用户名: 密码: 验证码:
农药对小菜蛾热生物学特征的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了小菜蛾(Plutella xylostella (Linn.))幼虫体温与环境温度的关系,测定了小菜蛾卵、各龄幼虫、蛹及成虫的过冷却点及冰点,观察了小菜蛾幼虫由高温环境转移至低温环境及由低温环境转移至高温环境时的生理性体温调节能力,探讨了阿维菌素、毒死蜱、氟虫腈、高效氯氰菊酯4种小菜蛾防治药剂处理对小菜蛾3龄幼虫体温、体温调节能力、过冷却点及冰点的影响。主要结果如下:
     1小菜蛾的生理性体温调节能力较弱,各龄幼虫的体温都与环境温度相近。但是当环境温度设定为16℃或20℃时,小菜蛾幼虫能够通过有限的生理性体温调节能力使其体温高于环境温度,而当环境温度设定为30℃或35℃时,体温略低于环境温度。无论是将小菜蛾幼虫由高温环境转移至低温环境还是将小菜蛾幼虫由低温环境转移至高温环境,其体温都能在较短时间内接近环境温度。阿维菌素、毒死蜱、氟虫腈、高效氯氰菊酯4种药剂处理小菜蛾3龄幼虫后,虽然对其体温调节能力有一定影响,但总体影响较小。
     2与恒温动物的研究结果相似,农药处理后小菜蛾体温也表现了初期试虫体温有所降低,其后有所升高的现象。这种现象在环境温度为25℃或30℃时较为明显。以25℃环境下毒死蜱处理为例,处理后12h,被毒死蜱处理过的试虫除800mg/L浓度的处理外,试虫体温都低于对照,其中对照试虫体温为25.19℃,200mg/L浓度处理试虫体温为24.45℃,显著降低(P<0.05);其后毒死蜱处理过试虫体温逐渐高于对照试虫,至48h全部毒死蜱处理试虫体温都高于对照试虫。如对照试虫的体温为24.74℃,100mg/L浓度毒死蜱处理过的试虫体温为25.28℃,差异显著(P<0.05)。
     3小菜蛾的过冷却点及结冰点测定结果表明,小菜蛾卵、1-4龄幼虫、蛹、成虫的过冷却点依次为-17.94℃、-7.91℃、-8.57℃、-16.21℃、-13.53℃、-17.07℃及-15.91℃;结冰点依次为-17.73℃、-6.79℃、-6.70℃、-14.73℃、-3.63℃、-16.40℃和-14.95℃。农药处理后对小菜蛾3龄幼虫过冷却点和结冰点都可能产生影响,但是影响结果随农药种类、浓度及处理时间不同而不同。以氟虫腈为例,处理后24h,处理中试虫过冷却点较之对照有所升高,如对照试虫过冷却点为-6.46℃,而1.0mg/L氟虫腈处理过试虫过冷却点为-4.15℃,显著升高(P<0.05);但是48h,除0.5mg/L氟虫腈处理过的试虫外,其余处理试虫过冷却点都与对照试虫相近。有关农药处理对结冰点的影响与过冷却点相似。
In this thesis, the interrelationship between the body temperature of the larvae of diamondback moth, Plutella xylostella (Linn.) , and the environmental temperature was investigated, the supercooling point as well as the freezing point of each life stage of diamondback moth was measured, the thermoregulation ability of diamondback moth larvae either from a higher temperature environment to a lower one or from a lower one to a higher one was observed and the effect of 4 insecticides including abamectin, chlorpyrifos, fipronil and cypermethrin on body temperature, thermoregulation ability, supercooling point and freezing point of 3rd instar larvae of diamondback moth was studied. The main results were as follows:
     1. The physiological thermoregulation ability of diamondback moth larvae was weak for their bogy temperature was always near to the environmental temperature. But when environmental temperature was set at 16℃or 20℃,their body temperature was a little higher than environmental temperature. On the contrarary, while the environmental temperature was set at 30℃or 35℃, the body temperature was a little lower. Because of the poor thermoregulation ability, the body temperature of the diamondback moth larvae could become same as the environmental temperature within a comparatively short time either when they were removed from a higher temperature environment to a lower one or vice versa. The effect of insecticides on thermoregulation ability of the tested insects was also found to be weak.
     2. Just like what was found in the endothermal animals, insecticide exposure could firstly decrease and then increase the body temperature of the tested insects, which could be most easily to see when the environmental temperature was set at 25℃or 30℃. Take chlorpyrifos at 25℃as the example, 12h after treatment, the body temperature of all the treated insects was lower than that of control except those from the treatment of chlorpyrifos at the concentration of 800mg/L. Among them, the body temperature of control insects was 25.19℃, and that of the insects from the concentration of 200mg/L treatment was 24.45℃, which was significantly lower (P<0.05). Then the body temperature of the insects from the chlorpyrifos treatments increased and higher than control 48h after treatments. At this time, the body temperature of control insects was 24.74℃and that from the treatment at 100mg/L was 25.28℃. Also, the difference was significant (P<0.05).
     3. The supercooling point of egg, first to 4th instar larvae, pupae and adult of diamondback moth was -17.94℃、-7.91℃、-8.57℃、-16.21℃、-13.53℃、-17.07℃and -15.91℃, respectively and the freezing point was -17.73℃、-6.79℃、-6.70℃、-14.73℃、-3.63℃、-16.40℃and -14.95℃, respectively. Effect of insecticide treatment on supercooling point or freezing point of the tested insects could be seen, but that varied with the insecticide type, concentration and the duration after treatment. For example, 24h after fipronil treatment, the supercooling point of the insects from the treatment of 1.0 mg/L was -4.15℃and it was significantly higher than that of control, which was -6.46℃(P<0.05). The effect of insecticides on freezing point was similar with that on supercooling point.
引文
[1]杨果杰.体温调节和发热的比较生理学[J].实验动物科学与管理,2003,20(1): 40~42.
    [2]李战永,沈钢. 1 %戊巴比妥钠对家兔体温的影响[J].廊坊师范学院学报,2004,20(4):19-20
    [3] Robert, Kylie A, Thompson, Michael, B, Seebacher, Frank. Thermal biology of a viviparous lizard with temperature-dependant sex determination[J]. Journal of Thermal Biology, 2006, 31: 292~301.
    [4] Bartholomew GA. Physiological control of bodytemperature. In: GansC, Pough FHed. Biology of the Reptilia. 1982,(12):167 - 211.
    [5] Huey RB . Temperature , physiology, and the ecology of reptiles. In:Gans C, Pough FH ed. Biology of the Reptilia. 1982, (12):25 - 91.
    [6] Huey RB , KingsolverJG, . Evolutionof thermal sensitivityof ectotherm performance. 1989,(4):131 - 135.
    [7] Navas CA, James RS, Wakeling JM, et al. An integrative study of the temperature dependence of whole animal and muscle performance during jumping and swimming in the frog Rana temporaria.J . Comp. Physiol.1999, (169): 588 - 596.
    [8] Angilletta MJ , Niewiarowski PH, Navas CA, . The evolutionof thermal physiology in ectotherms. J. Therm. Biol.2002, (27): 249 - 268.
    [9] Avery RA, . Field studies of body temperature and thermoregulation.In: Gans C, Pough FH ed. Biology of the Reptilia 1982,(12) 93 - 116.
    [10]徐大德,安虹,陆洪良,等.原尾蜥虎的选择体温、热耐受性和食物同化的热依赖性[J].动物学报,2007,53(6):959–965.
    [11]甘肃科技纵横,科技博览[J].2004,33(5)
    [12] Devaney, Eileen. Thermoregulation in the life cycle of nematodes[J]. International Journal for Parasitology, 2006, 36: 641~649.
    [13] Bartholomew GA. Phisiological control of body temperature. In: GansC, Pough FHed. Biologyof the Reptilia. London: Academic Press,1982,(12)167 - 211.
    [14] Castilla AM, Van Damme R, Bauweus D. Field body temperatures,mechanisms of thermoregulation and evolution of thermal characteristics in lacerfid lizards. Nat. Croat.1999,8: 253 - 274.
    [15] Huey RB , Webster TP. Themal biologyof anolis lizards in a complex fauna: the Christatellus group on Puerto Rico. Ecology ,1976,57: 985 - 994.
    [16] Hertz PE, Huey RB , Nevo E. Homage to Sanra Anita: themal sensitivity of sprint speed in agamid lizards. 1983,37: 1075 -1084.
    [17]杨果杰.体温调节和发热的比较生理学[J].实验动物科学与管理,2003,20(1):40-42
    [18]胡长效,彭兰华,丁永辉.温度对牛蒡长管蚜生长发育及繁殖的影响[J].北方园艺,2009,(2):80-81
    [19]陈兵,康乐.南美斑潜蝇地理种群蛹过冷却点随纬度递变及其对种群扩散的意义[J].动物学研究,2003,24:68-172.
    [20]张堵一,吴孔明,林克剑,等.二化螟温带和亚热带地理种群的滞育特征与抗寒性差异[J].中国农业科学2005,38(12):2451-2456.
    [21]孟德荣,张桂然.无蹼壁虎对环境温度的选择及体温调节[J].动物学研究,2000, 21 (5): 422-424.
    [22] Babel,J.S. Reproduction life history and ecologyofthe round stingray, Urolophus halleriCooper.,Calif Fish Game ,1967,(137):1–104.
    [23] Barbara V.Hight,Christopher G. Lowe Elevated body temperatures of adult female leopard sharks, Triakis semifasciata, while aggregating in shallow nearshore embayments:Evidence for behavioral thermoregulation?Journal of Experimental Marine Biology and Ecology,2007, (352): 114–128.
    [24] Brattstrom, B.H. Thermal control of aggregation behavior in tadpoles. Herpetologica, 1962,(18):38-46.
    [25] Kênia C. Bicego , Renata C.H. Barros , Luiz G.S. Physiology of temperature regulation: Comparative aspects ,2007,(147): 616–639.
    [26]王华,王正寰,王震伟,等.人工饲养条件下扬子鳄的行为体温调节[J].动物学杂志,2006,41(6) :60-66.
    [27] Cannon, B., Nedergaard, J., Nonshivering thermogenesis and brown adipose tissue. In: Blatteis, C. (Ed.), Physiology and Pathophysiology of Temperature Regulation. World Scientific, Singapure,.1998,60–77.
    [28] Bicego, K.C., Branco, L.G.S., Discrete electrolytic lesion of the preoptic area prevents LPS-induced behavioral fever in toads.2002, (205):3513–3518.
    [29] Decuypere, E., Hermans, S.C., Michels, H., et al.Thermoregulatory response and thyroid hormone concentrations after cold exposure in young chicks treated with iopanoic acid and saline. 1981,(33):291–298.
    [30] Grigg, G.C. ,Na evolutionary framework for studies of hibernation and short-term torpor. In: Barnes, B.M., Carey, H.V. (Eds.), Life in the Cold:Evolution, Mechanisms, Adaptations and Applications. 2004,( 27):1–11.
    [31] Christopher J.Gordon , Pamela J. Spencer ,et al. Thermoregulation and its influence on toxicity assessment.Science Direct Toxicology, 2008,(244):87–97.
    [32] Gordon, C.J. Temperature and Toxicology: An Integrative,Comparative, and Environmental Approach. CRC Press, Boca Raton, FL.2005
    [33] Andrews, Robin M. Lizards in thes low lane:Thermal biology of chameleons[J]. Journal of Thermal Biology, 2008, 33: 57~61.
    [34] Inglis, G D, Johnson, D L , Goettel, M S. Effects of temperature and thermoregulation on mycosis by Beauveria bassiana in grasshoppers[J]. Bilogical Control, 1996, 7: 131~139.
    [35] Kovac, Helmut, Schmaranzer, Sigurd. Thermoregulation of honeybees (Apis mellifera) foraging in spring and summer at different plants[J]. Journal of Insect Physiology, 1996, 42(11-12): 1071~1076.
    [36] Gordon, C J.Regulated hypothermia: an adaptive response to toxic insult [M] In:Gordon C J,ed.Temperature and toxicology.New York:CRC Press, 2005:145~168.
    [37] Gordon, C J.Behavioral thermoregulatory response to chlorpyrifos in the rat[J]. Toxicology, 1997, 124: 165~171.
    [38]王东,何彦芳,杨永录.有机磷杀虫剂引起低温反应的机制及其影响因素[J].中国急救医学, 2007, 27 (3):246-248.
    [39]刘传忠,王梅,杨忠纪,等.赤松毛虫越冬幼虫过冷却点的测定[J].山东林业科技, 2007, (3):40-41.
    [40]荆秀昆,刘小敏,陈菲,等.过冷却点对低温冷冻杀虫效果影响[J].中国档案,2005,7:49.
    [41]郭海波,许永玉,鞠珍,等.中华通草蛉成虫抗寒能力季节性变化[J],生态学报,2006,26(10):3238-3244.
    [42]柯礼道,方菊莲.小菜蛾生物学的研究:生活史、世代数及温度关系.昆虫学报,1979,22(3):310-318.
    [43] Hardy J. E. Plutella maculipennis Curt., its natural and biological control in England. B. Entomol. Res., 1938, 29:343-372.
    [44] Lim G. S. Biological control of diamondback moth. In: Talekar N.S. and T.D. Criggs(eds). Diamondback moth management. Proceeding of the First International Workshop. Asia Vegetable Research and Development Center, Shanhua, Taiwan, China, 1986, 159-171.
    [45] Sarfraz M. Keddie A. E. and Dosdall L. M. Biological control of the diamondback moth, Plutella xylostella: A review. Biocontr. Sci. Tech., 2005,15(8): 763-789.
    [46] Talekar N. S., Shelton A. M. Biology, Ecology, and Management of the Diamondback Moth. Annu. Rev. Entomol., 1993, 38: 275-301.
    [47] Shelton A. M. Management of the diamondback moth: de′ja` vu all over again? In: Endersby N. M., Ridland P. M.(eds). The management of diamondback moth and other crucifer pests. Proceedings of the Fourth International Workshop, Melbourne. Melbourne, Australia:Department of Natural Resources and Environment, 2004, 3-8
    [48] Tsunoda S. Eco-physiology of wild and cultivated forms in Brassica and allied genera. In: Tsunoda S., Hinata K., Gomez-Campo C. (eds.). Brassica Crops and Wild Allies: Biology and Breeding. Japan Scientific Societies Press, Tokyo, 1980, 109-120.
    [49] Talekar N S, Shelton A M. Biology, Ecology, and Management of the Diamondback Moth [J]. Annual Review of Entomology, 1993,38: 275~301.
    [50]沈阳农学院.蔬菜昆虫学[M].北京:中国农业出版社,1980,1-306.
    [51]陈之浩,程罗根.小菜蛾抗药性研究的现状及展望[J].昆虫知识, 2000, 37(2): 103-107.
    [52]刘新.小菜蛾防治药剂的种类与特点分析[J].农药科学与管理, 2004, 25(8): 24-26.
    [53]马春森,陈瑞鹿.温度对小菜蛾发育和繁殖影响的研究[J].吉林农业科学,1993,(3):44-48.
    [54]李元喜,刘树生.杀虫剂对拟寄生昆虫的影响.昆虫知识,2001,38(1):26-30.
    [55]李晓涛,黄青,唐振华.氟虫腈对二化螟生长发育的影响及对解毒酶的诱导效应[J].农药学学报, 2006, 8(3); 250~254.
    [56]田素芬,姚君明,顾晓军.阿维菌素与氟虫腈对小菜蛾3龄幼虫体温调节的影响.西北农业学报, 2008,17(5): 121-124.
    [57]王德辉.短期高温与农药对小菜蛾幼虫相互作用的研究[D].福建农林大学学位论文,2008.
    [58]高飞.短期高温对小菜蛾耐药性的影响[D].福建农林大学学位论文,2007.
    [59]徐金汉,黄志鹏.生物测定虫种-小菜蛾的人工饲养及冷藏[J].福建农业大学学报, 1997, 26(2): 187-190.
    [60]魏辉.植物次生物质对小菜蛾幼控制作用的研究[D].福建农林大学, 2002.
    [61]刘文静.农药对小菜蛾内分泌干扰效应研究[D].福建农林大学学位论文,2009.
    [62]赵锋,罗战明,王沫,等.几种杀虫剂对小菜蛾的毒力测定[J].湖北植保, 2005(3): 30-31.
    [63]谢令德,徐广文,舒在习.低温锻炼对谷蠹抗寒性的影响[J].储粮有害生物及防治技术,2006, 35(3): 3-4.
    [64]唐启义,冯明光.实用统计分析及其计算机处理平台[M].北京:农业出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700