用户名: 密码: 验证码:
藏南罗布莎蛇绿岩岩石学、地球化学及其构造环境研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
罗布莎蛇绿岩地处雅鲁藏布江蛇绿岩带的东段。该蛇绿岩岩石单元出露齐全,又有其自身的特点,如:以地幔橄榄岩为主,地幔橄榄岩构造变形强烈;在堆积杂岩中上部还产出有仰冲型斜长花岗岩小岩块;辉绿岩以脉状形式产出于地幔橄榄岩的方辉橄榄岩中;壳层岩石相对很薄,壳层熔岩比较复杂。
     罗布莎蛇绿岩辉绿岩中的锆石SHRIMP U-Pb ~(206)pb/~(238)U表观年龄呈现复杂的分布格局,主体年龄在148.3~174.2Ma范围之内,获得高精度的锆石谐和年龄为162.9±2.8Ma,即罗布莎蛇绿岩的形成年龄。获得的另外两组年龄数据说明,罗布莎蛇绿岩形成过程中可能俘获了古老洋壳或深海沉积物中的锆石;同时进一步证明罗布莎蛇绿岩在晚白垩世已经开始侵位。
     罗布莎蛇绿岩壳层熔岩属于亚碱性玄武岩与安山岩/玄武岩之间的过渡类型,辉绿岩样品均处于亚碱性玄武岩范围内。这些岩石的地球化学特征指示罗布莎蛇绿岩来源于一个高度亏损的地幔源区,具有N-MORB的特征,但在形成过程中可能受消减作用的影响,遭受了陆源物质的混染。说明罗布莎蛇绿岩属于俯冲带之上(SSZ型)的弧间盆地蛇绿岩。罗布莎蛇绿岩壳层熔岩和辉绿岩具有高的、类似于来自DMM地幔端员的MORB的e_(Nd)(t)值。Sr-Nd-Pb同位素特征表明,罗布莎蛇绿岩地幔源区为混染或混合了EMⅡ地幔端员组分的高亏损的地幔储源库;并且该地幔源区具有南半球特有的Dupal异常性质,这种地幔源区Dupal异常是DMM和EMⅡ这两种地幔端员混合的结果。
     对比整个特提斯蛇绿岩带的同位素分析结果发现:①它们都具有印度洋型的Sr、Nd、Pb同位素组成特征,并显示出明显的Dupal同位素异常;②这种大范围的Dupal同位素异常可能来源于南半球的一个或几个地幔柱;③这个携带着Dupal物质组分的地幔柱至少已经存在了350Ma;④并且该地幔柱可能是导致冈瓦纳古陆裂解,老新特提斯洋先后形成的源动力。
     罗布莎地区特提斯洋的形成演化过程可归纳为:在二叠纪晚期至三叠纪初,印度板块的北缘分裂出拉萨地块,并在拉萨地块和印度板块之间逐渐形成特提斯洋;至晚三叠世时,特提斯洋盆已经具有一定规模;随着洋中脊继续扩张和
The Luobusa ophiolite exist in the eastern segment of Yalu Zangbu(Yarlung Zangbo) suture zone, whose rock units are complete and which has many characteristics in itself, such as the major rock unit is mantle peridotite and the crust rock is complicated;there exist obduction-type granitoid rocks in the upper level of cumulate;diabases as veins crop out in the mantle harzburgite.Zircons were picked out from diabases in The Luobusa ophiolite, whose ~(206)Pb/~(238)U apparent ages SHRIMP U-Pb dating show very complex, but a majority of which distribute between the 148.3Ma and 174.2Ma. A precise zircon SHRIMP U-Pb concordia age obtained was 162.9 ± 2.8Ma. This age was interpreted as formation time of The Luobusa ophiolite. In addition, two different age data had been obtained in the precedure of analysis, which demonstrate that it is possible during the formation of the neo-tethys, that there are some older zircons coming from an older oceanic crust or pelagic sediment which have been caught when the mantle magmas upwell beneath mid-oceanic ridges and prove further that The Luobusa ophiolite has emplaced in late Cretaceous.The crust lavas of The Luobusa ophiolite belong to transition type between alkaline basalt and andesite/basalt, but diabases fall into the range of subalkaline basalt. Geochemical characteristics of these rocks suggest The Luobusa ophiolite derived from a very depleted mantla source with the characteristic of N-MORB, but may undergo the contamination of crust-derived materials. All the geochemical characteristics indicate that The Luobusa ophiolite belongs to arc-type ophiolite (SSZ). That is, its formation background is interarc basin of supra-subduction zone. The crust lavas and diabases in The Luobusa ophiolite have big eNd(t) which resemble N-MORB. It was found that the mantle source of The Luobusa ophiolite may be a depleted mantle reservoir contaminated or mixed by EM II from Sr、 Nd
    and Pb isotopic data. The mantle source has Dupal isotopic anomaly and the Dupal anomaly of mantle source results from the mix of DMM and EM II mantle end-member.All the results of the Sr-Nd-Pb isotope analysed of Tethyan ophiolites show that they have the isotopic characteristics similar to those of Indian Ocean and reveal the Dupal anomaly. The large-scale Dupal isotopic anomaly may derive from one or some plumes of south hemisphere. These plumes with Dupal composition have existed 350Ma and more, and may be the cause which results in the splitting of Gondwana continent and opening of paleo-Tethyan and neo-Tethyan ocean early and late.In late Permian to early Triassic, the Lhasa block separated form Indian plate. The Tethyan ocean began to form between the Indian plate and the Lhasa block. The Tethyan ocean had been large in the late Triassic. With the spread of mid-ocean ridge and excursion northward of Indian plate, a inter-mantle-type thrusted ductile shear zone had been developed in the Tethys which results in the subduction between oceanic crusts. In mid-Jurassic, the magmas in the mantle wedge of supra-subduction zone convected intensively. Upwelling of mantle magmas cause northern older oceanic crust spreading and forming new oceanic crust. Later on, Zedong island arc was produced in the north of new oceanic crust. At one time, the Tethyan oceanic crust to the south of Lhasa block began to downthrust toward the Lhasa block. The island-arc magmas spewed at the southern edge of the Lhasa block and gave birth to the Sangri arc in the late Jurassic to early Cretaceous. But later the Sangri arc took place disassembly due to the tectonic event. The downthrusting between ocean crusts in Tethys had been completed in late Cretaceous. Both old and new oceanic crust emplaced on the stratum of Langjiexue Formation. In Tertiary, all the downthrusting has been finished and the collision between Indian plate and Eurasian plate began.
引文
[1] 白文吉,方青松,张仲明等.1999.西藏雅鲁藏布江蛇绿岩带罗布莎地幔橄榄岩的成因.岩石矿物学杂志,18(2):193-206.
    [2] 白文吉,方青松,张仲明等.2001.西藏罗布莎蛇绿岩豆荚状铬铁矿中镁橄榄石的晶体结构及其意义.岩石矿物学杂志,20(1):1-10.
    [3] 白文吉,施倪承,杨经绥等.2002a.西藏蛇绿岩中二种合金矿物新变种.矿物学报,22(3):201-206.
    [4] 白文吉,杨经绥,方青松等.2002b.西藏蛇绿岩的超高压矿物:FeO、Fe、FeSi、Si利SiO2组合及其地球动力学意义.地球学报,23(5):395-402.
    [5] 白文吉,杨经绥,方青松等.2003.西藏蛇绿岩中不寻常的地幔矿物群.中国地质,30(2):144-150.
    [6] 白文吉,杨经绥,方青松等.2004a.西藏罗布莎蛇绿岩豆荚状铬铁矿石中的合金成分.地质学报,78(5):675-684.
    [7] 白文吉,Robinson P T,方青松等.2004b.藏南罗布莎蛇绿岩豆荚状铬铁矿中的铂族元素和贱金属合金.地球学报,25(4):385-396.
    [8] 白文吉,杨经绥,方青松等.2005.西藏罗布莎蛇绿岩的Os-Ir-Ru合金及其中玻安岩质包体的研究.地质学报,79(6):814-823.
    [9] 常承法,郑锡澜.1973.中国西藏南部珠穆朗玛峰地区的构造特征.地质科学,1:1-12.
    [10] 郑剑尔.1993.青藏高原形成、演化及动力学研究现状.地质科技情报,12(1):11-16.
    [11] 代明泉,施倪承,马哲生等.2003,西藏罗布莎Fe-Cr-Ni合金的X射线晶体学研究.岩石矿物学杂志,22(1):74-76
    [12] 邓万明,吴浩若,常承法等.1982.雅鲁藏布蛇绿岩的层序及其成因探讨.青藏高原地质论文专辑,北京:地质出版社,26-35.
    [13] 耿全如,潘桂棠,郑来林等.2001.论雅鲁藏布大峡谷地区冈底斯岛弧花岗岩带.沉积与特提斯地质,21(2):16-23.
    [14] 侯青叶,赵志丹,张宏飞等.2005,北祁连玉石沟蛇绿岩印度洋MORB型同位素组成特征及其地质意义.中国科学 D,35(8):710-719.
    [15] 李德威.1995.西藏罗布莎蛇绿岩中透镜网络系统的特征及成因.中国区域地质,1:50-56.
    [16] 李海平,张满社.1996.西藏罗布莎蛇绿岩的地球化学特征及形成环境探讨.西藏地质,2:55-61.
    [17] 李文铅,夏斌,吴国干等.2005.新疆鄯善康古尔塔格蛇绿岩及其大地构造意义.岩石学报,21f6):1617-1632.
    [18] 李武显,李献华.2003.蛇绿岩中的花岗质岩石成因类型与构造意义.地球科学进展,18(3):392-397.
    [19] 李紫金.1993.西藏自治区曲松县罗布莎铬铁矿成矿预测[专著]:1:2.5万.武汉:中国地质大学.
    [20] 梁定益等.1979.雅鲁藏布江断裂是“缝合线”吗?国际交流地质学术论文集,地质出版社.
    [21] 刘敦一,简平,张旗等.2003.内蒙古图林凯蛇绿岩中的埃达克浅色岩SHRIMP U-Pb测年.地质学报,77(3):317-327.
    [22] 刘国惠.1984.略论西藏南部花岗岩带的特征和成因.见:中国地质科学院和法国科学研 究中心编.中法喜马拉雅考察成果(1980)。北京:地质出版社,p.239-272.
    [23] 路远发.GeoKit:一个用VBA构建的地球化学工具软件包.地球化学,2004,33(5):459-464.
    [24] 简平,刘敦一,张旗等.2003a.蛇绿岩及蛇绿岩浅色岩的SHRIMP U-Pb测年.地学前缘,10(4):439-456.
    [25] 简平,刘敦一,孙晓猛.2003b.滇川西部金沙江石炭纪蛇绿岩SHRIMP测年:古特提斯洋壳演化的同位素年代学制约.地质学报,77(2):1-13.
    [26] 焦荣吕.1982.喜马拉雅-雅鲁藏布江中段地球物理场特征及其初步分析.青藏高原地质文集Ⅰ.北京:地质出版社.
    [27] 潘裕生.1994.青藏高原第五缝合带的发现与论证.地球物理学报,37(2):184-192.
    [28] 潘裕生.1999.青藏高原的形成与隆升.地学前缘,6(3):153-163.
    [29] 潘桂棠,李兴振.1996.东特提斯多弧—盆系统演化模式.岩相古地理,16(2):52-65.
    [30] 任纪舜,肖黎薇.2004.1:25万地质填图进一步揭开了青藏高原大地构造的神秘面纱.地质通报,23(1):1-11.
    [31] 陕西省地矿局.1995.中华人民共和国区域地质调查报告(1/20万),加查幅(8-46-27,地质部分).西安:陕西省地质矿产局区域地质调查队制图出版中心.
    [32] 陕西省地矿局.1994.中华人民共和国区域地质调查报告(1/20万),泽当幅(8-46-26,基础地质).西安:陕西省地质矿产局区调队轻印刷服务部.
    [33] 宋彪,张玉海,刘敦一.2002.微量原位分析仪器SHRIMP的产生与锆石同位素地质年代学.质谱学报,23(1):58-62.
    [34] 孙鸿烈.1996.青藏高原研究的新进展.地球科学进展,11(6):536-542.
    [35] 韦栋梁,夏斌,周国庆等.2004.西藏泽当蛇绿岩壳层火山熔岩的岩石地球化学及成因.大地构造与成矿学,28(3):270-278.
    [36] 韦栋梁,夏斌,周国庆等.2006a.西藏泽当蛇绿岩的Sm-Nd等时线年龄及其意义.地球学报,27(1):31-34.
    [37] 韦栋梁,夏斌,周国庆等.2006b.西藏泽当埃达克质英云闪长岩的地球化学和Sr,Nd同位素特征:特提斯洋内俯冲的新证据.中国科学(D),待刊.
    [38] 魏启荣,沈上越,莫宣学,路凤香.2003.三江中段Dupal同位素异常的识别及其意义.地质地球化学,31(1):36-41.
    [39] 吴浩若.1984.西藏南部白垩纪深海沉积地层-冲堆组及其地质意义.地质科学,1:26-33.
    [40] 王国庆,夏斌.1987.西藏罗布莎蛇绿岩及其构造意义.大地构造与成矿学,11(4):349-362.
    [41] 王冉,夏斌,周国庆等.2006.西藏吉定蛇绿岩中辉长岩SHRIMP锆石U-Pb年龄.科学通报,51(1):114-117.
    [42] 王希斌等.1964.西藏几个含矿超基性岩体及铬铁矿床的考察.国家科学技术委员会出版(内部).
    [43] 王希斌,解广轰,赵大升.1965.西藏地区超基性岩及其尖品石类矿物特征,中国科学院西藏综合考察队1960-1961年专题考察报告.科学出版社(内部).
    [44] 王希斌,曹佑功,郑海翔.1984.西藏雅鲁藏布江(中段)蛇绿岩组合层序及特提斯洋壳演化的模式.中法喜马拉雅考察成果(1980).北京:地质出版社,181-207.
    [45] 王希斌,鲍配声,邓万明.1987a.西藏蛇绿岩.北京:地质出版社,24-29.
    [46] 王希斌,鲍佩声,肖序常.1987b.雅鲁藏布江蛇绿岩.北京:测绘出版社.
    [47] 王希斌,鲍佩声,戎合.1996.中国蛇绿岩中变质橄榄岩的稀土元素地球化学.岩石学报,11(Suppl.):24-40.
    [48] 王玉净,杨群,松冈笃等.2002.藏南泽当雅鲁藏布缝合带中的三叠纪放射虫.微体古生物学报,19(3):215-227.
    [49] 西藏地矿局.1993.西藏自治区区域地质志.北京:地质出版社.
    [50] 夏斌,曹佑功.1992.西藏公珠错蛇绿岩及其构造环境.西藏地质,2:11-29.
    [51] 夏斌,王国庆,钟富泰等.1993.喜马拉雅及邻区蛇绿岩和地体构造图说明书.兰州:甘肃科学技术出版社.
    [52] 夏斌,何明友.1995.西藏加纳朋蛇绿岩岩石地球化学及成因意义.矿物学报,15(2):236-241.
    [53] 夏斌,洪裕荣,洪裕荣等.1997.西藏达机翁蛇绿岩的岩石地球化学特征及其构造环境.地质地球化学,1:46-52.
    [54] 夏斌,郭令智,施央中.1998.西藏西南部蛇绿岩及其地体构造.广州:中山大学出版社.
    [55] 肖序常,王方国.1984.中国蛇绿岩概论.中国地质科学院院报,9:19-30.
    [56] 肖序常.1984.藏南日喀则蛇绿岩及有关的大地构造问题.见:中国地质科学院和法国科学研究中心编.中法喜马拉雅考察成果(1980).北京:地质出版社,p.143-168.
    [57] 肖序常,王军.1998.青藏高原构造演化及隆升的简要评述.地质论评,44(4):372-381.
    [58] 肖序常,王军,苏梨等.2005.青藏高原西北西昆仑山早期蛇绿岩及其构造演化.地质学报,79(6):756-756.
    [59] 邢光福.1997.Dupal同位素异常的概念、成因及其地质意义.火山地质与矿产,18(4):281-291.
    [60] 熊明,施倪承,代明泉等.2003.西藏罗布莎Ir-Fe-Ni合金的X射线晶体学研究.岩石矿物学杂志,22(2):155-157.
    [61] 徐义刚.1999.拉张环境中的大陆玄武岩浆作用:性质及动力学过程.见:郑永飞主编.化学地球动力学.北京:科学出版社,p.119-167.
    [62] 许继峰.1997.秦岭勉略地区古特提斯洋的形成演化及化学地球动力学意义.中国科学院广州地球化学研究所博士后研究工作报告.
    [63] 许继峰,陈繁荣,于学元等.2001.新疆北部阿尔泰地区库尔提蛇绿岩:古弧后盆地系统的产物.岩石矿物学杂志,20(3):344-352.
    [64] 许志琴.1984.阿尔卑斯旋回中喜马拉雅山链和阿尔卑斯山链的主变形特征.中国地质科学院院报.9:121-125.
    [65] 袁超,孙敏,李继亮等.2002.西昆仑库地蛇绿岩的构造背景:来自玻安岩系岩石的新证据.地球化学,31(1):43-48.
    [66] 杨经绥,白文吉,方青松等.2004.西藏罗布莎豆荚状铬铁矿中发现超高压矿物柯石英.地球科学——中国地质大学学报,29(6):651-660.
    [67] 尹安.2001.喜马拉雅-青藏高原造山带地质演化—显生(?)亚洲大陆生长.地球学报,22(5):193-223.
    [68] 张浩勇,巴登珠,郭铁鹰,薛君治,莫宣学.1996.西藏罗布莎豆荚状铬铁矿的成矿特征.西藏地质,1:1-3.
    [69] 张浩勇,巴登殊,郭铁鹰等.1996.罗布莎铬铁矿床研究..拉萨:西藏人民出版社.
    [70] 张旗.1992.中国蛇绿岩研究中的几个问题.地质科学,A12:139-146.
    [71] 张旗.1994.蛇绿岩研究的进展[J].地学前缘,1(1~2):98-102.
    [72] 张旗,周德进.1996.一种新的洋壳类型及其动力学意义.科学通报,41(11):1025-1027.
    [73] 张旗,周国庆.2001.中国蛇绿岩.北京:科学出版社,82-92.
    [74] 张旗,周国庆,王焰.2003.中国蛇绿岩的分布、时代及其形成环境.岩石学报,19(1):1-8.
    [75] 赵令湖.1997.橄榄石t-△H-p参数在西藏罗布莎铬铁矿床成矿预测中的应用.地 球科学——中国地质大学学报,22(1):41-45.
    [76] 中国科学院青藏高原综合科学考察队.1981.西藏岩浆活动和变质作用.北京:科学出版社.
    [77] 钟立峰,夏斌,周国庆等.2006a.藏南罗布莎蛇绿岩辉绿岩中锆石SHRIMP测年.地质论评,52(2):224-229.
    [78] 钟立峰,夏斌,崔学军等.2006b.藏南罗布莎蛇绿岩壳层熔岩地球化学特征及成因.大地构造与成矿学,30(2):231-240.
    [79] 周国庆.1996.蛇绿岩分类的回顾.见:张旗编.蛇绿岩与地球动力学研究.北京:地质出版社,63-68.
    [80] 周国庆,赵建新,李献华.2000.内蒙古月牙山蛇绿岩特征及形成的构造背景:地球化学和Sr-Nd同位素制约.地球化学,29(2):108-119.
    [81] 周肃,莫宣学,Mahoney J J等.2001.西藏罗布莎蛇绿岩中辉长辉绿岩Sm-Nd定年及Pb,Nd同位素特征.科学通报,46(16):1387~1390.
    [82] 周详,曹佑功,朱明玉等.1984.西藏板块构造-建造图1:1500000说明书.北京:地质出版社,143.
    [83] Aitchison J C, Badengzhu, Davis A Met al. 2000. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (southern Tibet). Earth and Planetary Science Letters, 183: 231-244.
    [84] Alabaster T, Pearce J A and Malpas J. 1982. The volcanic stratigraphy and petrogenesis of the Oman ophiolite complex. Contrib. Mineral Petrol, 81: 168-183.
    [85] Allegre C J, Courtillot V and Tapponnier P. 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 307: 17-22.
    [86] Bai W -J, Robinson P T, Fang Q -S et al. 2000. the PGE and base-metal alloys in the podifrom chromitites of the Luobusa ophiolite, southern Tibet. The Canadian Mineralogist, 38: 585-598.
    [87] Bai W -J, Zhou M -F and Robinson P T. 1993. Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet. Can. J. Earth Sci., 30: 1650-1659.
    [88] Beccaluva L and Serri G. 1988. Boninitic and low-Ti subduction-related lavas from intraoceanic are-backarc systems and low-Ti ophiolites: A reappraisal of their petrogenesis and original tectonic setting. Tectonophysics, 146: 291-315.
    [89] Ben Othman D, White W M & Patchett J. 1989. The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth and Planetary Science Letters, 94: 1-21.
    [90] Booij E, Bettison-varga L, Farthing D et al. 2000. Pb-isotope systematics of a fossil hydrothermal system from the Troodos ophiolite, Cyprus: Evidence for a polyphased alteration history. Geochimica et Cosmochimica Acta, 64(20): 3559-3569.
    [91] Boydonov N A. 1980. On tectonic merging of the crust in oceans. In: "Ophiolite-proceedings international ophiolite symposium, Cyprus 1979". Panayioton A (ed.). 153-160.
    [92] Boynton W V. 1984. Geochemistry of the rare earth elements: meteorite studies. In: Henderson P (eds.), Rare earth element geochemistry. Elsevier, 63-114.
    [93] Briqueu L, Lancelor J R. 1979. Rb-Sr systematics and crustal contamination models for calc-alkaline igneous rocks. Earth Planet Sci Lett, 43: 381-396.
    [94] Cameron W E. 1985. Petrology and origin of primitive lavas from the Troodos ophiolite, Cyprus. Contrib Mineral Petrol, 89: 239-255.
    [95] Castillo P R. 1988. The Dupal anomaly as a trace of the upwelling upper mantle. Nature, 336: 667-670.
    [96] Castillo P R. 1996. Origin and geodynamic implication of the Dupal isotopic anomaly in volcanic rocks from the Philippine island arcs. Geology, 24(3): 271-274.
    [97] Chen J H and Pallister J S. 1981. Lead isotopic studies of the Semail ophiolite, Oman. Journal of Geophysical Research, 86: 2699-2708.
    [98] Chung S -H and Sun S -S. 1992. A new genetic model for the East Taiwan ophiolite and its implications for Dupal domains in the Northern Hemisphere. Earth and Planetary Science Letters, 109: 133-145.
    [99] Claoue-long J. C, Compston W, Roberts J., et al. 1995. Two carboniferous ages: A comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. Berggren W A, Kent D V, Aubry M P, et al. Geochronology, Time Scales and Global Stratigraphic Correlation. SEPM Special Publication, 4: 3-31.
    [100] Coleman R G 1977. Ophiolite-ancient oceanic lithosphere? Springer-Verlag Berlin Heidellberg, New York.
    [101] Composton W, Williams I S and Meyer C. 1984. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J Geophys Res , 89 : B525-B534.
    [102] Cox K G Bell J D and Pankhurst R J. 1979. The interpretation of igneous rocks. Georege, Allen and Unwin, London.
    [103] Coulon C, Maluski H, Bollinger C, et al. 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar-40Ar dating, petrological characteristics and geodynamical significance. Earth Planetary Sci. Lett., 79: 281-302.
    [104] Dubinska E., Bylinab P., Kozlowski A., et al. 2004. U-Pb dating of serpentinization: hydrothermal zircon from a metasomatic rodingite shell (Sudetic ophiolite, SW Poland). Chem. Geol., 203: 183-203.
    [105] Dupre B and Allegre C J. 1983. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature, 303: 142-146.
    [106] Elthon D. 1991. Geochemical evidence for formation of the Bay of Islands ophiolite above a subduction zone. Nature, 354: 140-143.
    [107] Gansser A. 1964. Geology of the Himalayas. Interscience Publ. John wiley & Sons Ltd. London.
    [108] Gansser A. 1974. The Ophiolitic melange, a World-wide Problem on Tethyan Examples. Eclogae Geologique Helv, 67(3): 479-507.
    [109] Ghazi A M, Hassanipak A A, Mahoney J J et al. 2004. Geochemical characteristics, ~(40)Ar-~(39)Ar ages and original tectonic setting of the Band-e-Zeyarat/Dar Anar ophiolite, Makran accretionary prism, S.E. Iran. Tectonophysics, 393: 175- 196.
    [110] Girardeau J, Marcoux J, Allegre C J. 1984. Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature, 307:27-31.
    [111] Girardeau J and Mercier J C C. 1988. Petrology and texture of the ultramafic rocks of the Xigaze ophiolite (Tibet): constraints for mantle structure beneath slow-spreading ridges. Tectonophysis, 147: 33-58.
    [112] Gray D R, Hand M, Mawby J et al. 2004. Sm-Nd and Zircon U-Pb ages from arnet-bearing eclogites, NE Oman: constraints on High-P metamorphism. Earth and Planetary Science Letters, 222: 407- 422.
    [113] Green T H. 1994. Experimental studies of trace-element partitioning applicable to igneous petrogenesis-Sedona 16 years later. Chem. Geol., 117: 1~36.
    [114] Hart S R. 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309: 753-757.
    [115] Hart S R. 1988. Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth Planet Sci Lett, 90: 273-296.
    [116] Hawkesworth C J, Rogers N W, van Calsteren P W C et al. 1984. Mantle enrichment processes. Nature, 301: 331-335.
    [117] Hebert R, Huot F, Wang C -S et al. 2003. Yarlung Zangbo ophiolites (Southern Tibet) Revisited: geodynamic implications from the mineral record, in Dilek Y and Robinson P T (eds), Ophiolites in Earth History. London: Geological Society Special Publication. 218: 165-190.
    [118] Hickey-Vargas R. 1991. Isotope characteristics of submarine lava from the Philippine Sea: Implication for te origin of arc and basin magmas of the Philippine tectonic plate. Earth and Planetary Science Letters, 107: 290-304.
    [119] Hu Xufeng. 1999. Origin of Diamonds in Chromitites of the Luobusa Ophiolite, Southern Tibet, China. M Sc thesis, Dalhousie Univ, Halifax, Nova Scotia.
    [120] Isabella R.C. McDermid , Jonathan C. Aitchison, Aileen M. et al. 2002. The Zedong terrane: a Late Jurassic intra- oceanic magmatic arc within the Yarlung-Tsangpo suture zone, southeastern Tibet. Chem. Geol. 187: 267- 277.
    [121] Ishiwatari A. 1992. Circum-Pacific ophiolites: Time-space distribution and petrologic diversity. 29th Inter. Geol. Cong, Abstract, 1. Kyoto Japan. 132.
    [122] Jacobsen S B, Wasserburg G J. 1979. Nd and Sr isotopic study of Bay of Islands Ophiolite Complex and the evolution of the source of mid-ocean ridge basalts. J Geophys Res, 84: 7429-7445.
    [123] Janney P E & Castillo P R. 1996. Basalts from the Central Pacific basin: evidence for the origin of Cretaceous igneous complexes in the Jurassic western Pacific. Journal of Geophysical Research, 101: 2875-2893.
    [124] Janney P & Castillo P. 1997. Geochemistry of Mesozoic Pacific mid-ocean ridge basalt: constraints on melt generation and evolution of the Pacific upper mantle. Journal of Geophysical Research, 102: 5207-5229.
    [125] Kurth M, Sassen A, Suhr G et al. 1998. Precise ages and isotopic constraints for the Lewis Hills (Bay of Islands Ophiolite): Preservation of an arc-spreading ridge intersection. Geology, 26(12): 1127-1130.
    [126] Langmuir C H, Bender J F, Bence A E, Hanson G N and Taylor S R. 1977. Petrogenesis of basalts from the FAMOUS area: mid-Atlantic ridge. Earth Planet Sci Lett, 36: 133-156.
    [127] Lytwyn J N and Casey J F. 1995. The geochemistry of postkinematic mafic dike swarms and subophiolitic metabasites, Pozanti-Karsanti ophiolite, Turkey: Evidence for ridge subduction. GSA Bull., 107(7): 830-850.
    [128] Mahoney J J, LeRoex A P, Peng Z et al. 1992. Southwestern limits of Indian Ocean Redge mantle and the origin of low ~(206)Pb/~(204)Pb Mid-Ocean Ridge basalt: Isotope systematics of the
     Central Southwest Indian Ridge (17° -50° E). Journal of Geophysical Research, 97: 19771-19790.
    [129] Mahoney J J, Frei R, Tejada M L G et al. 1998. Tracing the Indian Ocean mantle domain through time: isotope results from old west Indian, East Tethyan, and South Pacific seafloor. Journal of Petrology, 39: 1285-1306.
    [130] Mahoney J J, Duncan R A, Tejada M L G, et a. 2005. A Jurassic-Cretaceous boundary age and MORB-type mantle source for Shatsky Rise. Geology, 33(3): 185-188.
    [131] Malpas J, Zhou M -F, Robinson P T and Reynolds P H. 2003. Geochemical and geochronological condtraints on the origin and emplacement of the Yarlung Zangbo ophiolites, Southern Tibet, in Dilek Y and Robinson P T (eds), Ophiolites in Earth History. London: Geological Society Special Publication. 218: 191-206.
    [132] McCulloch M T, Gregory R T, Wasserburg G J, et al. 1980. A neodymium, strontium and oxygen isotopic study of the Cretaceous Samail ophiolite and implication for the petrogenesis and seawater-hydrothermal alteration of oceanic crust. Earth Planet Sci Lett, 46:201-211.
    [133] McDermid I R C, Aitchison J C, Davis A M, Mark Harrison T and Grove M. 2002. The Zedong terrane: a Late Jurassic intra-oceanic magmatic arc within the Yarlung-Tsangpo suture zone, southeastern Tibet. Chem Geol. 187: 267- 277.
    [134] MeKenzie D, O' Nions R K. 1983. Mantle reservoirs and ocean island basalts. Nature, 301: 229-231.
    [135] Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem Geol, 56: 207-218.
    [136] Metcalfe I. 1996. Pre-Cretaceous evolution of SE Asian terranes. In: Hall R and Blundell D(eds.), Tectonic evolution of Southeast Asia. P.97-122.
    [137] Michard A, Montigny R and Schlich R. 1986. Geochemistry of the mantle beneath the Rodriguez Triple Junction and the South-east Indian Ridge. Earth and Planetary Science Letters, 78: 104-114.
    [138] Miyashiro A. 1973. The Troodos ophiolite was probably formed in an island arc. Earth Planet. Sci. Lett., 19: 218-224.
    [139] Miyashiro A. 1975. Classification, characteristics and origin of ophiolites. J. Geol., 83: 249-281.
    [140] Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: effects of a continental collision. Science, 189: 419-426.
    [141] Moores E M, Kellogg L H. & Dilek Y. 2000. Tethyan ophiolites, mantle convection, and tectonic "historical contingency": a resolution of the "ophiolite conundrum". In: Dilek Y, Moores E M, Elthon D & Nicolas A (eds), Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program. Geological Society of America, Special Papers 349,3-12.
    [142] Mukasa S B, McCabbe R and Gill J B. 1987. Pb-isotopic compositions of volcanic rocks in the west and east Philippine island arcs: Presence of the Dupal isotopic anomaly. Earth and Planetary Science Letters, 84: 153-164.
    [143] Nicolas A, Girardeau J, Marcoux J. 1981. The Xigaze ophiolite (Tibet): a peculiar oceanic lithosphere. Nature, 294: 414-417.
    [144] Parlak O, Hock V, Delaloye M. 2002. The supra-subduction zone Pozanti-Karsanti ophiolite,
     southern Turkey: evidence for high-pressure crystal fractionation of ultramafic cumulates. Lithos, 65: 205- 224.
    [145] Patriat P, Achache J. 1984. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311: 615-621.
    [146] Pearce J A. 1975. Basalt geochemistry used to investigate past tectonic environments on Cyprus. Tectonophysics, 25: 41-67.
    [147] Pearce J A and Cann J R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci Lett, 19: 290-300.
    [148] Pearce J A and Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rock. Contrib Mineral Petrol, 69: 33-47.
    [149] Pearce J A. 1983. The role of sub-continental lithosphere in magma genesis at destructive plate margins. In: Hawkesworth et al. (eds.), Continental Basalts and Mantle Xenoliths. Nantwich Shiva, 230-249.
    [150] Pearce J A. 1991. Ocean floor comes ashore. Nature, 14:110-111.
    [151] Pedersen R B, Searle M P, Corfield R I. 2001. U-Pb zircon ages from the Spontang ophiolite, Ladakh Himalaya. J Geol Soc London, 158: 513-520.
    [152] Plank T & Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145: 325-394.
    [153] Rampone E, Hofmann A W and Raczek I. 1998. Isotopic contrasts within the Internal Liguride ophiolite (N. Italy): the lack of a genetic mantle-crust link. Earth and Planetary Science Letters, 163: 175-189.
    [154] Robertson A, Jones G 1992. Tethyan versus circum-Pacific ophiolite terrains: cornparisons and overview.
    [155] Rollinson H R. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. New York: John Wiley & Sons, 155.
    [156] Rowley D B. 1998. Minimum age of initiation of collision between India and Asia North of Everest based on the subsidence history of the Zhepure Mountain section. The Journal of Geology, 106: 229-235.
    [157] Saunders A D, Norry M J and Tamey J. 1988. Origin of MORB and chemically depleted mantle reservoirs: trace element constraints. Journal of Petrology, 29(Special Lithosphere Issue): 425-445.
    [158] Searle M and Cox J. 1999. Tectonic setting, origin, and obduction of the Oman ophiolite. GSA Bull., 111(1): 104-122.
    [159] Stacey J S & Kramers J D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26: 207-221.
    [160] Steinmann G 1927. Die ophiolithischen zonen in dem mediterranen Kettengebirge. 14th Inter. Geol. Cong. Madrid, 2: 638-667.
    [161] Stille P, Unruh D M and Tatsumoto. 1983. Pb, Sr, Nd and Hf isotopic evidence of multiple sources for Oahu, Haweii basalts. Nature, 304: 25-29.
    [162] Stucki, A., Trommsdorf, V., Gunther, D., 2001. Zirconolite inmetarodingites of Penninic Mesozoic ophiolites, Central Alps. Schweiz. Mineral. Petrogr. Mitt. 81: 257-265.
    [163] Sun S -S. 1982. Chemical composition and origin of the earth's primitive mantle. Geochim Cosmochim Acta, 46: 179-192.
    [164] Sun S -S & McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Saunders A D & Norry M J (eds.), Magmatism in the Ocean Basins. Geological Society Special Publication No. 42, p.313-345.
    [165] Tapponnier P M, Ercier J L, Proust F et al. 1981. The Tibetan side of the India-Eurasia collision. Nature, 294: 405-410.
    [166] Tatsumoto M and Nakamura Y. 1991. Dupal anomaly in the Sea of Japan: Pb, Nd and Sr isotope variations at the eastern Eurasian continental margin. Geochimica et Cosmochimica Acta, 55: 3697-3708.
    [167] Thy P and Moores E M. 1988. Crustal accretion and tectonic setting of the Troodos ophiolite, Cyprus. Tectonophysics, 147: 221-245.
    [168] Tu K, Flower M F J, Calson R W et al. 1992. Magmatism in the South China basin 1: Isotopic and trace element evidence for an endogenous Dupal mantle component. Chemical Geology, 97: 47-62.
    [169] Wang C S, Liu Z F, Hebert R. 2000. The Yarlung-Zangbo paleo-ophiolite, southern Tibet: implications for the dynamic evolution of the Yarlung-Zangbo Suture Zone. Journal of Asian Earth Sciences, 18: 651~661.
    [170] Weaver B L and Tamey J. 1984. Empirical approach to estimating the composition of the continental crust. Nature, 310: 575.
    [171] Weis D, Bassias Y, Gautier I et al. 1989. Dupal anomaly in existence 115 Ma ago: Evidence from isotopic study of the Kergulen Plateau (south Indian Ocean). Geochimica et Cosmochimica Acta, 53: 2125-2131.
    [172] Weis D, Frey F A, Saunders A et al. 1991. Ninetyeast Ridge (Indian Ocean): A 5000 km record of a Dupal mantle plume. Geology, 19: 99-102.
    [173] Williams I S. 1992. Some observations on the use of zircon U-Pb geochronology in the study of granitc rocks. Trans R Soc Edinburgh-Earth Sci, 83 : 447-458.
    [174] Williams I S. 1998. U-Th-Pb geochronology by ion microprobe. McKibben M A, Shranks W C III, Ridley W I. Applications of microanalytical techniques to understanding mineralizing processes. Reviews in Economic Geology, 7.
    [175] Wilson M. 1989. Igneous Petrogenesis. London: Unwin Hyman.
    [176] Wood D A. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet Sci Lett, 50: 11-30.
    [177] Xu J -F, Castillo P R, Li X.-H, et al. 2002. MORB-type rocks from the Paleo-Tethyan Mian-Lueyang northern ophiolite in the Qinling Mountains, central China: implications for the source of the low ~(206)Pb/~(204)Pb and high ~(143)Nd/~(144)Nd mantle component in the Indian Ocean. Earth and Planetary Science Letters, 198: 323-337.
    [178] Xu J -F & Castillo P R. 2004. Geochemical and Nd-Pb isotopic characteristics of the Tethyan asthenosphere: implications for the origin of the Indian Ocean mantle domain. In: Flower M(ed.) Tectonophysics, Special Issue 393: 9-27.
    [179] Yin A, Harrison T M, Kyerson F J, et al. 1994. Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet. Journal of Geophysical Research, 99 (B9): 18175-18201.
    [180] Zhang Q, Zhou D -J, Shen L -P et al. 1992. Pb isotopic anomaly in ophiolite and oceanic island basalts, Western Yunnan. In: Memory of Lithosphere and Tectonic Evolution Research. No.1, P. 102-105. Beijing: Seismic Press.
    [181] Zhang S -Q, Mahoney J J, Mo X -X et al. 2005. Evidence for a Widespread Tethyan Upper
     Mantle with Indian-Ocean-Type Isotopic Characteristics. Journal of Petrology 46(4): 829-858.
    [182] Zhou M -F. 1995. Petrogenesis of the podiform chromitites in the Luobusa ophiolite, Southern Tibet. Ph. D. thesis, Dalhousie University.
    [183] Zhou M -F, Robinson P T, Malpas J et al. 1996. Podiform chromitites in the Luobusa ophiolite (Southern Tibet): Inplications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37: 3-21.
    [184] Zhou M -F and Robinson P T. 1997. Origin and tectonic environment of podiform chromite deposits. Economic Geology, 92: 259-262.
    [185] Zhou M -F, Robinson PT, Malpas J, Edwards SJ, Qi Liang. 2005. REE and PGE Geochemical Constraints on the Formation of Dunites in the Luobusa Ophiolite, Southern Tibet. J. Petrol. 47, 1-25.
    [186] Ziabrev S V, Aitchison J C, Abrajevitch A V, Zhu Badeng, Davis A M and Luo Hui. 2004. Bainang Terrane, Yarlung-Tsangpo suture, southern Tibet (Xizang, China): a record of intra-Neotethyan subduction-accretion processes preserved on the roof of the world. J Geol Soc, 161:523-538.
    [187] Zindler A, Hart S R. 1986. Chemical geodynamics. Ann Rev Earth Planet Sci, 14: 493-571.
    [188] Zou H, Zindler A, Xu X, et al. 2000. Major, trace element and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variation and tectonic significance. Chem Geol, 171: 33-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700