    15.付威,李树峰,孙嘉忆,杨红英,坎杂.2011.强制夹持式玉米精量排种器的设计.农业工程学报,27(12):38-42.
    16.高焕文,李洪文,姚宗路.2008.我国轻型免耕播种机研究.农业机械学报,39(4):78-82.
    17.高焕文.2006.我国保护性耕作的发展形势与问题讨论.山东农机化,(10):9-10.
    18.郭胜,赵淑红,杨悦乾,闫以勋.2010.除芒稻种摩擦特性测定.东北农业大学学报,41(7):118-121.
    19.郝心亮.2001.复合充种式排种器的研究.农业工程学报,4(7):62-65.
    20.侯景颇,刘涛.2009.谈影响排种器工作性能的因素.农业技术与装备,(3):48-49.
    21.胡春胜,陈素英,赵四申,张西群.2005.玉米整秸覆盖地小麦免耕播种技术初步研究.农业工程学报,21(3):118-120.
    22.胡建平,李宣秋,左志宇.2007.磁吸滚筒式精密排种器试验及参数优化.农业工程学报,23(9):115-117.
    23.胡建平,郑赛男,刘文东.磁吸滚筒式精密排种器设计与试验.农业机械学报,2009,40(3),60-63.
    24.胡少兴.2002.采用图像处理检测排种器充填性能.农业工程学报,29(5):56-59.
    25.胡少兴.2001.基于计算机视觉的排种器性能检测技术.长春:吉林大学.
    26.胡树荣,马成林,李慧珍,李胜武.1981.气吹式排种器锥孔的结构参数对排种质量影响的研究.农业机械学报,11(3):21-31.
    27.贾洪雷,马成林,孙裕晶,陈忠亮.2004.耕整种植联合作业工艺及配套机具.农业机械学报,36(11):62-64.
    28.金衡模,高焕文.2002.玉米精密播种机漏播补偿系统研究.农业机械学报,(5)9:44-47.
    29.李宝筏.2003.农业机械学.北京:中国农业出版社,57-62.
    30.李成华,高玉芝,张本华.2008.气吹式倾斜圆盘排种器排种性能试验.农业机械学报.39(10):90-94.
    31.李成华,马成林,于海业,K-H.Kromer.1999.倾斜圆盘勺式玉米精密排种器的试验研究.农业机械学报,30(2):38-41.
    32.李永磊,宋建农,王继承,张军奎,董向前.2011.SGTN-180型旋耕埋草施肥联合作业机的设计与试验,中国农业大学学报,16(2):143-147.
    33.梁天也,巴晓斌,时景云.2001.精播丸粒化玉米种子水平圆盘式排种器清种装置的改进.吉林农业大学学报,23(l):101-103.
    34.廖庆喜,高焕文,臧英.2010.玉米水平圆盘精密排种器型孔的研究.农业工程学报,19(3):109-113.
    35.廖庆喜,高焕文,臧英.2003.玉米水平圆盘精密排种器型孔的研究.农业工程学报,19(2):109-113.
    36.廖庆喜,张猛,余佳佳,刘晓辉.2011.气力集排式油菜精量排种器,农业机械学报,8(8):30-34.
    37.廖庆喜.2003.免耕播种机防堵与排种装置试验研究.中国农业大学博士论文.
    38.廖庆喜.2004.高速摄影在精密排种器性能检测中的应用.华中农业大学学报,(5):570-573.
    39.刘鸿文.2004.材料力学.北京:高等教育出版社,328-331.
    40.刘宏新,王福林,杨广林.2007.新型立式复合圆盘大豆精密排种器研究.农业工程学报,23(10):112-116.
    41.刘立晶,杨学军,李长荣,刘昱程,刘殿生.2009.2BMG-24型小麦免耕播种机设计,农业机械学报,(10):39-43.
    42.刘文忠,赵满全,王文明,赵士杰.2010.气吸式排种装置排种性能理论分析与试验.农业工程学报,26(9):133-138.
    43.罗红旗,高焕文,李洪文,刘霞.2009.玉米垄作免耕播种机油耗试验与分析.农业机械学报,(10):49-52.
    44.罗锡文,刘涛,蒋恩臣,李庆.2007.水稻精量穴直播排种轮的设计与试验.农业工程学报,23(3):108-112.
    45.马成林.1981.气吹排种器充填原理的研究.农业机械学报,11(4):1-12.
    46.马成林.1999.精密播种理论.1999年版.长春:吉林科学技术出版社.
    47.马成林.1981.气吹排种器充填原理的研究.农业机械学报,12(4),1-12.
    48.马成林,李胜武,1981.提高气吹排种器充填极限速度的研究.吉林工业大学学报,(03):29-37.
    49.马俊龙,王曦.2008.谈机械化保护性耕作技术的实施.农业技术与装备,(6):36-39.
    50.马连元.1995.内侧充种垂直圆盘排种器充种机理的研究.河北农业大学学报,18(2):70-75.
    51.马小愚,雷得天,赵淑红.1999.东北地区大豆与小麦籽粒的力学—流变学性质研究.农业工程学报,15(3):70-75.
    52.马小愚,雷得天.1988.大豆籽粒力学性质的试验研究.农业机械学报,3(9):69-75.
    53.牛博英,马洪亮,史磊.2009.小麦免耕播种机防堵装置的研究进展—以一年两熟地区为例.农机化研究,31(2):247-249.
    54.牛海华,赵武云,史增录.2011.玉米籽粒力学特性的研究进展及应用[J].中国农机化,(2):101-104.
    55.任文涛,李显生,崔红光,刘文奎.2005.种绳直播技术对水稻产量性状的研究.沈阳农业大学学报,36(3):256-270.
    56.任文涛,李显生,张亚双2005.水稻种绳捻制机研制与试验.农机化研究,(6):169-172.
    57.宋建民.2006.农业机械与设备.北京:中国农业出版社,215-218.
    58.宋井玲,杨自栋,杨善东,张国海,李洪文.2010.一种型孔深度可变的排种器.农机化研究,12(12):103-105.
    59.孙裕晶,马成林,李萌.2009.加压条件下气力轮式精密排种器性能分析.农业机械学报,40(7):72-77.
    60.汤楚宙,罗海峰,吴明亮,李明.2010.变容量型孔轮式排种器设计与试验.农业工程学报,26(12):114-119.
    61.汤楚宙,向卫兵,谢方平.1999.气吹式杂交水稻精播排种器.型孔型式的试验研究.农业工程学报,15(1):241-242.
    62.田波平,廖庆喜,黄海东,舒彩霞,段宏兵,李继波.2008.2BFQ-6型油菜精量联合直播机的设计.农业机械学报,39(10):211-213.
    63.王静,廖庆喜,田波平,田波平,廖宜涛,吴福通.2007.高速摄像技术在我国农业机械领域的应用.农机化研究,(1):184-186.
    64.王利强,吴崇友,高连兴,夏晓东,金诚谦.2005.2BSF-4型穴灌坐水播种机的设计与试验.农业工程学报,21(12):71-74.
    65.王济,胡晓.2006.MATLAB在振动信号处理中的应用.北京:中国水利水电出版社.
    66.王业成,陈海涛,林青.2009.黑加仑采收装置参数的优化研究.农业工程学报,26(2):79-83.
    67.徐中儒.1998.农业试验最优回归设计.哈尔滨:黑龙江科技出版社,181-187.
    68.杨松,廖庆喜,陈立,陈立,何达力.2011.2BFQ-6型油菜精量联合直播机播种油菜的田间植株分布规律.农业工程学报,27(11):23-28.
    69.于海业,马成林,马旭,张守勤,王晓敏.1996.小麦种子在输种管内运动状态的观察与分析.27(S1):58-61.
    70.于建群,马成林,杨海宽,马旭.2000.组合内窝孔玉米精密排种器型孔的研究.吉林工业大学自然科学学报,30(1):16-20.
    71.于建群,马成林,左春柽,陈晓光.2001.新型铲式播种打孔器的研究.农业机械学报,32(1):38-41.
    72.俞亚新,赵匀,张斌,李革.2008.基于稻种胚胎定向排列的排种器及参数优化.江苏大学学报,29(3):195-198.
    73.袁月明,马旭,朱艳华,王朝辉,董润坚,王景利.2008.基于高速摄像技术的气吸式排种器投种过程的分析.吉林农业大学学报.30(4):617-620.
    74.袁月明.2003基于高速摄像的精密排种器性能检测的研究.长春:吉林农业大学.
    75.袁月明.2005.气吸式水稻芽种直播排种器的理论及试验研究.吉林大学博士学位论文.
    76.张宾,余群.1997.轮式拖拉机瞬态滑转率的测量装置.中国农业大学学报,(4):48-52.
    77.张斌,俞亚新.2008.超级稻稻种定向播种的原理研究.浙江理工大学学报,(4):454-456.
    78.张波屏.1997.现代化种植机械工程.北京:机械工业出版社.
    79.张德文.1982.精密播种机械.北京:农业出版社,7-20.
    80.张洪霞,马小愚,雷得天.2004.谷物及种子的力学—流变特性的研究进展.农机化研究,(3):177-178.
    81.张守勤,马成林,王成和,左春柽,马旭.1991.气力轮式排种器型孔的流场及作用.农业机械学,22(4):26-31.
    82.张西群,胡春胜,陈素英,赵四申.2006.玉米整秸覆盖地小麦免耕播种工艺及配套机具.农业机械学报,37(7),49-55.
    83.张宇文,张文超,李冬肖.2010.中心传动强推式精密排种器设计.农业机械学报,41(2):78-81.
    84.张宇文.2005.机械式多功能精密排种器的设计.农业机械学报,36(3):51-53.
    85.张泽平,马成林,左春柽.1995.精播排种器及排种理论研究进展.吉林工业大学学报,25(4):112-116.
    86.赵建托,赵武云,任颜华,牛海华.2010.玉米全膜覆盖双垄沟播机直插式播种装置设计与仿真.农业机械学报,41(10):40-43.
    87.赵静,鲁力群.2008.深松旋耕沟播联合作业机的研制,农机化研究,6(6),106-108.
    88.赵满全,赵世杰,窦卫国,候海旺,佘大庆,霍庆儒.2003.2BM-9型免耕播种机关键部件的设计与研究.中国农机化,(6):33-35.
    89.赵清华,田嘉海,万霖.1997.型孔尺寸对播种玉米精度的影响.黑龙江八一农垦大学学报.9(3):39-45.
    90.赵学笃,马中苏,孙永海,吴文福.1996.玉米籽粒力学性能的实验研究.吉林工业大学学报,26(1):60-66.
    91.中国农业机械化科学研究院.2007.农业机械设计手册.北京:中国农业科学技术出版社,357-358.
    92.周福君,张巍.2008.高速摄像技术在两相流场籽粒运动测量中的应用,39(4):22-24.
    93.周祖锷.1994.农业物料学.北京:农业出版社,106-119.
    94.左彦军,马旭,齐龙,玉大略,廖醒龙.2010.窝眼窄缝式气吸滚筒排种装置的试验.农业工程学报,26(11):141-144.
    95. Ahmad,Zaidi,M.A.1992.Design and development of low-cost no-tillage multi-cropdrill[A].Proceeding of the9#annual convention of the Pakistan.Society of AgriculturalEngineers,78-82.
    96. Arzu Yazgi,Adnan Degirmencioglu.2007.Optimisation of the seed spacing uniformity performance ofa vacuum-type precision seeder using response urface methodology. BiosystemsEngineering,(97):347-356.
    97. ASAE Standards2001.S495. Uniform Terminology for Agricultural Machinery management.Approved Dec.2001.St.Joseph.Mieh.AESE.
    98. ASAE Standards.1998.EP291.2.Terminology and definitions for soil tillage and soil-tool relationships.Approved Dec.1998.St.JosePh.Mich.AESE.
    99. Aulakh,M.S.,D.A. Rennie, E.A.Paul.1984.Gaseous Nitrogen losses from siols under zero-tillage ascompared with conservation ally–tilled management systems. J.Environ. Qual.(13):130-160.
    100. Barut Z B,Ozmerzi A.2004.Effect of different operating parameters on seed holding in the single seedmetering unit of a pneumatic planter.Turkish Journal of Agriculture Forestry,28(6):435-441.
    101. Barut, Zeliha Bereket, Ozmerzi, et al.2004. Effect of different operating parameters on seed holdingin the single seed metering unit of a pneumatic planter. Turkish Journal of Agriculture Forestry,28(6),435-441.
    102. Bracy,R.P., R.L.Parish.1998.Seeding uniformity of precision seeder.HortTedhnol.8(2):182-185.
    103. Chen.y,Tessier,B.ivine.2002.Drill and crop performances as affected by different Drill configurationsfor no-till seeding. Soil and Tillage Research, Submitted.
    104. D.N.Sharma,M.L.Jain.1984.Evaluationofno-tillageandeonventionaltillagesystems,AMA,(3):65-70.
    105. Ghasemi Varnamkhasti M,Mobli H,Jafari A,et al.2008.Somephysical properties of rough rice(OryzaSativa L.)grain.Journal of Cereal Science.47(3):496-501.
    106. Grift T E, Crespi C M.2008.Estimating mean particle diameter in free-fall granular particle flow usinga poisson model in space.Biosystems Engeneering,(11):28-35.
    107. H.Buitenwerf,W.B.Hoogmoed,P.Lerink,et al.2006.Assessment of ehaviour of potatoes in a cup-beltplanter.Biosystems.Engineering,95(1):35-41.
    108. Haitao Chen, Masami I, Hiroshi T.2004.Development of an Automatic Planting system for Baker’sGarlic in a Sandy Field. Sand Dune Research,51(1):33-45.
    109. Heege,H.J,1993.Seeding methods performance for cereals,rape and beans.Trans.ASAE,36(3),653-661.
    110. Hudspeth,E.B.,Wanjura,D.F.,1970.A planter for precision depth and placement of cottonseed.Trans,.ASAE13(2),153-155.
    111. Jafri J V,Fornstrom K J.1972.A precision punch-planter for sugar beets,Transaction of theASAE,15(2):569-571.
    112. Kachman,S.D.,Smith,J.A..1995.Alternative measures of accuracy in plant spacing for planters usingsingle seed metering,Trans.ASAE38,379-387.
    113. Karayel D,Barut Z B, Ozmerzi A.2004.Mathematical modeling of vacuum pressure on a precisionseeder.Biosystems Engineering,87(4):437-444.
    114. Kaspar,T.C,Erbach,D.C.1998.Improving stand establishment in no-till with residue-clearing planterattachments.Trans.ASAE (41),301-306.
    115. L.O. Adekoya, W.F. Buchele.1987.A precision punch planter for use in tilled and untilled soils.Journal of Agricultural Engineering Research,37(3):171-178.
    116. L.P. Bufton, P. Richardson, M.J. O'Dogherty.1974.Displacement After Impact on a Soil Surface.Journal of Agricultural Engineering Research,19(4):327-338.
    117. Leora Shelef and Nuri N, Mohsenin.1967. Evaluation of the Modulus of Elasticity of WheatGrain.cereal chemistry,44(6):392-403.
    118. Leora Shelef and Nuri N, Mohsenin.1969.Effect of Moisture Content on Mechanical Propeties ofShelled Corn.cereal chemistry,46(5):242-253.
    119. Lu Xiao-rong, Lu Xiao-lian2, Ren Wen-tao.2010. Experimental study on working performance of ricerope direct seeding machine.Agricultural sciences in China,9(2):275-279.
    120. M.Iqbal,S.J.Marley,D.C.Erbach,T.C.Kaspar.1998.An Evaluation of Seed Furrow Smearing.Transaction of the ASAE,41(5):1243-1248.
    121. Marvin R, Paulsen.1978. Fracture Resistance of Soybeans to Compressive Loading.Transactions ofthe ASAE:1210-1216.
    122. Mishra B K.2003.A review of computer simulation of tumbling mill by the discrete elementmethod:part I—contact mechanics[J].Int J Miner Process,7l:73-93.
    123. P Dissanayake,D L George,M L Gupta.2008.Direct seeding as an alternative to transplanting forguayule in southeast Queensland.Industrial Crops and Products,27(3):393-399.
    124. R. L. Parish, J. E. McCoy, R. P. Bracy.1999.BELT-TYPE SEEDER FOR SOYBEANS. AppliedEngineering in Agriculture,15(2):103-106.
    125. R.C.Singh1,G.Singh2,D.C.Saraswat.2005.Optimization of Design and Operational Parameters of aPneumatic Seed Metering Device for Planting Cottonseeds.Biosystems Engineering,92(4):429-438.
    126. S.D.Kachman,J.A.Smith.1995.Alternative measures of accuracy in plant spacing for planters usingsing seed metering.Transactions of the ASAE,38(2):379-387.
    127. Singh R C,Singh G,Saraswat D C.2005,Optimization of design and operational parameters of apneumatic seed metering device for planting cottonseeds[J].Biosystems Engineering,92(4):429-438.
    128. Yang Ling,Yang Mingjin,Li Qingdong,et al.2005.Experimental study on physical properties of coatedrice seed.Transactions of The Chinese Society of Agricultural Engineering,21(9):7-11.
    129. Z.Zulin,S.K.Upadhyaya,S.Shafii,st al.1991.Hydropneumatic seeder for primed seed.Transactions ofthe ASAE,34(1),21-26.
    130.Zhuang S.1996.Automatie feeding control of fertilizer applieator and seeder based on running speedsingals,JSAM,(58):49-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700