用户名: 密码: 验证码:
丙烯酸树脂乳液/水分散异氰酸酯无甲醛人造板胶黏剂的制备与黏合性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脲醛树脂胶黏剂因为其具有工艺简单、价格低廉等优点,所以在目前市面上所使用的各种木材胶黏剂中仍是使用量最多的一种胶黏剂。但是随着人们环境保护意识的不断加强和胶黏剂技术的不断发展,对于脲醛胶的使用也将会受到更多的限制。因此开发无甲醛系胶黏剂、环保型胶黏剂已成为木材胶黏剂的重要发展方向。
     本课题的目的在于制备一种不含甲醛且对环境无污染的新型木材胶粘剂,其既能够避免脲醛胶的甲醛释放问题,又能解决目前无甲醛胶粘剂存在的成本较高、强度差、工艺复杂等问题。异氰酸酯由于具有高反应活性且固化速率快等优点,已成为制备环保型胶黏剂的一种重要原料。目前在木材胶黏剂行业中对异氰酸酯的运用,多数集中于用小分子的异氰酸酯与多元醇反应制得异氰酸酯预聚体,然后对其进行乳化制得无醛胶黏剂。这种方法所制得的胶黏剂I中活性异氰酸酯基的含量较小,且不易有效的保留其活性,从而影响了胶黏剂的应用性能。本实验直接以异氰酸酯三聚体作为交联剂为基础,采用多种自身具有较好粘结性或耐水性的聚合物与其进行复配,力求制备出综合性能优越的无醛木材胶黏剂,并研究了复合体系的结构与性能,探讨它们协同作用机理,并用此胶黏剂进行应用研究。本课题的主要任务如下:
     1.以聚乙烯醇(PVA)为高分子分散剂,丙烯酸(AA)、N-羟甲基丙烯酰胺(NMA)、苯乙烯(St)丙烯酸丁酯(BA)为单体,采用无皂种子乳液聚合法制备了稳定且性能优异的自交联丙烯酸树脂乳液。并用此丙烯酸树脂乳液作为主剂,硅溶胶和六亚甲基二异氰酸酯三聚体(HDI)作为外加交联剂复合制得一种性能优异的无醛人造板胶黏剂。实验讨论了其合成影响因素,并优化了合成工艺条件。研究表明:当ω(PVA)=8%,ω(AA)=6%,ω(NMA)=4%,n(BA)/n(St)=2:1,ω(硅溶胶)=6%,ω(HDI)=8%时,此胶黏剂具有优异的应用效果。用此最佳比例所制得的丙烯酸树脂乳液的粒径为168.5nm,乳胶膜的拉伸强度为7.5Mpa,断裂伸长率为862.19%,吸水率为16%。
     由胶黏剂的FT-IR分析可看出,在波长2270 cm-1附近未出现吸收峰,说明异氰酸酯基已经发生了反应,体系中没有游离的-NCO。
     由胶黏剂膜的热分解曲线可看出:此聚合物存在两个明显的分解阶段。
     由乳液的表观黏度-剪切速率曲线可看出:此胶黏剂乳液是一种假塑性流体,并随着硅溶胶和异氰酸酯用量的增加,乳液黏度随剪切速率增加而降低的趋势更加明显,乳液的假塑性行为增强。同时随着硅溶胶和异氰酸酯用量的增加,体系的黏度增大。
     乳胶膜的动态力学性能分析看出:外加交联剂硅溶胶和异氰酸酯三聚体的加入,使得乳胶膜的储能模量增大,但当硅溶胶用量超过6%,HDI用量超过8%时,储能模量降低。这说明硅溶胶和异氰酸酯的加入可在一定程度上提高乳胶膜的刚性。
     用此无醛胶黏剂在细木工板上进行应用实验。结果表明:在ω(硅溶胶)=6%,ω(HDI)=8%,施胶量为250g/m2进行施胶时,细木工板的胶合强度达0.82Mpa,横向静曲强度达20.5 Mpa,耐水性为12h,均符合国家标准。由此可见:此木材胶黏剂具有较佳的实际应用价值。
     2.在N,N-二甲基甲酰胺(DMF)做助溶剂的作用下,以甲基丙烯酸甲酯、丙烯酸丁酯为主要原料,DMC为功能单体,以偶氮二异丁腈为引发剂,十二硫醇为分子量调节剂,通过乳液聚合合成丙烯酸树脂,然后用此丙烯酸树脂乳化异氰酸酯三聚体制得交联剂乳液,最后将交联剂乳液和羧基丁苯胶乳液复配制得木材胶黏剂。实验讨论了其合成影响因素,并优化了合成工艺条件。研究表明:当DMC含量为单体总质量的30%,BA/MMA=1/1,十二硫醇含量为总固体的0.4%时,制得的丙烯酸树脂性能较佳,此丙烯酸树脂乳胶膜的吸水率为16%,拉伸强度为6.5MPa。当m(丙烯酸树脂)/m(HDI)=2/1时,水性异氰酸酯交联剂的性能最佳,其胶膜的吸水率为14.5%,拉伸强度为7.2MPa。并且从红外光谱分析可知,此交联剂有效的保留了异氰酸酯基的反应活性。
     水性异氰酸酯交联剂/羧基丁苯胶复合木材胶黏剂的最佳制备工艺条件:当m(异氰酸酯交联剂)/m(羧基丁苯胶)=10%时,制得的胶黏剂性能较佳,其膜的吸水率为12%,拉伸强度为7.6 MPa。红外光谱分析表明:此胶黏剂虽然有效的保留了异氰酸酯基的反应活性,但是还是有一部分发生了反应。
     热重分析表明:异氰酸酯交联剂的加入,提高了聚合物的热稳定性,并且随着异氰酸酯交联剂加入量的增大,提高幅度越大。
     乳液流变性分析表明:此胶黏剂乳液是一种假塑性流体,并且随着异氰酸酯交联剂用量的增大,乳液的假塑性行为增强。
     动态力学分析表明:随着异氰酸酯交联剂用量从0%增加到10%时,乳胶膜的储能模量增加,但当异氰酸酯交联剂用量超过10%达到15%时,储能模量又有所降低,乳胶膜的刚性减弱。
     胶黏剂乳胶膜的接触角分析表明:不加交联剂的羧基丁苯胶乳胶膜的接触角为68.5°,加入10%的异氰酸酯交联剂后所制得的胶黏剂胶膜的接触角为88°,由此可知,异氰酸酯交联剂的加入能有效的提高乳胶膜的疏水性。
     胶黏剂在细木工板上的应用实验表明:在热压温度为120℃,施胶量为300g/m2时。所制得的细木工板的胶合强度为0.80MPa,静曲强度为21.4 MPa,耐水性为10小时,符合国家标准。
     3.在EVA和异氰酸酯三聚体的体系中引入聚乙烯醇,并用EVAIII和聚乙烯醇复配作为主剂,用此主剂乳化六亚甲基二异氰酸酯三聚体(HDI),从而得到EVA-聚乙烯醇/异氰酸酯无醛木材胶黏剂。实验讨论了其合成影响因素,并优化了合成工艺条件。研究表明:当m(PVA)/ m(EVA)=1/3(其中PVA的型号选用1788),六亚甲基二异氰酸酯三聚体用量为10%时,所制得的乳胶膜的拉伸强度达7.8Mpa,断裂伸长率为763.2%,吸水率为23%。
     由胶黏剂乳液的TEM图可看出:用EVA和PVA作主剂对异氰酸酯三聚体进行乳化所得到的胶黏剂乳液,乳液的粒子呈圆形,且尺寸较为均一,分布较为均匀。
     胶黏剂乳胶膜的热重分析可看出:由于异氰酸酯三聚体能与聚合物体系中的羟基发生交联反应,使得聚合物结构中出现体型分子,从而提高了乳胶膜的热稳定性。
     乳胶膜的动态力学性能可看出:体系中随着m(PVA)/ m(EVA)比例的增大,在一定程度上能提高乳胶膜的刚性,但当m(PVA)/ m(EVA)超过1/3时,反而使得乳胶膜的刚性降低;异氰酸酯三聚体的加入量在0%~10%范围内随着其用量的增大,乳胶膜的刚性增大。
     在热压温度为120℃,热压时间为10min,施胶量为260 g/m2时,细木工板的胶合强度为0.78Mpa,静曲强度为19.5Mpa,耐水性为6.5h。符合国家标准。
     胶黏剂在中密度纤维板上的应用实验表明:在施胶量为120Kg/m3,热压温度为160℃时。所制得的中密度纤维板的吸水厚度膨胀率为14.5%,内结合强度为2.02Mpa,静曲强度为40.2Mpa。均大于标准值,符合国家标准。
Now, in all kinds of wood adhesive, the urea-formaldehyde resin isstill a widely used adhesive due to the simple production technologyand low price. With the increasing awareness of environmentalprotection, the development of science and technology and thecontinuous appearance of new material, the use of theurea-formaldehyde adhesive will be subject to restricted. So thedevelopment of environment friendly adhesive has become theimportant development direction.
     The purpose of this task is to get a kind of environment friendlyadhesive. It can not only eliminate the problem of releasingformaldehyde, but also could solve the shortcoming of high cost andcomplex process of the environment friendly adhesive. Becauseisocyanate has high reactivity and curing speed, it has become a kind ofimportant raw materials in the preparation of the environment friendlyadhesive. At present isocyanate adhesive did not retain good reactivityof isocyanate, result in the strength is not good. In this paper, withisocyanate polymers as cross-linking agent, a series of wood adhesivewithout formaldehyde will be synthesized by isocyanate polymers andmany kinds of vinyl polymer. And the author study detailedly thestructure and properties of composite systems to explore the mechanismof their synergy. The main content of this paper is as followings:
     1. With polyvinyl alcohol (PVA) as polymeric colloid stabilizer, akind of surfactant-free copolystyrene-acrylat latex with good stable andexcellent property is successfully synthesized by reacting styrene (St),butyl acrylate (BA), N-hydroxymethyl Acrylamide (NMA) and acrylicacid (AA). The copolystyrene-acrylat latex as the main agent, silicasoland isocyanate polymers (HDI) as cross-linking agent, a kind of woodadhesive without formaldehyde is synthesized by copolystyrene-acrylatlatex, silicasol and isocyanate polymers. At the same time, the factors affecting its synthetic condition are discussed, and the synthetic processis optimized. The results show that adhesive owns excellent propertywhenω(PVA)=8%,ω(AA)=6%,ω(NMA)=4%,n(BA)/n(St)=2:1,ω(Sil)=6%,ω(HDI)=8%. The particle size of acrylic resin emulsion is168.5nm, the tensile strength, elongation at break and water absorptionof acrylic resin films respectively is 7.5Mpa, 862.19% and 16%.
     FTIR analysis indicates that–NCO has reacted because theabsorption peaks does not appear in the wavelength 2270 cm-1.
     TG analysis indicates that the polymer has two decompositionstages. The rheological measurement indicated that the viscositydecreased with increasing shear rate, all emulsions exhibitedshear-thinning behavior, and the phenomena became more pronouncedwith increasing silica sol and HDI concentration.
     DMA showed that the storage modulus of adhesive films isincreased with silica sol and HDI addition. However, when silica solconcentration was greater than 6 wt. %, HDI concentration was greaterthan 8 wt. %, the storage modulus decreased. It means that the rigidityof adhesive films could be improved with silica sol and HDI addition.
     When the resin content is 250g/m2on the application experiment,the plank bonding strength reaches 0.82Mpa, the static strength reaches20.5 Mpa and the water resistence reaches 12h. The outcome conformthe national standards.
     2. With dimethylformamide (DMF) as cosolvent, a kind of acrylicresin latex is successfully synthesized by reacting methyl methacrylate(MMA), butyl acrylate (BA) and dimethylaminoethylmethacrylate(DMC). The aqueous isocyanate crosslinking agent is got by acrylicresin latex and isocyanate polymers (HDI). Then the wood adhesive wasprepared via compounding carboxyl butyl benzene and the aqueousisocyanate crosslinking agent. At the same time, the factors affecting itssynthetic condition are discussed, and the synthetic process is optimized.The results show that the acrylic resin latex owns excellent propertywhenω(DMC)=30%,n(BA)/n(MMA)=1:1,ω(dodecylmercaptan)=0.4%. The tensile strength and water absorption of acrylic resin films respectively is 6.5Mpa and 16%.
     When m(acrylic resin)/m(HDI)=2/1, the aqueous isocyanatecrosslinking agent owns excellent property. The tensile strength andwater absorption of isocyanate crosslinking agent films respectively is7.2Mpa and 14.5%. FTIR analysis indicates that–NCO has not reacted.The crosslinking agent retains better reaction activity.
     TG analysis indicates that the thermal stability of adhesive isincreased with isocyanate crosslinking agent addition. The rheologicalmeasurement indicated that the viscosity decreased with increasingshear rate, all emulsions exhibited shear-thinning behavior, and thephenomena became more pronounced with increasing isocyanatecrosslinking agent concentration.
     DMA shows that the storage modulus of adhesive films isincreased with isocyanate crosslinking agent concentration increasedfrom 0% to 10%. However, when isocyanate crosslinking agentconcentration is 15%, the storage modulus decreased.
     The test of contact angle of adhesive films shows that the contactangle of carboxylbutyl benzene reach 68.5°without isocyanatecrosslinking agent addition, the contact angle of adhesive films reach88°when isocyanate crosslinking agent concentration is 10%. It meansthat the water resistance of adhesive films is improved with isocyanatecrosslinking agent addition.
     The experiment which adhesive is used in blockboard shows thatwhen m(isocyanate crosslinking agent)/m(carboxylbutyl benzene)=10% ,the resin content is 300g/m2and the temperature is 120℃, the plankbonding strength reaches 0.80Mpa, the static strength reaches 21.4 Mpaand the water resistence reaches 10h. The outcome conform the nationalstandards.
     3. The wood adhesive is prepared via compounding EVA, polyvinylalcohol (PVA) and isocyanate polymers (HDI). The factors affecting itssynthetic condition are discussed, and the synthetic process is optimized.The results show that the tensile strength, elongation at break and waterabsorption of adhesive films respectively is 7.8Mpa, 763.2% and 23%, when m(PVA)/ m(EVA)=1/3 andω(HDI)=10%.
     TEM photos show that the adhesive emulsion particles are regularsphericity, and the surface of the particles is clean.
     TG analysis indicates that the thermal stability of adhesive isincreased with HDI addition due to the cross-linking reaction betweenHDI and PVA.
     DMA shows that the rigidity of adhesive films is increased withm(PVA)/ m(EVA) increased. However, when m(PVA)/ m(EVA) isgreater than 1/3, the rigidity of films decreased. The rigidity ofadhesive films is increased with HDI concentration increased from 0%
引文
[1]李龚,辈凡.我国胶黏剂工业发展趋势与对策[J].中国胶粘剂, 2001,10(5):38~41.
    [2]王志玲,王正.人造板用异氰酸酯胶粘剂研究现状及发展趋势[J].中国胶粘剂, 2004, (1):59~60.
    [3]朱芸林,刘旭晴,洪凯等.水性高分子-异氰酸酯(API)木材胶黏剂的研究
    [C].中国聚氨酯工业协会第十三次年会论文集, 2006.
    [4] Yanjun Cui, Donghua Chen, Xinling Wang, Xiaozhen Tang. Crystallinestructure in isocyanate reactive hot melt adhesives [J]. International Journal ofAdhesion and Adhesives, 2002, 22(4): 317~322.
    [5] Syed H. Imam, Sherald H. Gordon, Lijun Mao, Liang Chen. Environmentallyfriendly wood adhesive from a renewable plant polymer:characteristics andoptimization[J]. Polymer Degradation and Stability, 2001, 73(3):529~533.
    [6] Sandip D. Desai, Jigar V. Patel, Vijay Kumar Sinha. Polyurethan adhesivesystem from biomaterial-based polyol for bonding wood[J]. InternationalJournal of Adhesion and Adhesives, 2003, 23(5):393~399.
    [7] K. Li, X. Geng, J. Simonsen, J. Karchesy. Novel wood adhesives fromcondensed tannins and polyethylenimine[J]. International Journal of Adhesionand Adhesives, 2004,24(4):327~333.
    [8] Ana Luísa Daniel da Silva, JoséMiguel Martín-Martínez, Jo o Carlos MouraBordado. Influence of the free isocyanate content in the adhesive properties ofreactive trifunctional polyether urethane quasi-prepolymers[J]. InternationalJournal of Adhesion and Adhesives, 2006, 26(5): 355~362.
    [9] Kim Sum in, Kim Hyun-Joong Comparison of standard methods and gaschromatography method in determination of formaldehyde emission fromMDF bonded with formaldehyde-based resins[J].Bioresource Technology,2005, 96(13):1457~1464.
    [10]吴青,苏义华,霍力超.环境友好型胶黏剂的研究进展[J].化学工程师,2008, (7):58~59.
    [11]杨平德,杨勇.聚合MDI胶黏剂在人造板工业中的应用[J].木材加工机械,2003, (1):28~31.
    [12]时君友,韦双颖.水性改性淀粉—多异氰酸酯胶黏剂的研究[J].林业科学,2003, 39(5):105~110.
    [13]王维新.异氰酸酯及其在人造板生产上的应用[J].中国人造板, 2008,15(4):16~17.
    [14] Johnson R S An overview of North American wood adhesive resin[J]. In“Wood Adhesives 2000”, For Prod Soc Madsion, 2001.
    [15]常君成,汪玉秀,王新爱等.提高脲醛树脂胶黏剂耐水性的研究[J].西北农林科技大学学报(自然科学版), 2001, 30(6):215~219.
    [16]陶绪泉,崔慧,张立云等.脲醛树脂胶黏剂研究进展[J].粘接, 1998,19(5):19~24.
    [17]吴蓁,孙揭阳,郭青.新型脲醛树脂胶黏剂的改性[J].化工进展, 2006,25(2):187~191.
    [18]颜镇.加快绿色化迎接新世纪[J ] .中国胶黏剂, 2000, 9(2):34~37.
    [19]李和平主编.胶黏剂生产原理与技术.北京:化学工业出版社, 2009,8:30~32.
    [20]叶青萱,方锷声主编.胶黏剂.北京:中国物资出版社, 1999, 10:30~35.
    [21]李子东,李光宇,于敏.现代胶粘技术手册.北京:新时代出版社, 2002.
    [22]曹晓玲,李文安.环保型脲醛树脂胶黏剂的合成研究[J].应用化工,2008,5(5):551~558.
    [23]孙丽玫,邵广义,张红春.胶合板用低游离醛环保脲醛树脂胶的研制[J].林业科技, 2004, 29(3):44~45.
    [24]李刚辉,沈一丁,唐新等.咪唑封闭聚氨酯纸张增强剂的制备及应用[J].中华纸业,2009, 30(16):36~38.
    [25]高振中.低毒脲醛树脂胶黏剂胶合强度的研究[J].华南农业大学学报(自然科学版), 2002, (7):81~83.
    [26] Pizzi A.Wood adhesives chemisty and technolgy[M].New York:MarcelDekker,1983.
    [27] Pizzi A. Theory and practice of the preparation of how formaldehydeemission UF adhesive[J].Hrzforschung, 1994, 48:254~261.
    [28]张振峰,梁彩云,尚卓斌等.绿色环保脲醛树脂的制备及反应机理的研究[J].中国胶黏剂, 2004, 1(3):37~39.
    [29]顾继友.胶黏剂与涂料[M].北京:中国林业出版社,1999.25~26.
    [30]林景武,肖兆麟,陈维宁.苯酚-三聚氰胺-尿素-甲醛胶黏剂的合成及应用[J].林产工业,2000,27(4):27~30.
    [31]曲保雪,朱立红,张晓燕.国内木材工业中低毒脲醛树脂研究进展[J].河北林果研究, 2007, 22(2):165~169.
    [32] Kim S, Kim H J. Effect of addition of polyvinyl acetate tomelamine-formaldeh- yde resin on the adhesion and formaldehyde emissionin engineered flooring[J]. International Journal of Adhesion & Adhesives,2005, (25):456~461.
    [33] Scopelitiea E, A Pizzi. Urea-resorcinol-formaldehyde adhesive of lowresorcind contend[J]. Journal of Applied Polymer Science, 2003,48(12):2135~2146.
    [34] S.Li, A.Shah, A.J.Hsieh, R.Haghighat, S.S.Praveen, I.Mukherjee, E.Wei,Z.T.Zhang, Y. Wei. Characterization of poly(2-hydroxyethylmethacrylate-silica) hybrid materials with different silica contents. Polymer,2007, 48:3982~3989.
    [35] Kerstin S, Dirk G, Harald P. Preparation of phenol-uron-formaldehydecopolymer adhesives under heterogeneous catalysis [J]. Journal of AppliedPolymer Sience, 2006, 102(5):2946~2952.
    [36] Kim I H, Shin J S, Cheong I W, et al. Seeded Emulsion Polymerization ofMethel Methacrylate Using Aqueous Polyurethane Dispersion: Effect ofHard Segment on Grafting Efficiengcy [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2002, 207(1):169~176.
    [37]程时远,陈正国.胶黏剂生产与应用手册[M],北京:化学工业出版社,2003.362.
    [38] PARK B D, RIEDL B , BAE H J , et al . Differential scanning calorimetryof phenol-formaldehyde ( PF) adhesives[J] . J Wood Chem Technol, 1999, 19(3): 265~286.
    [39]于红卫,傅深渊,文桂峰等.纳米碳酸钙影响UF树脂性能的研究[J].中国胶黏剂, 2002, 11(6):22~24.
    [40] FAN D B , LI J Z, MAO A. Curing characteristics of low ratio urea-formald-Ehyde resins[J] . J Adhes Interface , 2006 , 7 (4) :45~52.
    [41] HSE C Y. Wettability of southern pine veneer by phenol formaldehyde woodadhesives[J]. Forest Prod J, 1972, 22(1):53~56.
    [42]刘耀东,吴国忠,龙德武.环保型酚醛树脂胶黏剂的研制及粘接性能[J].粘接,2004,25(5):18~19.
    [43] Tomita B, Ohyama M, Hse C Y. Synthesis of Phenol-Urea-FormaldehydeCocondensed Resins from UF-concentrateand Phenol[J].Holzforschung.
    [44]刘长春,李安平.脲-酚-醛树脂胶黏剂研究初探[J].包装工程,1995,16(3):22~24.
    [45]陶毓博,李鹏,陆仁书,等.尿素改性酚醛树脂胶黏剂的研究[J].林产工业,2005,32(1):13~16.
    [46]赵临五,王春鹏,刘奕等.低毒快速固化酚醛树脂胶研制及应用[J].林产工业,2000,27(4): 17~21.
    [47] Cui Yingde,Yi Guobin, Liao Liewen,etal. Catalysts for synthesis of N-vinylporrolidone[J]. Joural of Industry and Engineering, 2005, 51(4):443~445.
    [48]林武滔,施宣池,苏志忠.三聚氰胺改性脲醛树脂胶黏剂的性能研究[J].雁北师范学院学报, 2006, 2(22):47~49.
    [49] Chattopadhyay S, Madras G. Degradation kinetics of poly(vinyl-acetate)in thepresence of aluminum chloride[J].Polymer Degradation and Stability, 2001,(73):83~86.
    [50]李文鸿,谭海萍,何凤明.聚乙酸乙烯酯缩醛白乳胶环保改性的研制[J].贵州化工, 2004,29(4):25~27.
    [51] M HIRALSHI. Interactions of polyvinyl alcohol and vinyl acetate monomerin aqueous solution in relation to emulsion polymerization of vinyl acetate[J],British Polymer Joural. 1970,(2):135.
    [52] Schwalm, Reinhold, et al.Aqueous polyurethane dispersions which can behardened with mit UV-radiation and thermally and use thereof [P]. UnitedStates Patent: 6747088, 2004-06-08.
    [53] Byung Kyu Kim, Jung Hwan Shin. Modification of waterborne polyurethaneby forming latex interpenetrating polymer networks with acrylate rubber [J].Colloid Polym Sci, 2002, 280:716~724.
    [54]陆企亭.快固型胶黏剂[M].北京:科学出版社, 1992.118~137.
    [55]何娟,常俊标,郭瑞云等.不同基团对丙烯酸酯胶黏剂性能的影响[J].中国胶黏剂, 1999,(2):10~12.
    [56]王继英,仇满德,张荣珍等.水性丙烯酸酯胶黏剂的合成及性能研究[J].中国胶黏剂, 2005,14(3):8~10.
    [57] A Chen, L Katz. Proceeding of the Waterborne,High-Solids Powder CoatingSympoaium[J]. New Orleans, LAA, 1996, 23:103~114.
    [58] Kothandaraman K, Thangavel R. Cyclohexanone Oxime-blockedPolyisocyanates [J]. Appl Polym Sci, 1993(47): 1791~1796.
    [59] Wu S, Soucek M D. Crosslinking of acrylic latex coatings with cycloaliphaticdiepoxide [J].Polymer, 2000, (41):2017~2020.
    [60]陈丽娟,顾继友.水性高分子-异氰酸酯胶黏剂的改性研究[J].粘接, 2001.6, (22): 9~10.
    [61]艾军,陆文书.人造板用异氰酸酯胶黏剂的性质与应用[J].林产工业,2002,29(3):3~7.
    [62] CHALES E F, JIANWEN N. On the occurrence of network interperation inthe wood-isocyanate adhesive interphase [J]. International Journal ofAdhesion & Adhesives, 1998, 18(2):81~87.
    [63] ROWELL RM, ELLIS WD. Bonding of isocyanates to wood.K. N. Edwards(ed) In : America cmemicai Society Symposium Series 192. Washington, D. CChapter 19 1981, 263~284.
    [64] CUI Y J, CHEN D H, WANG X L, etal. Crystalline structure in isocyanatereactive hot melt adhesives [J]. International Journal of Adhesion &Adhesives, 2002, 22(4):317~322.
    [65] SANKAR G,NASAR A S. Effect of isocyanate structure on deblocking andcure reaction of N-methylaniline–blocked diisocyanates and polyisocyanates[J]. European Polymer Journal,2009,45(3):911-922.
    [66]顾继友.胶接理论与胶接基础[M].北京:科学出版社, 2003:6~18.
    [67] FR INK JW, SACHS H I. Isocyanate binders forwood composite boards.Urethane Chemistry and App lications, Kenneth N. Edwards Ed, ACSSymposium Series 172[C]. Washington D.C. 1 ACS, 981: 285~309.
    [68] GALBRA ITH C J, NEWMAN W H. Reaction mechanisms and effects withMDI isocyanate binders for wood composites. Proceedings, Pacific Rim Bio -Based Composites Symposium [C]. New Zealand: Rotorua, 1992: 130~142.
    [69] WEAVER F W, OWEN N L. The isocyanate-wood adhesive bond. Proceedings,Pacific Rim Bio-Based Composites Symposium[C]. New Zealand: Rotorua,1992: 143~153.
    [70] Wescott J M, Frihart C R. Competitive soybean flour/phenol-formaldehydeadhesives for oriented strandboard[C].38th International Wood CompositesSymposium.Wash:Washington State University,2004:199~206.
    [71] WOLFGANG GINDLA, THOMAS SCH OBERL, GEORGE JERON IMID IS.The interphase in phenol - formaldehyde and polymeric methylene diphenyl–di-isocyanate glue lines in wood [J]. International Journal of Adhesion&Adhesives, 2004, 24:279~286.
    [72]刘玉环,蒋启海,罗爱香等.大豆球蛋白改性剂等对豆胶黏度的影响[J].林业科技.2006,31(4):48~51.
    [73] KIMURA, TADASHI, KOBAYASHI. Process for producing compressinmolded article of lignocellulose type material [P]. US5744079, 1998-04-28.
    [74]方鲲,刘晓,李军等.环保型改性酚醛树脂胶黏剂的制备与性能[J].木材工业, 2004,18(2): 12~14.
    [75]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].北京:化学工业出社, 1997, 520~521.
    [76]杜梦麟. VAE乳液国内外的应用开发[J].中国胶黏剂, 1995, 4(1):14~19.
    [77] Yilgor I, Yilgor E, Erenturk B, et al. Effect of structural variations on thesynthsis and structure-Prooerty behavior of segmented silicone-urethane andcopolymers:Ⅰ.polymer synthesis [J]. Polymer Preprints, 2004, 45(1):561~562.
    [78] Wang F, Ji Q, McGrath J E. Synthesis and Characterization of Poly(dimethylsiloxane) Modified Polyurethane[J]. Polym Prep, 1997, 38(1): 308~309.
    [79]孙丰文.粉状落叶松单宁酚醛树脂胶生产胶合板的研究[J].木材工业,2000,14(6):6~8.
    [80] Zhong Z, Susan Sun X ,Wang D, etal Wet strength and water resistance ofmodified soy protein adhesives and effects of drying tretment[J]. Journal ofPolymers and the Environment, 2003, 11(4):137~144.
    [81]吴丹平译.水性高分子-异氰酸酯系胶黏剂的最新发展[J].木材工业,1994,8(3): 42~44.
    [82] T. Jesionowski, F. Ciesielczyk, A. Krysztafkiewicz. Influence of selectedalkoxysilanes on dispersive properties and surface chemistry of sphericalsilica precipitated in emulsion media. Material Chemistry and Physics, 2010,119, 65~74.
    [83] J.S.Kang, C.L. Yu, F.A. Zhang. Effect of silane modified SiO2particles onpoly (MMA-HEMA) soap-free emulsion polymerization. Iranian PolymerJournal 2009, 18(12): 927~935.
    [84]张友杰,李念平.有机波普教程[M].武汉:华中师范大学出版社,1999,28~49.
    [85] Sudipta M, N Krishnamurti. Synthesis and characterization of aqueouscationomeric polyurethanes and their use as adhesives [J]. J Appl Polym Sci,1996, 62: 1993~2003.
    [86]丁莉,杲云.水性聚氨酯胶粘剂结构与性能的研究[J].功能高分子学报,2001, 14(1): 95~99.
    [87] Noble K L. Waterborne polyurethane [J]. Progress in Organic Coatings, 1997,32(3): 131~136.
    [88] Dieterich D. Aqueous emulsions, dispersions and solutions of polyurethanes:synthesis and properties[J]. Prog Org Coat, 1981, 9(3): 281.
    [89] Tirpak R E, Markush P H. Aqueous dispersions of crosslinked polyurethanes[J]. Coat Technology, 1986, 58(738): 49
    [90] Al-salah H A H X, et al. polyurethane cationomers. I. Structure-properties [J].Polym Sci PartA: Polym Chem, 1988, 26(6): 1609.
    [91] Chars, Wu Chung chen, Show An. Polyurethane ionomers: effects ofemulsification on properties of hexamethylene diisocyanate-basedpolyether-polyurethane cationonomers [J]. Polymer, 1988, 29(11): 1995.
    [92] Cheng Xiuli, Chen Zhengxia, Shi Tongshun, et al. Synthesis andcharacterization of core-shell LIPN-fluorine containing polyacrylate latex[J].Colloids and Surfaces A, 2007, 292(2/3): 119~124.
    [93] K Nachtkamp, J Pedain. Process for the preparation of aqueous polyurethanedispersions and solutions [P]. US4269748, 1981.
    [94]耿耀宗.现代水性涂料[M].北京:中国石化出版社, 2003, 125~126.
    [95]李绍雄,刘益军.聚氨酯胶粘剂[M].北京:化学工业出版社, 1999.
    [96]王孟钟,黄应昌.胶黏剂应用手册[M].北京:化学工业出版社, 1987, 41.
    [97]李绍雄,刘益军.聚氨酯树脂及其应用[M].北京:化学工业出版社, 2004,19, 568-571.
    [98] Yilgor I, Yilgor E, Erenturk B, et al. Effect of structural variations on thesynthesis and structure-property behavior of segmented silicone-urethane andcopolymersⅠ.Polymer synthesis [J]. Polymer Preprints, 2004, 45(1): 561~562.
    [99] Sheth J P, Yilgor I, Yilgor E, et al. Effect of structural variations on thesynthesis and structure-property behavior of segmented silicone-urethane andcopolymersⅡ.Structure-property behavior [J]. Polymer Preprints, 2004,45(1): 563~564.
    [100]黄勤,张剑秋,封玉凤.高含量有机硅改性水性聚氨酯乳液的制备及性能研究[J].涂料工业, 2006, 36(9):26~29.
    [101]蒋欣,刘志猛,刘煜平等.聚氨酯-丙烯酸酯乳液的制备与性能[J].石油化工, 2003, 32(7):604~607.
    [102] Elias P. Growth and Use of UV/EB Technology in the American Markets [J].Proceeding Radtech Asia, 2003: 1~5.
    [103]时君友.改性酚醛树脂胶黏剂的研究[J].北华大学学报(自然科学版),2004,1(5):75~79.
    [104] JungY C, Sahoo N G, Cho J W. Polymeric nanocomposites of polyurethaneblocke copolymers and functionalized multi-walled carbon nanotubes ascrewsslinkers[J]. Macromolecular Rapid Communications, 2006, 27(2):126~131.
    [105] Kukan ja D. The structure and properties of acrylic polyurethane hybridemulsions and comparison with physical blends[J]. Journal of AppliedPolymer Science, 2000, 78: 67~80.
    [106] Nishimura Seiji. Aqueous composition[P]. JP95242855, 1995.
    [107] Werne J Black, Valetino J Tramontano. Properties of CrosslinkedPolyurethane Dispersion[J]. Progress in Organic Coatings, 1996, (27): 1~3.
    [108] Chen Guannan, Chen Kannan. Self-curing Behaviors of Single PackAqueous-based Polyurethane System[J]. Appl Polym Sci, 1997, 63(12):1609.
    [109] Augustin T C, Lawrence E K, Ronald T W, etal. Internal CrosslinkingIncrease stability[J]. Modem Paint and Coatings, 1996, 86(5): 49.
    [110]刘景芳,李树材.封闭型水性聚氨酯的研究进展[J].涂料工业, 2003,33(10) :36~39.
    [111]鲁德平,杨世芳,管蓉等.丙烯酸酯乳液胶黏剂的耐水性研究[J].中国胶黏剂, 2002, 11(4):36~38.
    [112]王国建,陈心年.高硅含量有机硅-丙烯酸酯乳液的研制[J].探索研究,2005, 43(1):85~89.
    [113] Richard G C. Post-crosslinking of Waterborne Urethanes[J]. Progress inOrganic Coatings, 1997, 32(1-4): 51.
    [114] Zhiming Wang, Dongbo Gao, Jianwen Yang. Synthesis and characterizationof UV-curable waterborne polyurethane-acrylate ionomers for coatings[J].Journal of Applied polymer Science, 1999, 73: 2869~2876.
    [115] Huynh-Tran, Truc-Chi T. Photocurable polyurethane-acrylate ionomercompositions for aqueous developable printing plates[P]. United StatesPatent: 5290663, 1994-03-01.
    [116]刘德峥.新型耐水型PVAc乳液的制备研究[J].粘接, 2001, 22(4):11~14.
    [117]曾小君,李巧云,孙磊.新型聚PVAc乳液的制备研究[J].科技进展,2002, (3):9~11.
    [118]申永泰.异氰酸酯-丙烯酸酯共聚乳液[J].粘接, 1994, 15(6):14~16.
    [119] Huynh Tran, Truc Chi T, Kumpfmiller. Aqueous developable photosensitivepolyurethane-(methyl)acrylate[P]. United States Patent: 5328805,1994-07-12.
    [120]张旭东,霍金清,陈焕钦.聚氨酯-丙烯酸酯复合乳液研制进展[J].合成材料老化与应用, 2003, 32(4):31~36.
    [121]陈义芳.聚氨酯-丙烯酸互穿网络聚合物乳液的制备[J].聚氨酯工业,1999,14(3):10-11
    [122]刘红,胡宏玖. VAE-异氰酸酯拼板胶的研制[J].粘接,2001, 22(6):10~12.
    [123]陈乐培,苏翰. VAE改性聚氨酯木材胶黏剂的制备及性能研究[J].廊坊师范学院学报, 2004, 20(4):1~3.
    [124]王武生,潘才元.交联聚氨酯水分散体的合成[J].高分子学报, 2000,3(6):319~324.
    [125] Mequanint K, Sanderson R. Self-assembling metal coatings from phosphatedand siloxane-modified polyurethane dispersions: An analysis of thecoating-air interface[J]. Journal of Applied Polymer Science, 2003, 88(4):893~899.
    [126] RAHMANMM, KIMHAN-DO. Characterization of waterbrone polyurethaneadhesives containing different soft segments[J]. Adhesion Sci Technol, 2007,21(1): 81~96.
    [127]王伟宏,徐国良.蛋白胶/PF混合应用对胶合板强度影响的研究[J].林产工业,2006, 33(5):30~32.
    [128]刘玉环,阮榕生,林向阳等.大豆基木材胶粘剂的研发[J].福建林业科技. 2005, 32(4):1~5.
    [129]张军涛,杨晓泉,黄立新.改性大豆蛋白胶粘剂的研究进展[J].粘接.2004,25(4):31~34.
    [130] Pizzi A.Wood Adhesives: Chemistry and Technology[M]. Florida:CRCPress.1989.
    [131] Hettiarachchy N S,Kalapathy U,Myers D J.Alkali-modified Soy Proteinswith Improved Adhesive and Hydrophobic Properties[J]. JAOCS.1995,72(12):1461~1464.
    [132] Kalapathy U,Hettiarachchy N S,Myers D, et al. Modification of SoyProteins and Their Adhesive Properties on Woods[J]. JAOCS. 1995,72(5):507~510.
    [133] Kalapathy U, Hettiarachch N S, Myers D, et al. Alkali-modified SoyProteins:Effect of Salts and Disulfide Bond Cleavage on Adhesion andViscosity[J]. JAOCS.1996, 73(8):1063~1066.
    [134]叶楚平,李陵岚,王念贵.天然胶粘剂[M].北京:化学工业出版社.2004,1:381~382.
    [135]赵科,郝许峰,刘大壮.大豆分离蛋白复合胶粘剂研制[J].郑州工业大学学报. 2000, 21(1):15~18.
    [136]兰辉.化学改性对脱脂大豆粉作为木材胶粘剂的粘接性与抗水性的影响
    [D].郑州:郑州工程学院.2002.
    [137]唐蔚波,周华,周翠等.接枝改性大豆蛋白胶粘剂的合成及性能研究[J].大豆科学. 2008, 27(6):1032~1036.
    [138]高振华.异氰酸酯室温下与醇、水反应规律及较高温度下与不同含水率纤维素反应规律的研究[D].哈尔滨:东北林业大学博士论文, 2003.
    [139]刘玉环,蒋启海,阮榕生.耐水性大豆基木材胶粘剂两步法工艺研究[J].大豆科学. 2006, 25(3):259~264.
    [140] Y Q Wang, Y P Li, R Y Zhang, L Huang, W W He. Synthesis andcharacterization of nanosilica/polyacrylate composite latex. PolymerComposites, 2006, 27(3): 282~288.
    [141] Wang HH, Li XR, Mou J. Synthesis, morphology and rheology of core-shellsilicone acrylic emulsion stabilized with polymerisable surfactant. ExpressPolymer Letters. 2010, 11(4): 670~680.
    [142] In Yang, Monlin Kuo, Deland J Myers, et al. Comparison of protein-basedadhesive resins for wood composites[J]. J Wood Sci. 2006, 52:503~508.
    [143] In Yang, Monlin Kuo, Deland J Myers. Bond Quality of Soy-based PhenolicAdhesives in Southern Pine Plywood[J]. JAOCS. 2006, 83(3):231~237.
    [144] J W罗斯托泽.用于生产木质复合产品的混合多亚甲基多(苯基异氰酸酯)/可溶性酚醛树脂胶黏剂[P] .CN1330690A, 1999 - 12–21.
    [145] Frihart C R, Wescott J M. Improved water resistance of bio-based adhesivesfor wood bonding[C]. 1stInternational Conference on EnvironmentallyCompatible Forest Products. Oporto: Femando Pessoa University. 2004,293~302.
    [146] Wescott J M, C R Frihart, A.E Traska. High soy containing water durableadhesives[J]. J of Adhesion Sci and Techn. 2006, 20(8):859~873.
    [147] Xinyan Xiao, Caicheng Hao. Preparation of waterborne epoxy acrylate/silicasol hybrid materials and study of their UV curing behavior. Colloids andSurfaces A: Physicochemical and Engineering Aspects. 2010, 359: 82~87.
    [148] M Giulio, P Aldo, S Marco, A Ezio, Z Elisa, F Elena. Hybridnanocomposites containing silica and PEO segments: preparation throughdual-curing process and characterization, polymer. 2005, 46(9): 2872~2879.
    [149] Y.Q.Fu, Q.Q. Ni, M.Iwamoto. Interaction of PMMA-silica in PMMA-silicahybrids under acid catalyst and catalyst-less conditions, Journal ofNon-crystalline solids. 2005, 351(8-9):760~765.
    [150] K.R. Sunajadevi, S. Sugunan. Preparation and characterization ofnanocrystalline transition metal-loaded sulfated titania through sol-gelmethod, Materials Letters. 2004, 58(26):3290~3296.
    [151] L Y Hong, Y C Cho, D P Kim. Effect of component ratios on theperformance of UV curing organic / inorganic coating, Journal of Industrialand Engineering Chemistry. 2005, 11(2): 275~279.
    [152] M E L Wouters, D P Wolfs, M C Linde, J P H Hovens, A H A Tinnemans.Transparent UV curable antistatic hybrid coatings on polycarbonate preparedby the sol-gel method. Progress in Organic Coatings. 2004, 51(4): 312~319.
    [153] Hamciuc E, Hamciuc C, Olariu M. Thermal and electrical behavior ofpolyimide/silica hybrid thin films. Polymer Engineering and Science 50(3):520~529.
    [154] S.Patel, A. Bandyopadhyay, V. Vijayabaskar, Anil K. Bhowmick. Effect ofmicrostructure of acrylic copolymer/terpolymer on the properties of silicabased nanocomposites prepared by sol-gel technique. Polymer. 2005, 46:8079~8090.
    [155] S.H.Huang, T.M.Don, W.C.Lai, C.C.Chen, L.P.Cheng. Porous structure andthermal stability of photosensitive silica/polyimide composites prepared bysol-gel process. Journal of Applied Polymer Science. 2009, 114:2019~2029.
    [156] S.S.Choi. Influence of storage time and temperature and silane couplingagent on bound rubber formation in filled styrene–butadiene rubbercompounds. Polymer testing. 2002, 21: 201~208.
    [157] K.H.Chung. Effect of silica reinforcement on natural rubber and butadienerubber vulcanizates by a sol-gel reaction with tetraethoxysilane . Journal ofApplied Polymer Science. 2008, 108:3952~3959.
    [158] W.J.Huang, W.F.Lee. Effect of silane coupling agent on swelling behaviorsand mechanical properties of thermosensitive hybrid gels. Journal of AppliedPolymer Science, 2009, 111:2025~2034.
    [159]顾继友.异氰酸酯乳液胶黏剂制备方法[ P ] .CN1345906A, 2000 - 09 - 29.
    [160] CHOIA W Y, LEE C M, PARK H J. Development of BiodegradableHot-melt Adhesive Based on Poly-&-caprolactone and Soy Protein Isolatefor Food Packaging System[J]. LWT-Food Science and Technology, 2006,39(6):591~597.
    [161]魏起华,童玲,陈奶荣等.十二烷基硫酸钠对大豆基木材胶黏剂的改性作用[J].浙江林学院学报. 2008, 25(6):772~776.
    [162]童玲.复合改性大豆基木材胶粘剂的研究[D].福州:福建农林大学. 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700