用户名: 密码: 验证码:
电液伺服与比例压力控制系统辨识与特性比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电液比例控制技术,是在以开环传动为主要特征的传统液压传动技术和以闭环控制为特征的电液伺服控制技术基础上,为适应一般工程系统对传动与控制特性或有所侧重或兼而有之的特别要求,从20世纪60、70年代开始,逐步发展起来的流体传动与控制领域中一个具有旺盛生命力的新分支。因此有可能在一般工业应用中以其抗污染和节能等优势来取代伺服阀。但目前对电液比例技术的掌握和运用,不论是理论上还是实践上,都有很多问题需要研究﹑探讨﹑总结与提高。因此该类比例控制系统的研究,对电液比例控制技术的发展和完善具有重要的理论意义和应用价值。
     本论文以寻找比例控制可替代伺服控制的条件为目的,以压力控制系统为研究对象,以实验为基础,从辨识方法﹑系统本身特性差别和采用不同控制策略时系统性能差别三方面对比例系统与伺服系统展开分析与研究,以揭示比例控制与伺服控制的异同点,为更加科学﹑更为合理地运用伺服与比例控制技术提供参考。
     首先,以材料试验机电液比例与伺服压力控制系统为研究对象,对两种系统的辨识输入信号﹑采样时间的选取,数据如何预处理,系统模型结构形式的确定,模型结构参数的获得,选择适当的参数辨识方式辨识获得系统数学模型以及辨识模型准确性的验证等问题进行深入分析。同时,通过比较在不同输入信号不同模型结构形式和辨识方式下所得辨识模型的效果,确定了适合本试验对象的系统辨识方法。在确定系统数学模型的基础上,运用遗传算法对系统的开环参数进行求解,得到准确的系统开环参数。
     其次,在保证其它参数相同、不附加任何控制策略、仅控制元件不同的条件下,对材料试验机伺服与比例两个系统分别进行系统综合性能(稳定性﹑快速性﹑准确性)的分析和比较,找出造成两系统性能差别以及影响压力控制系统性能的主要系统参数,依据理论与实验结果,研究在一定条件下,比例系统替代伺服系统进行压力控制的可能性。为了避免在单一控制系统上分析系统特性所得结论可能产生的片面性,在进行特性分析比较时,还同时以挖掘机斗杆臂油缸压力控制系统为另一研究对象,对其系统特性进行了分析。综合两种研究对象的分析结果,对在不同研究对象和不附加控制策略情况下,对比例系统与伺服系统的特性进行了比较研究。研究结果显示,在一定工况条件下,比例系统的特性基本可以实现伺服系统的控制效果。
     最后,以材料试验机压力控制系统为实验对象,依据通过系统辨识获得的数学模型以及遗传算法求得的系统参数,采用PID控制算法和MRAC控制算法对材料试验机电液比例压力控制系统和电液伺服压力控制系统进行了计算机仿真并在材料试验机系统上进行了实验研究。对比两种压力控制系统在PID控制算法和MRAC算法作用下的系统性能,进一步分析了电液伺服压力控制系统与电液比例压力控制系统在实际系统中相互替代的可行性。实验结果表明,材料试验机伺服系统控制性能略优于比例系统并给出可以采用比例系统实现控制性能的适用条件。
Electro-hydraulic Proportional Control has been developing into a vigorous new branch in the field of the Fluid Power and Transmission Control since 1960s. It aims at meeting the special requirements of common engineering systems to emphasize either the traditional fluid transmission technique, which takes open-loop transmission as typical characteristic, or apply electro-hydraulic servo control technique, whose major characteristic is closed-loop control, or take advantage of both of the techniques. It is possible to replace servo valves with the Electro-hydraulic Proportional Control technique considering its advantages such as low cost, antipollution and energy-saving. However, at present, Electro-hydraulic Proportional Control technique needs further study since there are still many problems theoretically and practically. The researches on any kind of Proportional Control techniques will promote and enhance the development of Electro-hydraulic Proportional Control Technique.
     Targeting at the conditions for replacing servo control with proportional control, taking concrete pressure control system as the research subject, the study researches on proportional system and servo system from the aspects of identification method, the systems’characteristics and the different performances because of the different control strategies and different working conditions. The objective of the study is to figure out the similarities and differences between proportional control and servo control to shed light on the application of the two control techniques.
     Taking the material testing machine electro-hydraulic proportional pressure control system and servo pressure control system as research subjects, the dissertation sets out to compare and analyze the two systems according to the selections of input signals and sampling time, data processing methods, acquisition of the model structure style parameters, the right identification styles to acquire the mathematical models, and the accuracy of the identified mathematic models. At the same time, based on the comparative and contrastive study on different outputs with different identified mathematic models when inputting signals, with different model structure styles or various identification methods, it finds out the best identification method which is fit for the research subject. On basis of the identified mathematic models, using Genetic Algorithms, the dissertation obtains correct system open-loop parameters.
     Then, when making sure that all the conditions are the same except for the control element, it compares and analyses the stability, rapidity and accuracy of material testing machine proportion and servo systems, to find out the major parameters which lead to the performance differences of the two systems and which affect the performances of pressure control system. According to theory background and experiment results, it further studies the possibility of replacing servo system with proportional system under certain conditions. In order to avoid unilateral result when analyzing the characteristics of only one control system, the dissertation takes excavator arm cylinder pressure control system as the other research subject. Synthesizing the research consequences of the two subjects, it compares the system characteristics of the proportion and servo systems. It is concluded that under some kinds of working conditions the proportion system can realize the same control effects with that of the servo system.
     Finally, with the material testing machine as the research subject, using the identified mathematic models and the parameters, adopting PID control and MRAC as control strategies, the dissertation simulates the material testing machine electro-hydraulic proportional pressure control system and the material testing machine electro-hydraulic servo pressure control system. Then experiments are conducted on material testing machine. The study compares the performances of the two systems using both PID control and MRAC, and analyses the practicability of substituting electro-hydraulic servo pressure control system with electro-hydraulic proportional pressure control system in practical systems. The experiments shows that the servo system is superior to the proportion system under this experiment situation. The dissertation point out that proportion system can be applied to realize the proper conditions of controlling system performances.
引文
1 LuYongxiang. Historical progress and prospects of fluid power transmission and control. Proceedings of the Fifth International Conference on Fluid Power Transmission and Control. Zhejiang University, 2001, Hang Zhou,P.R.China,2001:62-68
    2 Backe Wolfgang. Research and Development in Fluid Power Technology. Proceedings of First FPNI-PhD Symposium Hamburg 2000. Hamburg,Germany, 2000:9-21
    3 DeRose, Don. Trends in electrical controls. Fluid Power Journal, November/December, 2003, 10(9):28-31
    4牛占海,王宏武,刘榛.对电液比例控制系统的综述.机械研究与应用,2004,17(6):16-17
    5彭熙伟,赵洪刚,谭日飞,等.电液比例方向阀特性的应用研究.液压与气动,2004(4):36-37
    6路甬祥,胡大纮.电液比例控制技术.北京:机械工业出版社,1988:1-7
    7史维祥.流体传动及控制的现状及新发展(续1).流体传动与控制,2004,1(2):9-15
    8黄贲,程顺.电液比例技术发展趋势微探.机床与液压,2002,(1):3-4
    9陈彬,易孟林.电液伺服阀的研究现状和发展趋势.液压与气动,2005(6):5-8
    10陈彬,易孟林.数字技术在液压系统中的应用.液压气动与密封,2005(4):1-3
    11 Laamanen, A.,Siivonen, L., Linjama, M, Vilenius, M.. Digital flow control unit - An alternative for a proportional valve. Bath Workshop on Power Transmission and Motion Control, PTMC 2004, 2004:297-308
    12 Trends in electrical controls. DeRose, Don. Fluid Power Journal. November/December, 2003, 10(9):28-31
    13隗幼鹏.材料试验机的现状与展望.现代制造工程,2003,(8增):82-83
    14 G.Zames. Adaptive Control: Towards a complexity-Based General Theory. Automation.1998, 34(10): 1161-1167
    15 Jiao, Z., Chen, P., Hu, Q., Wang, S. Adaptive vibration active control of fluid pressure pulsations Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 2003,217(4):311-318
    16 Yao B., Bu F.P. Reedy J. Chiu George T.C. Adaptive robust motion control of single-rod hydraulic actuators: Theory and experiments,1999AACC, Proceedings of the 1999 AmericanControl Conference, San Diego, California, 1999,(2):759-763
    17 Yao B. High performance adaptive robust control of nonlinear systems: a general framework and new schemes, Proceedings of the 36th IEEE Conference on Decision and Control,1997, (3):2489-2494
    18 KREISSELMEIER G.,ANDERSON BRIAN D.O. Robust Model Reference Adaptive Control, IEEE TRANSACTIONS ON AUTOMATIC CONTROL, February 1986, 31(2):127-133
    19 David J. Sandoz, Matthew J. Desforges,Barry Lennox, Peter R. Goulding. Algorithms for industrial model predictive control. COMPUTING & CONTROL ENCINEIERING JOURNAL, 2000,11(3):125-134
    20 Shields, Bobby L., Barth, Eric J., Goldfarb, Michael. Predictive control for time-delayed switching control systems. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,2006,128(4):999-1004
    21 Chen, Wen-Hua, Hu, Xiao-Bing. Model predictive control of linear systems with nonlinear terminal control. International Journal of Robust and Nonlinear Control, 2004,14(4):327-339
    22乔丰立,唐兵,卢堃,等.比例控制径向柱塞泵性能预测.机械工程学报,2005,41(10):66-70
    23 Franco, Ana Lucia D., Bourles, Henr, De Pieri, Edson R., Guillard, Herve. Robust nonlinear control associating robust feedback linearization and H infinity control. IEEE Transactions on Automatic Control,2006,51(7):1200-1207
    24 Vidal-Idiarte, Enric, Martinez-Salamero, Luis, Calvente, Javier, Romero, Alfonso. An H infinity control strategy for switching converters in sliding-mode current control. IEEE Transactions on Power Electronics,2006,21(2):553-556
    25 Piao Fengxian, Zhang Qingling, Ma Xiuzhen. Robust H infinity control for uncertain descriptor systems with state and control delay. Journal of Systems Engineering and Electronics,2006, 17(3):571-575
    26 Shao Ke-Yong, Zhao Wan-Chun, Zhou Luan-Jie, Zhang Hui-Zhen, Duan Yu-Bo. Robust H infinity control for linear uncertainty systems based on PI control laws. Proceedings of 2004 International Conference on Machine Learning and Cybernetics, Shanghai China,2004, New York United States,Institute of Electrical and Electronics Engineers Inc., 2004,1:648-652
    27 Zhang Ke. A study on intelligent control for hybrid actuator. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),Advances in Neural Networks-ISNN 2006:Third International Symposium on Neural Networks, ISNN 2006, Proceedings-Part II, 2006, 3972 LNCS:1116-1123
    28 Ariuna, Damba ,Shigeyoshi, Watanabe. Intelligent control in dynamic system. 2004 IEEE Conference on Robotics, Automation and Mechatronics, Singapore,2004, Institute of Electrical and Electronics Engineers Inc.,2004,2:644-648
    29 G. P. Liu ,S. Daley, Optimal2tuning nonlinear PID control of hydraulic systems, Control Engineering Practice ,2000(8):1045-10531
    30 Situm, Z., Pavkovic, D, Novakovic B. Servo pneumatic position control using fuzzy PID gain scheduling. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2004,126(2):376-387
    31 Wang Peng, Peng Guang-Zheng, Wu Qing-He. Intelligent PID control of pneumatic rotary actuator angle servo system. Journal of Beijing Institute of Technology (English Edition), 2003,12(SUPPL):16-19
    32 Han Guihua, Chen Lihua, Shao Junpeng, Sun Zhibin. Study of fuzzy PID controller for industrial steam turbine governing system. ISCIT 2005 - International Symposium on Communications and Information Technologies 2005, Proceedings, beijing, China, 2005. NJ United States, Institute of Electrical and Electronics Engineers Computer Society,2005:1228-1232
    33 Tang K.Z., Huang S.N., Tan K.K., Lee, T.H. Combined PID and adaptive nonlinear control for servo mechanical systems. Mechatronics,2004,14(6):701-714
    34 Natarajan, Krishnamoorthy, Robust PID controller design for hydroturbines. IEEE Transactions on Energy Conversion,2005,20(3):661-667
    35 Rui Liu, Andre Alleyne. Nonlinear force/pressure tracking of an electro-hydraulic actuator. ASME Journal of Dynamic Systems, Measurement and Control ,2000,122(3):232-237
    36 Andrew Alleyne ,Rui Liu. A simplified approach to force control for electro-hydraulic systems. Control Engineering Practice,2000 (8):1347-1356.
    37 S. R. Lee , K. Srinivation. On line identification of procession model in closed loop material testing. ASME Trans. of Journal of Dynamic System, Measurement and Control,1989, 111(2) :172-178
    38 S. R. Lee. Self-tuning control application to closed-loop servo hydraulic material test. ASME Trans1of Dynamic System, Measurement and Control,1990,112(8) :880-888
    39刘白雁,等.高精度多通道电液同步加载系统.机床与液压,1991(3):11-131
    40蔡永强,裘丽华,王占林.电液力伺服系统的鲁棒预测控制.机械工程学报,1999,35(6):81-84
    41 G. Wu ,N. Sepehri , K. Ziaei. Design of hydraulic force control system using a generalized predictive control algorithm. IEE. Proc. Control Theory Appl.,1998,145(5):428-436
    42 L.Laval,N, K.M’Sirdi, J.C Cadiou. H∞force control of a hydraulic servo-actuator with environmental uncertainties. Proc. IEEE Conf. Robostics and Automation, Minneapolis, MN,1996:1566-1571.
    43韩俊伟,赵慧,马剑文,等.具有时变柔性负载的电液力控制系统中Gain-Scheduled H∞控制器的研究.机械工程学报,2001,36(4):58-61.
    44何玉彬.电液伺服结构加载系统的神经网络直接自适应输出跟踪控制.机床与液压,1997(2):20-23
    45王益群,孔祥东.应用管道效应改善电液弯辊压力控制系统动态品质的实验研究.机械工程学报,1986,22(1):50-60
    46王益群.应用管道效应改善电液速度控制系统动态响应的研究.中国机械工程,1995,8(3): 209-214.
    47孔祥东,刘劲军,王益群.复合管道对电液力控制系统动态性能影响的研究.机械工程学报,1997,6(3):7-13
    48杨华勇,骆季皓,路甬祥.电液比例技术在液压电梯中的应用.液压与气动,1992,(3):3-4
    49张齐生,高殿荣,朱晓民.电液比例方向控制液压系统分析.液压与气动,1998,(3):1-2
    50李晶,牛春立.电液比例控制步进式系统的调节分析.液压与气动,2000,(3):25-27
    51丁杰,曲为壮,向为明.液压比例流量控制技术在步进式加热炉上的应用.液压与气动,1999,(2): 20-21
    52任淑霞.电液比例控制技术在石油钻机刹车系统中的应用.液压与气动,1998,(1):19-20
    53杜和来.电液比例技术在开卷装置上的应用.液压与气动,2000,(6):27-29
    54杨可森,冯德振,宋方臻.电液比例控制千斤顶性能试验机液压系统的设计.液压与气动,2003, (2):16-18
    55李忠国,龚烈航,王强,等.电液比例控制技术在金刚石压机上的应用.液压与气动,2002, (1):22-23
    56顾临怡,王庆丰.电液比例位置控制系统的自学习模糊控制.机床与液压,1995(6):315-318
    57 Bu, F.P. and Yao, B. Nonlinear adaptive robust control of hydraulic actuators regulated byproportional directional control valves with deadband and nonlinear flow gains, Proceedings of the 2000 American Control Conference, Chicago, Illinois, USA, June 2000,6:4129-4133
    58 Bu F.P. and Yao B. Desired compensation adaptive robust control of single-rod electro-hydraulic actuator. Proceedings of the 2001 American Control Conference, Arlington, VA, USA, June 2001, 5:3926-3931
    59舒进,陈思忠,杨林.电液比例位置控制系统的死区模糊补偿控制研究.液压与气动,2005,(1): 20-23
    60何志勇.电液比例换向阀替代电液伺服阀的改进实践.宽厚板,2005,11(4):21-23
    61侯媛彬,汪梅,王立琦.系统辨识及其MATLAB仿真.北京:科学出版社,2004:1-89
    62 Sung Wonmo, Park Jaehyeon, Nam Sangho, Ryou Sangsoo. Identification of interpretation model and DST data analysis obtained from fractured basement reservoir. Energy Sources,2005, 27(6):535-547
    63 He Shang-Hong, Zhong Jue. Modeling and identification of HAGC system of temper rolling mill. Journal of Central South University of Technology (English Edition), 2005, 12(6):699-704
    64倪博溢,萧德云.MATLAB环境下的系统辨识仿真工具箱.系统仿真学报,2006,18(6): 1493-1496
    65孙书立,胡守印.MATLAB在热工系统辨识中的应用.科学技术与工程,2005,5(5):309-312
    66王琳,马平.系统辨识方法综述.电力情报,2001,(4):63-66
    67方崇智,萧德云.过程辨识.北京:清华大学出版社,1988:1-481
    68莫建林,王伟,许晓鸣,等.系统辨识中的闭环问题.控制理论与应用,2002,19(1):9-14
    69赵春超,赵克定,邵鸿德,等.基于Elman网络的液压系统辨识.机床与液压,2003,(1):129-130
    70陈海龙,李宏.基于MATLAB的伪随机序列的产生和分析.计算机仿真,2005,22(5):98-100
    71徐文尚.M序列伪随机信号在过程系统辨识中的应用.山东科技大学学报(自然科学版),2001, 20(3):55-57
    72吴晓燕,周延延,张双选.一种用于模型结构辨识的新方法.空军工程大学学报(自然科学版),2003,4(4):77-80
    73 Ljung L. System Identification theory for the User (Second Edition)北京:清华大学出版社,2002:22-23
    74王益群,王海芳,高英杰,等.基于神经网络的轧机液压AGC系统自适应辨识.中国机械工程,2004,15(5):450-453
    75王文韬,李成利,田军.基于一种改进BP神经网络的一类非线性系统辨识方法.青岛科技大学学报(自然科学版),2005,26(1):85-88
    76姜春福,余跃庆,刘迎春.冗余度机器人运动模型的神经网络辨识及实现.控制理论与应用,2004,21(3):373-378
    77李保奎.神经网络辨识方法及其在轧钢控制中的应用.北京理工大学学报,2002,22(3):311-314
    78 S.V.Huffel, J.Vandwalle. The Use of Total Least Squares Techniques for Identification and Parameter Estimation. IFAC. Identification and System Parameter Estimation, York,UK,1985: 1167-1172
    79 Zhu Q.M,Billings S.A. Parameter Estimation for Stochastic Nonlinear Rational Models, Int.J.Control,1993,57(7):309-333
    80王春行.液压控制系统.北京:机械工业出版社,1999:134-139
    81罗亚中,袁端才,唐国金.求解非线性方程组的混合遗传算法.计算力学学报,2005,22(1): 109-114
    82罗亚中,周黎妮,唐国金.遗传算法求解非线性方程组的应用研究.华南理工大学学报(自然科学版),July 2003,(31)suppl.:140-142
    83曾毅.改进的遗传算法在非线性方程组求解中的应用.华东交通大学学报,2004,21(4):132-134
    84 Man K.F., Tang K.S., Kwong S. Genetic algorithms: concepts, and applications. IEEE Transactions on industrial Electronics,1996,43(5):579-584
    85胡小兵,吴树范,江驹.一种基于遗传算法的求代数方程组数值解的新方法.控制理论与应用,2002,19(4):567-570
    86刘灿文,刘婕.基于求解非线性方程组的并行遗传算法的设计.华东师范大学学报(自然科学版),2004,(1):29-34
    87王保中.用遗传算法求解非线性方程组.黄岗师专学报,1999,19(3):1-5
    88王小平,曹立明.遗传算法.西安:西安交通大学出版社,2002:68-102
    89 L.Shia,S.O A lafssonb,Q.Chen. A new Hybrid Optimization Algorithm. Computers & Industrial Engineering,1999,36:409-426
    90 Li Q.S., Liu D.K., Leung A.Y.T., Zhang N., Luo, Q.Z. A multilevel genetic algorithm for the optimum design of structural control systems. International Journal for Numerical Methods in Engineering,2002,55(7):817-834
    91 Greg C.Smitha,Shana S.F.Smith. An Enhanced Genetic Algorithm for Automated AssemblyPlanning. Robotics and Computer Integrated Manufacturing,2002,18:355-364
    92 Shun-Fa Hwang a, Rong-Song He. A Hybrid Real-parameter Genetic Algorithm for Function Optimization. Advanced Engineering Informatics,2006,20:7-21
    93张利平.液压控制系统及设计.北京:化学工业出版社,2006:67-126
    94许益民.电液比例控制系统分析与设计.北京:机械工业出版社,2005:1-304
    95杨涤,李立涛,杨旭,等.系统实时仿真开发环境与应用.北京:清华大学出版社,2002: 339-418
    96姚静.多功能组合阀及其控缸特性的理论与实验研究,[燕山大学工学硕士学位论文].2004:55-60
    97 Nixon, Steve Model based controllers vs traditional PID control. Glass, May,2004, 81(4):86-87
    98 Ang, Kiam Heong, Chong, Gregory, Li, Yun. PID control system analysis, design, and technology. IEEE Transactions on Control Systems Technology, 2005,13(4):559-576
    99 Kim, Sujin, Henderson, Shane G. Adaptive control variates. Proceedings-Winter Simulation Conference, Proceedings of the 2004 Winter Simulation Conference, Washington, DC, United States,2004, New York, United States, Institute of Electrical and Electronics Engineers Inc., 2004,1:621-629
    100 Fei, J., Song, G. Adaptive vibration suppression of a smart flexible beam using direct model reference adaptive control (MRAC). Proceedings of SPIE - The International Society for Optical Engineering, Smart Structures and Materials 2004-Modeling, Signal Processing, and Control, 2004, (5383):406-416
    101 Duarte-Mermoud, Manuel A., Rioseco, Jaime S., Gonzalez, Rodrigo I. Control of longitudinal movement of a plane using combined model reference adaptive control. Aircraft Engineering and Aerospace Technology, 2005, 77(3):199-213
    102李言俊,张科.自适应控制理论及应用.西安:西北工业大学出版社,2005:1-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700