用户名: 密码: 验证码:
表达H5N1血凝素HAl重组乳酸菌的构建及其免疫效力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为研制安全、有效、方便操作的口服免疫禽流感活载体疫苗,本试验从健康成年鸡回盲肠黏膜处分离筛选到一株具有较强耐酸能力及较好上皮细胞粘附能力的鸡源乳杆菌DLD17.通过分子生物学的方法,我们构建了重组H5N1血凝素乳酸乳球菌表达质粒pMG36EH和重组H5N1血凝素乳酸乳杆菌表达质粒pLEM415-pH,通过电击转化分离的鸡源乳酸菌DLD17,乳酸乳球菌1363和嗜酸乳杆菌4356。我们获得了稳定表达禽流感血凝素蛋白的三株重组乳酸菌,即重组乳酸乳球菌LL36EH、重组鸡源乳杆菌DLD17-pH和重组嗜酸乳杆菌4356-pH.首先将三株重组乳酸菌口服免疫小鼠,及其产生的免疫效果进行了评价和比较。结果发现,重组鸡源乳杆菌DLD17-pH在诱导机体产生体液免疫、细胞免疫的效果最好。因此我们选用重组鸡源乳杆菌DLD17-pH口服免疫雏鸡并对其免疫效果进行了评价。结果证实,重组鸡源乳杆菌DLD17-pH能够在雏鸡的盲肠内定植并稳定繁殖。它不但较早、较快的诱导呼吸道、消化道黏膜禽流感特异性IgA抗体的产生,而且也能在一定程度上诱导全身性禽流感特异性IgG抗体的分泌。除此之外,重组鸡源乳杆菌DLD17-pH还能激活机体细胞免疫和先天性免疫反应,增强机体免疫防御能力。因此,重组鸡源乳杆菌DLD17-pH口服疫苗的研制,为预防和控制禽流感的传播提供了新的研究思路,为宿主乳酸菌作为活载体递送表达系统理论研究和实践应用奠定了基础。具体分为以下四个方面:
     1.鸡源乳酸菌的分离、鉴定与筛选
     首先从健康成年鸡盲肠黏膜处分离了22株革兰氏阳性菌株,设计细菌16s-rRNA细菌特异性引物,扩增每株细菌的16s片段,并与菌株信息库比对确定菌株的种属。再次筛选从而确定了5株鸡源乳酸菌(DLD-1、DLD-5、DLD-9、DLD-13、DLD-17)用作受体转化菌株备用。同时结合菌株生化发酵试验,鉴定了五株鸡源乳酸菌的属种。此外,我们还对五株鸡源乳杆菌的耐酸性、对Caco-2细胞粘附力以及抗生素敏感性进行测定。通过乳酸乳球菌1363和嗜酸乳杆菌4356作为电击转化阳性对照受体菌株,以乳酸乳球菌质粒pMG36E和乳酸杆菌质粒pLEM415为空载体质粒,进行感受态的制备和电转条件的摸索,确定了乳酸菌株转化的最优电击转化方案。获得最优转化方案后,对五株鸡源乳杆菌做电击转化筛选试验,筛选能够接受外源质粒的鸡源乳杆菌。试验结果证明,我们分离并筛选到的五株菌株中,一株为粪肠乳球菌DLD-1,一株为发酵乳酸杆菌(DLD-5),三株为唾液乳酸杆菌(分别为DLD-9、DLD-13、DLD-17)。通过电击转化筛选试验,我们得到一株鸡源乳杆菌适合接受外源性质粒,即唾液乳酸杆菌DLD17。
     2.表达H5N1血凝素重组乳酸菌的构建及其验证
     我们首先设计含有限制性内切酶SalI和HindⅢ的禽流感血凝素特异性上下游引物HAF1和HAF2,PCR扩增H5N1亚型高致病性禽流感(AIV)血凝素部分片段HAI,连接pMD19T载体,测序验证后,用限制性内切酶SalI和HindⅢ分步酶切表达质粒pMG36E和克隆质粒pMD19T-H,回收并连接载体骨架pMG36E与目的片段HA1,连接获得了乳酸乳球菌表达质粒pMG36E-H;通过电击转化的方法,获得重组乳酸乳球菌1363-EH(即含pMG36E-H),经SDS-PAGE和Western blot检验;结果表明,43KDa的血凝素蛋白在乳酸乳球菌内正确表达。同以上方法,我们也构建了重组血凝素乳酸杆菌的表达质粒pLEM415-pH。我们设计启动子引物P1和P2,扩增乳酸菌的乳酸脱氢酶(LDH)启动子P;血凝素引物HAF1和HAF2扩增乳杆菌血凝素片段HA1,通过分子生物学酶切连接的方案,将启动子P和血凝素基因HA1依次连接到乳杆菌空载体表达质粒pLEM415上,从而获得了重组乳酸杆菌表达质粒pLEM415-pH。然后通过电击转化的方法,转入到鸡源乳杆菌DLD17和嗜酸乳杆菌4356菌株内,获得两株重组血凝素基因的乳酸杆菌,分别是重组鸡源乳杆菌DLD17-pH和重组嗜酸乳杆菌4356-pH。通过蛋白电泳和Western-blot验证,结果表明,血凝素HA1可以在两株重组乳酸杆菌中表达。总之,我们获得了三株表达禽流感血凝素的重组乳酸菌,分别为重组乳酸乳球菌LL36EH、重组鸡源乳杆菌DLD17-pH和重组嗜酸乳杆菌4356-pH,为下面表达禽流感血凝素重组乳酸菌口服疫苗的研究奠定基础。
     3.三株重组乳酸菌口服免疫小鼠及其免疫效果的研究
     运用第二章转化获得的三株重组乳酸菌(1363-EH、DLD7-pH、LA4356-pH)口服免疫小鼠,研究小鼠呼吸道、消化道局部和全身免疫抗体水平的变化;以及分离免疫小鼠脾脏淋巴细胞,分析CD4+/CD8+、CD19+细胞亚群的变化;并在体外用血凝素HA1抗原特异性刺激来研究脾淋巴细胞增殖试验和细胞因子IFN-γ和IL-4的分泌情况。结果发现,1363-EH、4356-pH、D1D7-pH三株重组乳酸菌口服免疫小鼠,免疫后1周,其均可显著诱导肠道禽流感特异性IgA抗体的分泌;随着时间的加长,LL36EH、4356-pH两株免疫小鼠组的特异IgA抗体水平下降,而DLD-pH株免疫产生的禽流感抗体表达随时间增加处于稳定水平。由此可见,三株乳酸菌均能诱导局部黏膜免疫应答。而在气管内,仅有鸡源乳杆菌DLD17-pH免疫组诱导了特异性IgA的显著性分泌,其出现的时间比肠道晚一周。在全身性免疫反应的检测中,我们发现三株重组乳酸菌免疫后小鼠,血清内特异性IgG抗体和HI效价都较低,其中DLD17-pH免疫组小鼠抗体滴度最高为4.5(Log2).小鼠脾脏淋巴细胞激增殖试验和CD4+/CD8+、CD19+细胞亚群细胞的变化表明重组乳酸菌可在体内激活T淋巴细胞和B淋巴细胞;其中致敏的T淋巴细胞,主要以Th2型辅助性T细胞的增殖有关,而三株之间没有显著差异。由以上结果可知,三株表禽流感血凝素的重组乳酸菌,口服免疫小鼠后,在一定程度上均可刺激机体发生禽流感特异性体液、细胞免疫反应;但因菌株来源、特性的不同,免疫效果差别较大。重组鸡源乳杆菌DLD17-pH在诱导机体产生体液免疫、细胞免疫的效果最好,尤其可以有效诱导肠道、呼吸道黏膜特异性IgA抗体的分泌,更适合应用于家禽禽流感的黏膜免疫。
     4.重组鸡源乳杆菌DLD17-pH口服免疫雏鸡效果的研究
     运用第三章筛选的优良重组鸡源乳杆菌DLD17-pH口服免疫雏鸡,研究雏鸡呼吸道、消化道局部和全身免疫抗体水平的变化,并对重组鸡源乳杆菌DLD17-pH在雏鸡肠道内的定植情况进行检测;同时与禽流感灭活疫苗的免疫效果进行比较。结果发现:口服重组鸡源乳杆菌DLD17-pH,不但能诱导空肠、盲肠黏膜局部特异性IgA的产生,还能够诱导气管处黏膜特异性IgA的产生。此外,口服重组鸡源乳杆菌也能够诱导全身特异性IgG抗体的产生,但是水平较低。与皮下免疫禽流感灭活疫苗组相比,重组鸡源乳杆菌的口服免疫24h后,能显著上调消化道、呼吸道局部组织处的细胞因子IFN-γ、模式识别受体TLR-2、防御素AvBD-9的基因表达;而下调细胞因子IL-4基因的表达。盲肠内重组鸡源乳杆菌DLD17-pH数量的检测表明,口服免疫后,重组鸡源乳杆菌DLD17-pH能够粘附定植于盲肠黏膜处,并且在21天菌落较为稳定。总之,口服重组鸡源乳杆菌DLD17-pH不仅可以激活消化道局部组织早期细胞因子的分泌,而且在呼吸道、消化道局部以及全身均能有效的诱导禽流感特异性抗体的产生。因此口服表达重组鸡源乳杆菌DLD17-pH为家禽禽流感的预防和免疫提供了一条新的思路。
To develop a safe, effective, and convenient vaccine for the prevention of highly pathogenic avian influenza (HPAI), we separated a Lactobacillus DLD17with a strong acid capacity and better epithelial cell adhesion ability from a healthy adult chicken cecal mucosa. By using the methods of molecular biology, we have successfully constructed two recombinant expression plasmids pMG36EH (the expressing plasmid of Lactococcus lactis) and pLEM415-pH (the expressing plasmid of Lactobacillus). After transform recombinant plasmids into lactic acid bacteria Lactococcus lactis1363and Lactobacillus acidophilus4356by electroporation, we have constructed three recombinant bacterials (LL36EH, DLD17-pH and4356-pH) with stably expressing the foreign protein hemagglutininl (HA1) of HPAI virus. Immunizations were administered orally to the BALB/c mice three times at2-week intervals to evaluate the oral immune effect. Results showed that the humoral and cellular immune responses triggered by recombinant lactobacillus (DLD17-pH) were significant higher than that in other two groups. So we selected the recombinant lactobacillus (DLD17-pH) to proceed the next orally immunizations on chicken to evaluate the mucosal and systemic immune effective. The results showed that the recombinant chicken Lactobacillus (DLD17-pH) could stably colonizationand reproduction in the cecum of chickens. It was also demonstrated that the recombinant Lactobacillus (DLD17-pH) not only could triggered the production of the specific anti-HAl IgA antibody level in the mucosa of respiratory and intestinal, but also could increase the anti-HAl IgG secreation in system level. Our research also proved that DLD17-pH could activate the cellular immunity and innate immune response to enhance the immune defense capability. Therefore, DLD17-pH could be a promising oral vaccine candidate against HPAI. The development of recombinant Lactobacillus (DLD17-pH) oral vaccine not only provides a new research idea for the prevention and control of the spread of avian flu, but also laid the foundation for the application of host lactobacillus as live vector delivery system. I will discuss it from the following the four aspects.
     1. Isolation, identification and screening of lactic acid bacteria in chicken
     Firstly,22Gram positive strain, harvested from the cecal mucosa of health adult chicken, were identified by amplified16s-rRNA fragments of each strain of bacteria, and compared with determining strains of species and strains.Combined with the results of biochemical fermentation strains, the five species of lactic acid bacteria strains in chicken were determine as the receptor into strains. In addition, five strains of acid tolerance of Lactobacillus from chicken, Caco-2cell adhesion, and antibiotic sensitivity were determined. To determine the optimal shock transformation of lactic acid bacteria transformation program, lactococcus vector plasmid plem415blank pmg36e and Lactobacillus vector plasmid transfer lactococcus1363and4356as Lactobacillus acidophilus transformation receptor positive control strain of electric shock, competent preparation and electron conditions of trial and error. After the optimal conversion options, the five strains of Lactobacillus from chicken to do transformation filter test of electric shock, the filter can accept of exogenous plasmid of Lactobacillus from chicken. These results suggestion that isolate and filter down to five strains of strain, a milk Neisseria gonorrhoeae strains of fecal gut DLD-1, a strain of Lactobacillus fermentation (DLD-5), three for salivary Lactobacillus DLD-9, DLD-13, DLD-17, respectively. Through electric shocks into screening test, we get a strain of Lactobacillus from chicken suitable for exogenous plasmid, the salivary Lactobacillus DLD-17.
     2. Construction of recombinant H5N1haemagglutinin expression of lactic acid bacteria and its verification
     In this chapter, we firstly designed two primer HAF1and HAF2containing restrictive enzyme SalⅠ and HindⅢ. The part of fragment HA1in H5N1Asia type high pathogenic sexual avian influenza (AIV) blood coagulation were cloned into pmd19-T vector. After measuring sequence validation,. Linearized vector pmg36e and purpose fragment HA1with restrictive enzyme SalⅠ and HindⅢ were transfer recombinant lactic acid milk Neisseria gonorrhoeae, named1363-EH, through electric shock transformation. SDS-page and Western blot results indicate that blood coagulation pigment protein in lactic acid milk Neisseria gonorrhoeae were correctly express. As the above, we also constructed the expression plasmid of recombinant hemagglutinin Lactobacillus pLEM415-pH. To clone the promoter p of lactic acid dehydrogenation enzyme (LDH), two primer P1and P2were designed. Then promoter p and blood coagulation pigment gene HA1were connected to Bacillus vector pLEM415, constructing of recombinant lactic acid Bacillus expression pLEM415-pH. Secondly, vector pLEM415-pH were transfer through the method of transformation of electric shock, obtained two recombinant hemagglutinin gene of strains of Lactobacillus, namely4356-pH and DLD17-pH. Protein electrophoresis and Western-blot were shown that the haemagglutinin of HA1were expressed in two recombinant Lactobacillus strains. In short, we have three strains of lactic acid bacteria for recombinant expression of hemagglutinin of avian influenza, namely restructuring lactococcus1363-EH, recombinant of Lactobacillus acidophilus4356-pH and DLD17-pH, which laid a solid foundation for following expression of hemagglutinin of avian influenza research of recombinant Lactobacillus oral vaccine.
     3. Immunity levels of mouse after immunized orally with three recombinant lactic acid bacteria expressing H5
     Observe antibody changes of mouse respiratory and gastrointestinal tract and whole body after oral immunized with three recombinant lactic acid bacteria1363-EH, DLD7-pH and LA4356-pH. Isolate spleen lymphocytes of immunized mouse and analyze the ratio ofCD4+/CD8+, CD19+lymphocyte subpopulations. Observe proliferation and secretion level of IFN-y and IL-4lymphocytes in vitro under the stimulus of specific antigen HAL Results indicated that IgA level was significantly increased in gastrointestinal tract after oral immunizing with this three bacteria; IgA level oral immunized with LL36EH and4356-pH was decreased with the lengthening of immunized time, while IgA level of mouse immunized with DLD-pH keep stability. These show that these three bacteria can induce local mucosal immune responses. In trachea, only chicken Lactobacillus DLD17-pH group show significant specific IgA secretion, a week later than the gut. We found that IgG antibody level and HI titers in the serum mice immunes with the three recombinant lactic acid bacteria are low, immunized, it is up to4.5(the Log2) of mice immune with specific DLD17-pH. Integrated with lymphocytes proliferation test and the ratio of CD4+/CD8+,CD19+lymphocyte subpopulations, we found that recombinant lactic acid bacteria can activate T lymphocytes and B lymphocytes in the body; which is mainly caused by the proliferation of Th2type the helper T cells, whereas no significant differences between the three bacteria. To some extent, three recombinant lactic acid bacteria which can express the avian influenza hem agglutinin can stimulate specifically humeral and cellular immune response, but immune effect different because of the strain source, characteristics. DLD17-pH did best in inducing humeral and cellular immune response, particularly it can effectively induce intestinal secretion of specific IgA antibodies in the respiratory mucosa. Herein, DLD17-pH is most suitable for mucosal immunity applied to the bird flu in poultry.
     4. Study on Immune effect of recombinant chicken Lactobacillus DLD17-pH in chicks immunized orally
     Immune chicks orally with restructured chicken Lactobacillus DLD17-pH to research local and systemic antibody level changes in respiratory and digestive tract in chicks. Detect the colonization of DLD17-pH in chick intestinal and compare immune effects with avian influenza inactivated vaccine. The results showed that DLD17-pH can not induce the production of specific IgA in the jejunum, cecal mucosa local and trachea, but also can induce specific low-level IgG antibodies. Compared with the subcutaneous immunization of avian influenza inactivated vaccine group, DLD17-pH can significantly increase gene expression of cytokines IFN-y in the digestive and respiratory tract organizations locally, TLR-2, and AvBD, While decrease gene expression of cytokines IL-4. Increasing of DLD17-pH in the cecum shows DLD17-pH can colonize in the cecal mucosa. It keeps relatively stable on21th day. In summary, oral administration of recombinant Lactobacillus DLD17-pH can not only activate early cytokine secretion in the digestive tract local tissue, respiratory, but also can induce specific antibodies of the avian flu in whole body. Therefore, it provides a new train of thought for prevents poultry bird flu and immunity by oral immunization recombinant Lactobacillus DLD17-pH.
引文
[1]Spackmn, E., et al., Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avia H5 and H7 hemagglutinin subtypes. Journal of clinical microbiology, 2002.40(9):p.3256-3260.
    [2]Claas, E.C.J., et al., Human influenza A H5N1 virus related to a highly pathogenic avia influenza virus.The Lancet,1998.351(9101):p.472-477.
    [3]Ali,A., et al., Influenza virus assembly:effect of influenza virus glycoproteins on the membrane association of M1 protein. J Virol,2000.74(18):p.8709-8719.
    [4]Hulse, D.J., et al., Molecular determinants within the surface proteins involved in the pathogenicity ofH5N1 influenza viruses in chickens. Journal of Virology,2004.78(18):p.9954-9964.
    [5]Ng, A.K.L., et al., Structure of the influenza virus A H5N1 nucleoprotein:implications for RNA binding, oligomerization, and vaccine design. The FASEB Journal,2008.22(10):p.3638-3647.
    [6]Brown, E.G. and J.E. Bailly, Genetic analysis of mouse-adapted influenza A virus identifies roles for the NA,PBl, and PB2 genes in virulence. Virus research,1999.61(1):p.63-76.
    [7]Guan, Y, et al., Emergence of multiple genotypes of H5Nl avian influenza viruses in Hong Kong SAR. Proceedings of the National Academy of Sciences,2002.99(13):p.8950.
    [8]Ali, A., et al., Influenza virus assembly:effect of influenza virus glycoproteins on the membrane association of M1 protein. Journal of Virology,2000.74(18):p.8709-8719.
    [9]Kaleta, E., G. Hergarten, and A. Yilmaz, Avian influenza A viruses in birds:an ecological, ornithological and virological view. DTW. Deutsche tierarztliche Wochenschrift,2005.112(12):p. 448-456.
    [10]Starick, E., A. Ramer-Oberd(?)rfer, and O. Werner, Type-and Subtype-Specific RT-PCR Assays for Avian Influenza A Viruses (AⅣ). Journal of Veterinary Medicine, Series B,2000.47(4):p. 295-301.
    [11]Bullough, P.A., et al., Structure of influenza haemagglutinin at the pH of membrane fusion. Nature, 1994.371(6492):p.37-43.
    [12]Taubenberger, J.K., Influenza virus hemagglutinin cleavage into HA1, HA2:no laughing matter. Proceedings of the National Academy of Sciences,1998.95(17):p.9713.
    [13]Guan, Y., et al., H5N1 influenza:a protean pandemic threat. Proceedings of the National Academy of Sciences of the United States of America,2004.101(21):p.8156.
    [14]Ekiert, D.C., et al., Antibody recognition of a highly conserved influenza virus epitope. Science, 2009.324(5924):p.246-251.
    [15]Qiao, C., et al., Protection of chickens against highly lethal H5N1 and H7N1 avion influenza viruses with a recombinant fowlpox virus co-expressing H5 haemagglutinin and N1 neuraminidase genes. Avian Pathology,2003.32(1):p.25-31.
    [16]Swayne, D.E., J.R. Beck, and N. Kinney, Failure of a recombinant fowl poxvirus vaccine containing an avion influenza hemagglutinin gene to provide consistent protection against influenza in chickens preimmunized with a fowl pox vaccine. Avian Diseases,2000:p.132-137.
    [17]Zheng, L., et al., A single immunization with HA DNA vaccine by electroporation induces early protection against H5N1 avian influenza virus challenge in mice. BMC infectious diseases,2009. 9(1):p.17.
    [18]WANG, Q., et al., Construction of A Recombinant Adenovirus Expression Vector Containing the HA Gene of H5N1 Avian Influenza Virus. Journal of Henan Agricultural Sciences,2010.
    [19]Gao, W., et al., Protection of mice and poultry from lethal H5N1 avian influenza virus through adenovirus-based immunization. Journal of Virology,2006.80(4):p.1959-1964.
    [20]Lin, S.C., et al., Recombinant trimeric HA protein immunogenicity of H5N1 avian influenza viruses and their combined use with inactivated or adenovirus vaccines. Plos One,2011.6(5):p. e20052.
    [21]Tall, R.D., M.A. Alonso, and M.G. Roth, Features of influenza HA required for apical sorting differ from those required for association with DRMs or MAL. Traffic,2003.4(12):p.838-849.
    [22]Hu, X., et al., Comparative immunogenicity of recombinant adenovirus-vectored vaccines expressing different forms of hemagglutinin (HA) proteins from the H5 serotype of influenza A viruses in mice. Virus research,2011.155(1):p.156-162.
    [23]Baigent, S.J. and J.W. McCauley, Glycosylation of haemagglutinin and stalk-length of neuraminidase combine to regulate the growth of avian influenza viruses in tissue culture. Virus Res,2001.79(1-2):p.177-185.
    [24]Park, K.S., et al., Mucosal immunity induced by adenovirus-based H5N1 HPAI vaccine confers protection against a lethal H5N2 avian influenza virus challenge. Virology,2009.395(2):p. 182-189.
    [25]Pushko, P., et al., Influenza virus-like particles comprised of the HA, NA, and MI proteins ofH9N2 influenza virus induce protective immune responses in BALB/c mice. Vaccine,2005.23(50):p. 5751-5759.
    [26]Soda, K., et al., Development of vaccine strains ofH5 and H7 influenza viruses. Japanese Journal of Veterinary Research,2008.55(2-3):p.93-98.
    [27]Subbarao, K. and M.W. Shaw, Molecular aspects of avion influenza H5N1 viruses isolated from humans. Reviews in medical virology,2000.10(5):p.337-348.
    [28]Wasilenko, J.L., et al., NP, PB1, and PB2 viral genes contribute to altered replication of H5N1 avion influenza viruses in chickens. Journal of Virology,2008.82(9):p.4544-4553.
    [29]Korteweg, C. and J. Gu, Pathology, molecular biology, and pathogenesis of avion influenza A (H5N1) infection in humans. The American journal of pathology,2008.172(5):p.1155-1170.
    [30]Horimoto, T., et al., Enhanced growth of seed viruses for H5N1 influenza vaccines. Virology,2007. 366(1):p.23-27.
    [31]Gao, W., et al., Protection of mice and poultry from lethal H5N1 avion influenza virus through adenovirus-based immunization. J Virol,2006.80(4):p.1959-1964.
    [32]Roy, S., et al., Partial protection against H5N1 influenza in mice with a single dose of a chimpanzee adenovirus vector expressing nucleoprotein. Vaccine,2007.25(39-40):p.6845-6851.
    [33]Singh, N., et al., Bovine adenoviral vector-based H5N1 influenza vaccine overcomes exceptionally high levels of pre-existing immunity against human adenovirus. Mol Ther,2008.16(5):p.965-971.
    [34]Watanabe, Y, et al., Monoclonal antibody against the common beta subunit (beta c) of the human interleukin-3 (IL-3), IL-5, and granulocyte-macrophage colony-stimulating factor receptors shows upregulation of beta c by IL-1 and tumor necrosis factor-alpha. Blood,1992.80(9):p.2215-2220.
    [35]龚非力,医学免疫学(第二版).2004([M].北京:科学出版社).
    [36]Briskin, M.J., L. Rott, and E.C. Butcher, Structural requirements for mucosal vascular addressin binding to its lymphocyte receptor alpha 4 beta 7. Common themes among integrin-Ig family interactions. J Immunol,11996.156(2):p.719-726.
    [37]Gomes, J.A., et al., Ocular surface epithelium induces expression of human mucosal lymphocyte antigen (HML-Ⅰ) on peripheral blood lymphocytes. Br J Ophthalmol,2004.88(2):p.280-285.
    [38]Jang, M.H., et al., Intestinal villous M cells:an antigen entry site in the mucosal epithelium. Proceedings of the National Academy of Sciences of the United States of America,2004.101(16): p.6110.
    [39]Sharma, J.M., Overview of the avian immune system. Vet Immunol Immunopathol,1991.30(1):p. 13-7.
    [40]Sharma, J.M., The structure and function of the avian immune system. Acta Vet Hung,1997.45(3): p.229-238.
    [41]Reese, S., G. Dalamani, and B. Kaspers, The avian lung-associated immune system:a review. Vet Res,2006.37(3):p.311-324.
    [42]Friedman, A., et al., Oral tolerance:a biologically relevant pathway to generate peripheral tolerance against external and self antigens. Chem Immunol,1994.58:p.259-290.
    [43]Casteleyn, C., et al., Locations of gut-associated lymphoid tissue in the 3-month-old chicken:a review. Avian Pathol,2010.39(3):p.143-150.
    [44]McGhee, J.R., et al., Regulation of IgA synthesis and immune response by T cells and interleukins. J Clin Immunol,1989.9(3):p.175-199.
    [45]Khan, M.Z., et al., Development of T-lymphocyte subpopulations in the postnatal chicken oviduct. Cell Tissue Res,1996.284(2):p.317-325.
    [46]Kasabara, Y., C.H. Chen, and M.D. Cooper, Growth requirements for avion gamma delta T cells include exogenous cytokines, receptor ligation and in vivo priming. Eur J Immunol,1993.23(9):p. 2230-2236.
    [47]Bar-Shira, E., D. Sklan, and A. Friedman, Establishment of immune competence in the avion GALT during the immediate post-hatch period. Dev Comp Immunol,2003.27(2):p.147-157.
    [48]Chrzastek, K. and A. Wieliczko, Development ofB and T lymphocytes in primary lymphoid organs in birds. Medycyna Weterynaryjna,2011.67(2):p.97-100.
    [49]Vervelde, L., et al., Induction of a local and systemic immune response using cholera toxin as vehicle to deliver antigen in the lamina propria of the chicken intestine. Veterinary Immunology and Immunopathology,1998.62(3):p.261-272.
    [50]Andrewes, C. and A. Allison, Newcastle disease as a model for studies of experimental epidemiology. J. Hyg.(Camb.),1961.59:p.285-293.
    [51]Rahman, M.M., et al., Oral co-administration of live attenuated Salmonella enterica serovar Typhimurium expressing chicken interferon-alpha and interleukin-18 enhances the alleviation of clinical signs caused by respiratory infection with avion influenza virus H9N2. Vet Microbiol, 2011.
    [52]Wang, Y., et al., [Induction of potent immune responses by recombinant fowlpox virus with deleted ORF73 or ORF2I4J. Wei Sheng Wu Xue Bao,2010.50(4):p.512-516.
    [53]Zhang, GZ., et al., A safety assessment of a fowlpox-vectored Mycoplasma gallisepticum vaccine in chickens. Poult Sci,2010.89(6):p.1301-1306.
    [54]Bublot, M., et al., High level of protection induced by two fowlpox vector vaccines against a highly pathogenic avian influenza H5N1 challenge in specific-pathogen-free chickens. Avian Dis,2010. 54(1 Suppl):p.257-261.
    [55]Alemnesh, W., et al., Pathogenicity of fowl adenovirus in specific pathogen free chicken embryos. J Comp Pathol,2012.146(2-3):p.223-229.
    [56]Mansoor, M.K., et al., Preparation and evaluation of chicken embryo-adapted fowl adenovirus serotype 4 vaccine in broiler chickens. Trop Anim Health Prod,2011.43(2):p.331-338.
    [57]郭建强,姚立红,共表达H5N1流感病毒M1和HA基因的DN_省略_疫苗与腺病毒载体疫苗的小鼠免疫.生物工程学报,2010年第5期.
    [58]余丽芸,魏广丽,重组乳酸杆菌表达猪传染性胃肠炎病毒抗原表位中国兽医杂志,2009年.(第45卷)第3期.
    [59]Budin-Verneuil, A., et al., Proteomic characterization of the acid tolerance response in Lactococcus lactis MG1363. Proteomics,2005.5(18):p.4794-4807.
    [60]van Asseldonk, M., et al., Cloning of usp45, a gene encoding a secreted protein from Lactococcus lactis subsp. lactis MG1363. Gene,1990.95(1):p.155-160.
    [61]Law, J., et al., A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. Journal of Bacteriology,1995.177(24):p.7011-7018.
    [62]Wells, J.M., et al., Lactococcus lactis:high-level expression of tetanus toxin fragment C and protection against lethal challenge. Molecular microbiology,1993.8(6):p.1155-1162.
    [63]Zhang, Q.X., J. Zhong, and L.D. Huan, Expression of hepatitis B virus surface antigen determinants in Lactococcus lactis for oral vaccination. Microbiological Research,2011.166(2):p. 111-120.
    [64]Hu, S.M., et al., Characterization of a Novel LysM Domain from Lactobacillus fermentum Bacterlophage Endolysin and Its Use as an Anchor To Display Heterologous Proteins on the Surfaces of Lactic Acid Bacteria. Applied and environmental microbiology,2010.76(8):p. 2410-2418.
    [65]Sim, A.C.N., et al., Induction of neutralizing antibodies against dengue virus type 2 upon mucosal administration of a recombinant Lactococcus lactis strain expressing envelope domain Ⅲ antigen. Vaccine,2008.26(9):p.1145-1154.
    [66]Hanniffy, S.B., et al., Mucosal delivery of a pneumococcal vaccine using Lactococcus lactis affords protection against respiratory infection. J Infect Dis,2007.195(2):p.185-193.
    [67]Bahey-El-Din, M., et al., Lactococcus lactis-expressing listeriolysin O (LLO) provides protection and specific CD8(+) T cells against Listeria monocytogenes in the murine infection model. Vaccine, 2008.26(41):p.5304-5314.
    [68]Huibregtse, I.L., et al., Induction of Antigen-Specific Tolerance by Oral Administration of Lactococcus lactis Delivered Immunodominant DQ8-Restricted Gliadin Peptide in Sensitized Nonobese Diabetic Ab degrees Dq8 Transgenic Mice. Journal of Immunology,2009.183(4):p. 2390-2396.
    [69]Bermudez-Humaran, L., et al., Production of human papillomavirus type 16 E7 protein in Lactococcus lactis. Applied and environmental microbiology,2002.68(2):p.917-922.
    [70]Wei, C.-H., et al., Immunogenicity and protective efficacy of orally or intranasally administered recombinant Lactobacillus casei expressing ETEC K99. Vaccine,2010.28(24):p.4113-4118.
    [71]Adachi, K., et al., Oral immunization with a Lactobacillus casei vaccine expressing human papillomavirus (HPV) type 16 E7 is an effective strategy to induce mucosal cytotoxic lymphocytes against HPV16 E7. Vaccine,2010.28(16):p.2810-2817.
    [72]Qiao, X., et al., Recombinant porcine rotavirus VP4 and VP4-LTB expressed in Lactobacillus casei induced mucosal and systemic antibody responses in mice. Bmc Microbiology,2009.9(1):p.249.
    [73]Zeuthen, L.H., et al., Lactobacillus acidophilus induces a slow but more sustained chemokine and cytokine response in naive foetal enterocytes compared to commensal Escherichia coli. BMC Immunology,2010.11(1):p.2.
    [74]Yao, X.Y., M.M. Yuan, and D.J. Li, Mucosal inoculation of Lactobacillus expressing hCG beta induces an anti-hCG beta antibody response in mice of different strains. Methods,2006.38(2):p. 124-132.
    [75]Bermudez-Humaran, L.G, et al., Production of biological active murine IFN-gamma by recombinant Lactococcus lactis. Fems Microbiology Letters,2008.280(2):p.144-149.
    [76]Oliveira, M.L., et al., Induction of systemic and mucosal immune response and decrease in Streptococcus pneumoniae colonization by nasal inoculation of mice with recombinant lactic acid bacteria expressing pneumococcal surface antigen A. Microbes Infect,2006.8(4):p.1016-1024.
    [77]Ho, P.S., J. Kwang, and Y.K. Lee, Intragastric administration of Lactobacillus casei expressing transmissible gastroentritis coronavirus spike glycoprotein induced specific antibody production. Vaccine,2005.23(11):p.1335-1342.
    [78]Bolotin, A., et al., The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res,2001.11(5):p.731-53.
    [79]De Ruyter, P., et al., Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. Journal of Bacteriology,1996.178(12):p.3434-3439.
    [80]Mierau, I., et al., Optimization of the Lactococcus lactis nisin-controlled gene expression system NICE for industrial applications. Microbial cell factories,2005.4(1):p.16.
    [81]Mierau, I. and M. Kleerebezem,10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Applied Microbiology and Biotechnology,2005.68(6):p.705-717.
    [82]Sanders, J.W., et al., Identification of a sodium chloride-regulated promoter in Lactococcus lactis by single-copy chromosomal fusion with a reporter gene. Molecular and General Genetics MGG, 1998.257(6):p,681-685.
    [83]Bermudez-Humaran, L.G, et al., Production of human papillomavirus type 16 E7 protein in Lactococcus lactis. Appl Environ Microbiol,2002.68(2):p.917-922.
    [84]Asseldonk, M., W.M. Vos, and G. Simons, Functional analysis of the Lactococcus lactis usp45 secretion signal in the secretion of a homologous proteinase and a heterologous a-amylase. Molecular and General Genetics MGG,1993.240(3):p.428-434.
    [85]Dieluweit, S., D. Pum, and U. Sleytr, Formation of a gold superlattice on an S-layer with square lattice symmetry. Supramolecular Science,1998.5(1-2):p.15-19.
    [86]Sara, M. and U.B. Sleytr, S-layer proteins. Journal of Bacteriology,2000.182(4):p.859-868.
    [87]Sewaki, T., Generation of Mucosal Vaccine Utilizing Lactobacillus Display System. Yakugaku Zasshi-Journal of the Pharmaceutical Society of Japan,2009.129(11):p.1327-1332.
    [88]Navarre, W.W. and O. Schneewind, Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in Gram-positive bacteria. Molecular microbiology,1994.14(1):p. 115-121.
    [89]Ton-That, H., et al., Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proceedings of the National Academy of Sciences,1999.96(22):p.12424.
    [90]Piard, J., et al., Cell wall anchoring of the Streptococcus pyogenes M6 protein in various lactic acid bacteria. Journal of Bacteriology,1997.179(9):p.3068-3072.
    [91]Archer, GL., Staphylococcus aureus:a well-armed pathogen. Clinical infectious diseases,1998. 26(5):p.179-181.
    [92]Leenhouts, K., G. Buist, and J. Kok, Anchoring of proteins to lactic acid bacteria. Antonie Van Leeuwenhoek,1999.76(1):p.367-376.
    [93]Kamel, R.E. and Y. Bar-Ness. Anchored constant modulus algorithm (ACMA)for blind equalization. 1994:IEEE.
    [94]Galdeano CM, de LeBlanc AM, Vinderola G, Bonet MEB, Perdigon G Proposed model: mechanisms of immunomodulation induced by probiotic bacteria. Clinical and Vaccine Immunology,14(5),485-492 (2007).
    [95]Galdeano CM, Perdigon G The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clinical and Vaccine Immunology,13(2), 219-226 (2006).
    [96]Yan F, Polk DB. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. Science's STKE,277(52),50959 (2002).
    [97]Smits HH, Engering A, van der Kleij D et al. Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. Journal of Allergy and Clinical Immunology,115(6),1260-1267 (2005).
    [98]Christensen HR, Fr(?)kiaer H, Pestka JJ. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. The Journal of Immunology,168(1), 171-178 (2002).
    [99]O'Mahony L, McCarthy J, Kelly P et al. Lactobacillus and bifidobacterium in irritable bowel syndrome:symptom responses and relationship to cytokine profiles. Gastroenterology,128(3), 541-551 (2005).
    [100]Cross ML. Microbes versus microbes:immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens. FEMS Immunology & Medical Microbiology, 34(4),245-253 (2002).
    [101]Isolauri E, Sutas Y, Kankaanpaa P, Arvilommi H, Salminen S. Probiotics:effects on immunity. The American journal of clinical nutrition,73(2),444S-450S (2001).
    [102]Matsuzaki T, Chin J. Modulating immune responses with probiotic bacteria. Immunology and cell biology,78(1),67-73 (2000).
    [103]Madsen K. Probiotics and the immune response. Journal of clinical gastroenterology,40(3),232 (2006).
    [1]张素辉,.张素辉,曹国文和徐登峰等.仔猪粪便中乳酸菌的分离、鉴定及其抑菌特性的研究.饲料工业,2007.
    [2]Hartemink, R., V. Domenech, and F. Rombouts, LAMVAB—a new selective medium for the isolation of lactobacilli from faeces. Journal of microbiological methods,1997.29(2):p.77-84.
    [3]West, N., et al., Probiotics, immunity and exercise:a review. Exerc Immunol Rev,2009.15:p. 107-126.
    [4]Williams, N.T., Probiotics. American Journal of Health-System Pharmacy,2010.67(6):p.449-458.
    [5]Arunachalam, K., H. Gill, and R. Chandra, Enhancement of natural immune function by dietary consumption of Bifidobacterium lactis(HN 019). European journal of clinical nutrition,2000.54(3): p.263-267.
    [6]Chiang, B., et al., Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium(Bifidobacterium lactis HN 019):optimization and definition of cellular immune responses. European journal of clinical nutrition,2000.54(11):p.849-855.
    [7]Neeser, J.R., et al., Lactobacillus johnsonii Lal shares carbohydrate-binding specificities with several enteropathogenic bacteria. Glycobiology,2000.10(11):p.1193-1199.
    [8]Gill, H. and K. Rutherfurd, "Viability and dosenresponse studies on the effects of the immunoenhancing lactic acid bacterium Lactobacillus rhamnosus in mice. British Journal of Nutrition,2001.86(02):p.285-289.
    [9]Maassen, C., et al., Strain-dependent induction of cytokine profiles in the gut by orally administered Lactobacillus strains. Vaccine,2000.18(23):p.2613-2623.
    [10]Pavlova, S., et al., Genetic diversity of vaginal lactobacilli from women in different countries based on 16S rRNA gene sequences. Journal of applied microbiology,2002.92(3):p.451-459.
    [11]Hynonen, U., et al., Identification by flagellum display of an epithelial cell-and fibronectin-binding function in the SlpA surface protein of Lactobacillus brevis. Journal of Bacteriology,2002.184(12): p.3360-3367.
    [12]丁轲,余祖华和王天奇等.猪源肠道优良乳酸杆菌的筛选.饲料研究,2007.71(12):p.8344-8351.
    [13]Berthier, F., et al., Efficient transformation of Lactobacillus sake by electroporation. Microbiology-Uk,1996.142:p.1273-1279.
    [14]Fan, G.W., et al., Transformation of silage-making Lactobacillus strains by electroporation with plasmid vectors. Journal of the Faculty of Agriculture Kyushu University,1998.43(1-2):p. 217-225.
    [15]Aymerich, M.T., et al., ELECTROTRANSFORMATION OF MEAT LACTOBACILLI-EFFECT OF SEVERAL PARAMETERS ON THEIR EFFICIENCY OF TRANSFORMATION. Journal of Applied Bacteriology,1993.75(4):p.320-325.
    [16]Alegre, M.T., M.C. Rodriguez, and J.M. Mesas, Transformation of Lactobacillus plantarum by electroporation with in vitro modified plasmid DNA. Fems Microbiology Letters,2004.241(1):p. 73-77.
    [17]凌代文,东秀珠等.乳酸细菌分类鉴定及实验方法.中国轻工业出版社,1999.
    [18]张守印,李振军和张集等.16SrRNA基因序列分析在非典型菌株鉴定中的应用.中国卫生检验杂志.2008.
    [19]Roos, S., et al., Lactobacillus mucosae sp nov., a new species with in vitro mucus-binding activity isolated from pig intestine. International Journal of Systematic and Evolutionary Microbiology, 2000.50:p.251-258.
    [20]Mitsuoka, T. and T. Fujisawa, LACTOBACILLUS-HAMSTERI, A NEW SPECIES FROM THE INTESTINE OF HAMSTERS. Proceedings of the Japan Academy Series B-Physical and Biological Sciences,1987.63(7):p.269-272.
    [21]Pouwels, P.H., et al., Lactic acid bacteria as antigen delivery vehicles for oral immunization purposes. International Journal of Food Microbiology,1998.41(2):p.155-167.
    [22]Beveridge, T.J., et al., Functions of S-layers. Fems Microbiology Reviews,1997.20(1-2):p. 99-149.
    [1]Dachet, F., D. Roy, and G. LaPointe, Changes in transcription profiles reflect strain contributions to defined cultures of Lactococcus lactis subsp cremoris during milk fermentation. Dairy Science& Technology,2011.91(5):p.555-572.
    [2]Shinkawa, S., et'al., Improved homo l-lactic acid fermentation from xylose by abolishment of the phosphoketolase pathway and enhancement of the pentose phosphate pathway in genetically modified xylose-assimilating Lactococcus lactis. Applied Microbiology and Biotechnology,2011. 91(6):p.1537-1544.
    [3]Klijn, N., A.H. Weerkamp, and W.M. de Vos, Genetic marking of Lactococcus lactis shows its survival in the human gastrointestinal tract. Appl Environ Microbiol,1995.61(7):p.2771-2774.
    [4]Bahey-El-Din, M., et al., Expression of two Listeria monocytogenes antigens (P60 and LLO) in Lactococcus lactis and examination for use as live vaccine vectors. Journal of Medical Microbiology,2010.59(8):p.904-912.
    [5]Sim, A.C.N., et al., Induction of neutralizing antibodies against dengue virus type 2 upon mucosal administration of a recombinant Lactococcus lactis strain expressing envelope domain Ⅲ antigen. Vaccine,2008.26(9):p.1145-1154.
    [6]Huibregtse, I.L., et al.. Induction of Antigen-Specific Tolerance by Oral Administration of Lactococcus lactis Delivered Immunodominant DQ8-Restricted Gliadin Peptide in Sensitized Nonobese Diabetic Ab degrees Dq8 Transgenic Mice. Journal of Immunology,2009.183(4):p. 2390-2396.
    [7]Daniels, R., et al., Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell,2006. 40(2):p.431-439.
    [8]Schulman, J. and E. Kilbourne, Independent variation in nature of hemagglutinin and neuraminidase antigens of influenza virus:distinctiveness of hemagglutinin antigen of Hong Kong/68 virus. Proceedings of the National Academy of Sciences,1969.63(2):p.326.
    [9]Qiao, C., et al., Protection of chickens against highly lethal H5N1 and H7N1 avion influenza viruses with a recombinant fowlpox virus co-expressing H5 haemagglutinin and N1 neuraminidase genes. Avian Pathology,2003.32(1):p.25-31.
    [10]Imai, M., et al., Rapid diagnosis of H5N1 avian influenza virus infection by newly developed influenza H5 hemagglutinin gene-specific loop-mediated isothermal amplification method. Journal of virological methods,2007.141(2):p.173-180.
    [11]van Ginkel, F.W., et al., Induction of mucosal immunity in the avian Harderian gland with a replication-deficient Ad5 vector expressing avion influenza H5 hemagglutinin. Developmental & Comparative Immunology,2009.33(1):p.28-34.
    [12]Wesley, R.D. and K.A. Lager, Overcoming maternal antibody interference by vaccination with human adenovirus 5 recombinant viruses expressing the hemagglutinin and the nucleoprotein of swine influenza virus. Veterinary Microbiology,2006.118(1-2):p.67-75.
    [13]Wesley, R.D., M. Tang, and K.M. Lager, Protection of weaned pigs by vaccination with human adenovirus 5 recombinant viruses expressing the hemagglutinin and the nucleoprotein ofH3N2 swine influenza virus. Vaccine,2004.22(25-26):p.3427-3434.
    [14]颜焰,陈洪勋和李玲燕.重组H5亚型流感病毒HAl抗原的制备及其特性分析.中国兽医学报,2009.29(1):1-5.
    [15]杨坤宇,何芳萍和李少伟.重组毕赤酵母高密度发酵表达H5N1禽流感病毒糖蛋白.生物工程学报,2009.2009,25(5):773-778.
    [16]唐丽杰,欧笛和葛俊伟.表达猪传染性胃肠炎病毒S基因的重组乳酸乳球菌的构建及免疫原性分析.微生物学报,2007.47(2):340-344.
    [17马海利,金宁一,李昌,杜桢,阚秋霞和陈晓月.乳酸菌质粒提取方法的建立.中国生物制品学杂志,2008.21(3):237-247.
    [18]O'Sullivan, D.J. and T.R. Klaenhammer, Rapid mini-prep isolation of high-quality plasmid DNA from Lactococcus and Lactobacillus spp. Applied and Environmental Microbiology,1993.59(8):p. 2730-2733.
    [19]陈全姣,金梅林和陈焕春.禽流感病毒HA部分基因的克隆及其表达.中国病毒学,2005.2005,20(1):87-88..
    [20]孔娜,田夫林和兰邹然.H5亚型AⅣHA1基因与鸡IL18基因共表达载体的构建及其表达.中国兽医学报,2009.2009,29(8):986-1007.
    [21]Kodihalli, S., et al., DNA vaccine encoding hemagglutinin provides protective immunity against H5N1 influenza virus infection in mice. Journal of Virology,1999.73(3):p.2094-2098.
    [22]Gao, W., et al., Protection of mice and poultry from lethal H5N1 avion influenza virus through adenovirus-based immunization. Journal of Virology,2006.80(4):p.1959-1964.
    [23]Khurana, S., et al., Vaccines with MF59 adjuvant expand the antibody repertoire to target protective sites of pandemic avion H5N1 influenza virus. Science translational medicine,2010.2(15):p. 15ra5-15ra5.
    [24]Khurana, S., et al., Bacterial HA1 vaccine against pandemic H5N1 influenza virus:evidence of oligomerization, hemagglutination, and cross-protective immunity in ferrets. Journal of Virology, 2011.85(3):p.1246-1256.
    [25]Wilting, J., et al., Development of the avion lymphatic system. Microscopy Research and Technique, 2001.55(2):p.81-91.
    [26]Papoutsi, M., et al., Endogenous origin of the lymphatics in the avion chorioallantoic membrane. Developmental Dynamics,2001.222(2):p.238-251.
    [27]Buccato, S., et al., Use of Lactococcus lactis expressing pili from group B Streptococcus as a broad-coverage vaccine against streptococcal disease. Journal of Infectious Diseases,2006.194(3): p.331-340.
    [28]Del Rio, B., et al., Oral immunization with recombinant Lactobacillus plantarum induces a protective immune response in mice with Lyme disease. Clinical and Vaccine Immunology,2008. 15(9):p.1429-1435.
    [29]Kim, S.J., et al., Expression of Helicobacter pylori cag12 gene in Lactococcus lactis MG1363 and its oral administration to induce systemic anti-Cag12 immune response in mice. Applied Microbiology and Biotechnology,2006.72(3):p.462-470.
    [30]Seegers, J.F.M.L., Lactobacilli as live vaccine delivery vectors:progress and prospects. TRENDS in Biotechnology,2002.20(12):p.508-515.
    [31]Pouwels, P.H. and RJ. Leer, Genetics of lactobacilli:plasmids and gene expression. Antonie van Leeuwenhoek,1993.64(2):p.85-107.
    [32]Cangemi de Gutierrez, R., V. Santos, and M.E. Nader-Macias, Protective effect of intranasally inoculated Lactobacillus fermentum against Streptococcus pneumoniae challenge on the mouse respiratory tract FEMS Immunology & Medical Microbiology,2001.31(3):p.187-195.
    [33]Avfa, Y., et al., Lactic acidmediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model. Am J Gastroenterol,1998. 93:p.2097-2101.
    [34]Adachi, K., et al., Oral immunization with a Lactobacillus casei vaccine expressing human papillomavirus (HPV) type 16 E7 is an effective strategy to induce mucosal cytotoxic lymphocytes against HPV16 E7. Vaccine,2010.28(16):p.2810-2817.
    [35]Benkerroum, N., et al., Lyophilized preparations of bacteriocinogenic Lactobacillus curvatus and Lactococcus lactis subsp. lactis as potential protective adjuncts to control Listeria monocytogenes in dry-fermented sausages. Journal of applied microbiology,2005.98(1):p.56-63.
    [36]Molina-Gutierrez, A., et al., In situ determination of the intracellular pH of Lactococcus lactis and Lactobacillus plantarum during pressure treatment. Applied and Environmental Microbiology, 2002.68(9):p.4399-4406.
    [37]Yu, Q.H., et al., Use of green fluorescent protein to monitor Lactobacillus in the gastro-intestinal tract of chicken. FEMS Microbiology Letters,2007.275(2):p.207-213.
    [38]Yao, X.Y., et al., Inoculation of< i> Lactobacillus expressing hCGβ in the vagina induces an anti-hCGβ antibody response in murine vaginal mucosa. Journal of reproductive immunology, 2004.63(2):p.111-122.
    [39]Sleytr, U.B., et al., Crystalline bacterial cell surface layers (S layers):from supramolecular cell structure to biomimetics and nanotechnology. Angewandte Chemie International Edition,1999. 38(8):p.1034-1054.
    [1]Wan, X.F., et al., Genetic characterization of H5N1 avian influenza viruses isolated in southern China during the 2003-04 avian influenza outbreaks. Archives of virology,2005.150(6):p. 1257-1266.
    [2]Pan, Z., et al., Priming with a DNA vaccine delivered by attenuated Salmonella typhimurium and boosting with a killed vaccine confers protection of chickens against infection with the H9 subtype of avian influenza virus. Vaccine,2009.27(7):p.1018-1023.
    [3]Sarfati-Mizrahi, D., et al., Protective dose of a recombinant Newcastle disease Lasota-avian influenza virus H5 vaccine against H5N2 highly pathogenic avian influenza virus and velogenic viscerotropic Newcastle disease virus in broilers with high maternal antibody levels. Avian diseases, 2010.54(s1):p.239-241.
    [4]Wei, C.H., et al., Immunogenicity and protective efficacy of orally or intranasally administered recombinant Lactobacillus casei expressing ETEC K99. Vaccine,2010.28(24):p.4113-4118.
    [5]Pan, Z., et al., Priming with a DNA vaccine delivered by attenuated Salmonella typhimurium and boosting with a killed vaccine confers protection of chickens against infection with the H9 subtype of avian influenza virus. Vaccine,2009.27(7):p.1018-1023.
    [6]Govorkova, E.A., et al., Amino acid changes in the hemagglutinin and matrix proteins of influenza a (H2) viruses adapted to mice. Acta Virol,2000.44(5):p.241-248.
    [7]Smirnov Iu, A., et al., [A common antigenic epitope in influenza A virus (HI, H2, H5, H6) hemagglutinin]. Vopr Virusol,1999.44(3):p.111-115.
    [8]孔娜,田夫林.H5亚型AIV HA1基因与鸡IL 18基因共表达载体的构建及其表达.Gastroenterology,2009.29 (8):986-1007.
    [9]Khurana, S., et al., Bacterial HA1 Vaccine against Pandemic H5N1 Influenza Virus:Evidence of Oligomerization, Hemagglutination, and Cross-Protective Immunity in Ferrets. Journal of Virology, 2011.85(3):p.1246-1256.
    [10]Kodihalli, S., et al., DNA vaccine encoding hemagglutinin provides protective immunity against H5N1 influenza virus infection in mice. Journal of Virology,1999.73(3):p.2094-2098.
    [11]Lee, C.W., D.A. Senne, and D.L. Suarez, Effect of vaccine use in the evolution of Mexican lineage H5N2 avian influenza virus. Journal of Virology,2004.78(15):p.8372-8381.
    [12]Lei, H., et al., Evaluation of Oral Immunization with Recombinant Avian Influenza Virus HA1 Displayed on the Lactococcus lactis Surface and Combined with the Mucosal Adjuvant Cholera Toxin Subunit B. Clinical and Vaccine Immunology,2011.18(7):p.1046-1051.
    [13]Spitsin, S., et al., Immunological assessment of plant-derived avian flu H5/HA1 variants. Vaccine, 2009.27(9):p.1289-1292.
    [14]Villena J, Medina M, Raya R, Alvarez S. Oral immunization with recombinant Lactococcus lactis confers protection against respiratory pneumococcal infection. Canadian Journal of Microbiology, 54(10),845-853 (2008).
    [15]Saarela M, Mogensen G, Fonden R, Matto J, Mattila-Sandholm T. Probiotic bacteria:safety, functional and technological properties. J Biotechnol,84(3),197-215 (2000).
    [16]Corthesy B, Boris S, Isler P, Grangette C, Mercenier A. Oral immunization of mice with lactic acid bacteria producing Helicobacter pylori urease B subunit partially protects against challenge with Helicobacter felis. J Infect Dis,192(8),1441-1449 (2005).
    [17]Scavone P, Miyoshi A, Rial A et al. Intranasal immunisation with recombinant Lactococcus lactis displaying either anchored or secreted forms of Proteus mirabilis MrpA fimbrial protein confers specific immune response and induces a significant reduction of kidney bacterial colonisation in mice. Microbes and Infection,9(7),821-828 (2007).
    [18]Zhang ZH, Jiang PH, Li NJ, Shi M, Huang W. Oral vaccination of mice against rodent malaria with recombinant Lactococcus lactis expressing MSP-1(19). World J Gastroenterol,11(44),6975-6980 (2005).
    [19]Mannam P, Jones KF, Geller BL. Mucosal vaccine made from live, recombinant Lactococcus lactis protects mice against pharyngeal infection with Streptococcus pyogenes. Infect Immun,72(6), 3444-3450 (2004).
    [20]Kim, S.J., et al., Expression of Helicobacter pylori cag12 gene in Lactococcus lactis MG1363 and its oral administration to induce systemic anti-Cag12 immune response in mice. Appl Microbiol Biotechnol,2006.72(3):p.462-70.
    [21]Oliveira, M.L., et al., Induction of systemic and mucosal immune response and decrease in Streptococcus pneumoniae colonization by nasal inoculation of mice with recombinant lactic acid bacter ia expressing pneumococcal surface antigen A. Microbes Infect,2006.8(4):p.1016-1024.
    [22]Ferrick DA, Schrenzel MD, Mulvania T, Hsieh B, Ferlin WG, Lepper H. Differential production of interferon-y and interleukin-4 in response to Thl-and Th2-stimulating pathogens by γδ T cells in vivo. (1995).
    [23]Kajikawa, A., et al., Intragastric immunization with recombinant Lactobacillns casei expressing flagellar antigen confers antibody-independent protective immunity against Salmonella enterica serovar Enteritidis. Vaccine,2007.25(18):p.3599-3605.
    [24]Yao XY, Wang HM, Li DJ et al. Inoculation of Lactobacillus expressing hCG beta in the vagina induces an anti-hCG beta antibody response in murine vaginal mucosa. J Reprod Immunol,63(2), 111-122(2004).
    [25]Liu G, Zhong J, Ni J, Chen M, Xiao H, Huan L. Characteristics of the bovicin HJ50 gene cluster in Streptococcus bovis HJ50. Microbiology,155(2),584-593 (2009).
    [26]Wang J, Gusti V, Saraswati A, Lo DD. Convergent and Divergent Development among M Cell Lineages in Mouse Mucosal Epithelium. The Journal of Immunology,187(10),5277-5285 (2011).
    [27]Jang MH, Kweon MN, Iwatani K et al. Intestinal villous M cells:an antigen entry site in the mucosal epithelium. Proceedings of the National Academy of Sciences of the United States of America,101(16),6110 (2004)
    [1]Borriello, S., et al., Safety ofprobiotics that contain lactobacilli or bifidobacteria. Clinical infectious diseases,2003.36(6):p.775-780.
    [2]Shahani, K.M. and A.D. Ayebo, Role of dietary lactobacilli in gastrointestinal microecology. American Journal of Clinical Nutrition,1980.33(11, Supplement):p.2448-2457.
    [3]Coconnier, M.H., et al., Inhibition of adhesion of enteroinvasive pathogens to human intestinal Caco-2 cells by Lactobacillus acidophilus strain LB decreases bacterial invasion. Fems Microbiology Letters,1993.110(3):p.299-305.
    [4]Blomberg, L., A. Henriksson, and P. Conway, Inhibition of adhesion of Escherichia coli K88 to piglet ileal mucus by Lactobacillus spp. Applied and environmental microbiology,1993.59(1):p.34-39.
    [5]Sheih, Y.H., et al., Systemic immunity-enhancing effects in healthy subjects following dietary consumption of the lactic acid bacterium Lactobacillus rhamnosus HN001. Journal of the American College of Nutrition,2001.20(2):p.149-156.
    [6]Isolauri, E., et al., Probiotics:effects on immunity. The American journal of clinical nutrition,2001. 73(2):p.444S-450S.
    [7]Kunz, A.N., J.M. Noel, and M.P. Fairchok, Two cases of Lactobacillus bacteremia during probiotic treatment of short gut syndrome. Journal of Pediatric Gastroenterology and Nutrition,2004.38(4): p.457.
    [8]Pouwels, P.H., et al, Lactic acid bacteria as antigen delivery vehicles for oral immunization purposes. International Journal of Food Microbiology,1998.41(2):p.155-167.
    [9]Seegers, J.F.M.L., Lactobacilli as live vaccine delivery vectors:progress and prospects. TRENDS in Biotechnology,2002.20(12):p.508-515.
    [10]Mohamadzadeh, M., et al., Dendritic cell targeting of Bacillus anthracis protective antigen expressed by Lactobacillus acidophilus protects mice from lethal challenge. Proceedings of the National Academy of Sciences of the United States of America,2009.106(11):p.4331-4336.
    [11]Li, Y.G, et al., Immune responses generated by< i> Lactobacillus as a carrier in DNA immunization against foot-and-mouth disease virus. Vaccine,2007.25(5):p.902-911.
    [12]Bernasconi, E., et al., Lactobacillus bulgaricus proteinase expressed in Lactococcus lactis is a powerful carrier for cell all-associated and secreted bovine β-lactoglobulin fusion proteins. Applied and environmental microbiology,2002.68(6):p.2917-2923.
    [13]Zeuthen, L.H., et al., Lactobacillus acidophilus induces a slow but more sustained chemokine and cytokine response in naive foetal enterocytes compared to commensal Escherichia coli. BMC Immunology,2010.11(1):p.2.
    [14]Poo, H., et al., Oral administration of human papillomavirus type 16 E7 displayed on Lactobacillus casei induces E7-specific antitumor effects in C57/BL6 mice. Int J Cancer,2006.119(7):p.1702-9.
    [15]Vesa, T., P. Pochart, and P. Marteau, Pharmacokinetics of Lactobacillus plantarum NCIMB 8826, Lactobacillus fermentum KLD, and Lactococcus lactis MG 1363 in the human gastrointestinal tract. Aliment Pharmacol Ther,2000.14(6):p.823-828.
    [16]Zhang, M., et al., Structural shifts of mucosa-associated lactobacilli and Clostridium leptum subgroup in patients with ulcerative colitis. J Clin Microbiol,2007.45(2):p.496-500.
    [17]Webster, R.G, et al., Efficacy of nucleoprotein and haemagglutinin antigens expressed infowlpox virus as vaccine for influenza in chickens. Vaccine,1991.9(5):p.303-308.
    [18]郭建强,姚立红.共表达H5N1流感病毒M1和HA基因的DN省略疫苗与腺病毒载体疫苗的小鼠免疫.生物工程学报,2010年第5期.
    [19]Das SC, Isobe N, Yoshimura Y. Expression of Toll-like receptors and avian beta-defensins and their changes in response to bacterial components in chicken sperm. Poultry Science,90(2),417-425 (2011).
    [20]Brisbin JT, Gong J, Parvizi P, Sharif S. Effects of Lactobacilli on Cytokine Expression by Chicken Spleen and Cecal Tonsil Cells. Clinical and Vaccine Immunology,17(9),1337-1343 (2010).
    [21]Lee KW, Lee SH, Lillehoj HS et al. Effects of direct-fed microbials on growth performance, gut morphometry, and immune characteristics in broiler chickens. Poultry Science,89(2),203-216 (2010).
    [22]Lorenzoni, A.G and R.F. Wideman, Intratracheal administration of bacterial lipopolysaccharide elicits pulmonary hypertension in broilers with primed airways. Poultry Science,2008.87(4):p. 645-654.
    [23]Yager, E.J., et al., Particle-mediated DNA vaccines against seasonal and pandemic influenza viruses elicit strong mucosal antibody and T cell responses in the lung, in DNA Vaccines 2010, R. Spier, Editor.2010. p.2-11.
    [24]Yang, XJ., et al., Effects of immune stress on growth performance, immunity, and cecal microflora in chickens. Poultry Science,2011.90(12):p.2740-2746.
    [25]van Ginkel, F.W., et al., Conjunctiva-associated lymphoid tissue in avion mucosal immunity. Developmental and Comparative Immunology,2012.36(2):p.289-297.
    [26]Alexander, R. and H. Mestecky, Neutralizing antibodies in mucosal secretions:IgG or IgA? Current Hiv Research,2007.5(6):p.588-593.
    [27]Geuking, M.B., K.D. McCoy, and A.J. Macpherson, The function of secretory IgA in the context of the intestinal continuum of adaptive immune responses in host-microbial mutualism. Seminars in Immunology,2012.24(1):p.36-42.
    [28]Mackie, R.I., A. Sghir, and H.R. Gaskins, Developmental microbial ecology of the neonatal gastrointestinal tract. The American journal of clinical nutrition,1999.69(5):p.1035S-1045S.
    [29]Wei, C.H., et al., Immunogenicity and protective efficacy of orally or intranasally administered recombinant Lactobacillus casei expressing ETECK99. Vaccine,2010.28(24):p.4113-4118.
    [30]龚非力,医学免疫学(第二版).2004([M].北京:科学出版社).
    [31]Akira, S., Mammalian Toll-like receptors. Current Opinion in Immunology,2003.15(1):p.5-11.
    [32]Kumar, H., T. Kawai, and S. Akira, Toll-like receptors and innate immunity. Biochemical and Biophysical Research Communications,2009.388(4):p.621-625.
    [33]Matsuguchi, T., et al., Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor alpha-inducing activities in macrophages through Toll-like receptor 2. Clinical and Diagnostic Laboratory Immunology,2003.10(2):p.259-266.
    [34]Shimosato, T., et al., Swine Toll-like receptor 9 recognizes CpG motifs of human cell stimulant. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression,2003.1627(1):p.56-61.
    [35]Shimosato, T., et al., Augmentation of TH-1 type response by immunoactive AT oligonucleotidefrom lactic acid bacteria via Toll-like receptor 9 signaling. Biochemical and Biophysical Research Communications,2005.326(4):p.782-787.
    [36]Kopf, M., et al., Disruption of the murine IL-4gene blocks Th2 cytokine responses.1993.
    [37]Bradley, L.M., K. Yoshimoto, and S.L. Swain, The cytokines IL-4, IFN-gamma, and IL-12 regulate the development of subsets of memory effector helper T cells in vitro. The Journal of Immunology, 1995.155(4):p.1713.
    [38]Wong, C.K., et al., Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus,2000.9(8):p.589-593.
    [39]Kallmann, B., et al., Systemic bias of cytokine production toward cell-mediated immune regulation in IDDM and toward humoral immunity in Graves'disease. Diabetes,1997.46(2):p.237-243.
    [40]Nakae, S., et al., Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. The Journal of Immunology,2003.171(11):p.6173-6177.
    [41]Ottenhoff, T.H.M., D. Kumararatne, and J.L. Casanova, Novel human immunodeficiencies reveal the essential role of type-1 cytokines in immunity to intracellular bacteria. Immunology today, 1998.19(11):p.491-494.
    [42]Lee, P., A. Abdul-Wahid, and GA. Faubert, Comparison of the local immune response against Giardia lamblia cyst wall protein 2 induced by recombinant Lactococcus lactis and Streptococcus gordonii. Microbes and Infection,2009.11(1):p.20-28.
    [43]Martin, M., et al., Cloning, production and expression of the bacteriocin enterocin A produced by Enterococcus faecium PLBC21 in Lactococcus lactis. Applied Microbiology and Biotechnology, 2007.76(3):p.667-675.
    [44]Adel-Patient, K., et al., Oral administration of recombinant Lactococcus lactis expressing bovine beta-lactoglobulin partially prevents mice from sensitization. Clinical and Experimental Allergy, 2005.35(4):p.539-546.
    [45]Christensen, H.R., H. Fr(?)kiaer, and J.J. Pestka, Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. The Journal of Immunology, 2002.168(1):p.171-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700