用户名: 密码: 验证码:
云南红豆杉生殖生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
云南红豆杉(Taxus yunnanensis Cheng et L. K. Fu)是分布于缅甸和不丹北部及我国西南部的红豆杉属(Taxus)植物。因为富含抗癌药物紫杉醇闻名于世,又因为处于濒危状态而倍受关注,但由于不清楚其濒危机制,使得保护难以对症下药,进而限制了自然资源合理利用。本文主要从生殖发育过程、传粉机制、性别决定及性表达等方面研究了云南红豆杉的生殖规律,以期为云南红豆杉濒危机制的探索、人工林建设及系统学研究服务,研究结果主要包括以下几个方面。
     第一,雄性生殖系统发育过程。云南红豆杉小孢子叶球从6月底开始发生;小孢子从9月开始发生,11月成熟;雄配子体从12月开始发育,到次年4月产生精子。在小孢子母细胞减数分裂过程中,第一次分裂产生两个半球形细胞,第二次分裂形成T形、正方形或四面体形四分体;成熟的小孢子直径约20微米,单核,没有气囊,表面有大量的乌氏体。离体培养的雄配子体分别在培养后的第6天、第20天和第40天发现第一次、第二次和第三次分裂。在活体中,发生细胞核的分裂在细胞一侧进行,但最终分裂后形成了两个大小相等的精子。
     第二,雌性生殖系统发育及胚的发育和萌发过程。云南红豆杉胚珠从8月开始发生,大孢子母细胞12月开始发生,呈方形,减数分裂后形成4个“一”字形大孢子,在大多数情况下,只有靠合点端的大孢子发育为功能大孢子。功能大孢子核随后开始分裂,形成游离核雌配子体,当游离核形成细胞壁,雌配子体即发育成熟。十多个颈卵器在同一个成熟雌配子体上发生,两次有丝分裂后,形成卵细胞。雄配子体产生的两个精子中的一个进入颈卵器与卵细胞结合形成受精卵,受精卵核到第3次分裂形成细胞壁,没有受精的卵细胞还要进行两次有丝分裂后才消失。胚珠发育过程中的数量变化显示:授粉是胚珠发育的瓶颈,胚珠的授粉率只有44.7%。在胚发育过程中,既产生简单多胚,又产生裂生多胚。离体培养中,刚刚成熟种子胚在2周左右萌发,在种子储藏的过程中,胚的结构和长度都没有发生变化,随着储藏时间的延长萌发率逐渐下降。幼苗到性成熟需要14年左右的时间。
     第三,花期及传粉滴的活动规律。小孢子叶球的散粉期在11月中旬到12月中旬,小孢子在常温下保存42天,还有50%的花粉具有活力;胚珠成熟期从11月下旬持续到2月中旬,直到3月中旬还可见到带有传粉滴的胚珠。在小孢子叶球散粉期或人工授粉的传粉滴持续存在的时间较短,且授粉后不再出现,在非散粉期的传粉滴持续存在的时间较长,且在消失后又会重新出现。死花粉也具有与活花粉相同的水合性质,授粉后也能引起传粉滴消失并不再出现。
     第四,性别控制与性表达。细胞学研究表明:雄性植株的核型为:2n=24=24m;雌性植株的核型为:2n=24=23m+1sm,据此推测云南红豆杉的性别控制类型为ZW型。性别表型构成调查结果显示:在个体水平上,多数植株是单性的,2005、2006和2007年单性植株分别占能辨别性别植株的92.5%、92%和94.2%。在构件水平上,两性植株的大部分主干是单性的,占能辨别性别主干的93.6%(2006年)和88.7%(2007年);在两性主干上,多数小孢子叶球和胚珠都出现异常。性别表型的年际变化调查结果显示:在个体水平上,性别表型发生变化只是少数植株,占能辨别性别植株的10%(2005至2006年)和7.6%(2006至2007年);雌株和雄株不直接相互转化,但雌株通过未知性别植株的过渡,可以转化为雄株,雄株也通过两性植株的过渡转化为雌株,其它各性别表型间都可以直接相互转化。在构件水平上,两性植株的多数主干的性别表型保持不变,雌性主干、雄性主干和两性主干分别有69.4%、89.4%和66.7%保持了原来的性别表型,所有主干的性别表型都可以直接相互转化。
     第五,种子和小孢子叶球的时空分布。种子和小孢子叶球的空间分布调查结果表明,种子和小孢子叶球在树体的水平方向上不存在明显差异,在树体的垂直分布上差异显著,从上到下,小孢子叶球的相对密度依次递减,种子的相对密度最高的是中部,最低是下部。种子和小孢子叶球的相对密度在年际间变化明显,都达到了显著水平。50株雌株种子的相对密度在2006年和2007年间呈低度负相关,R=-0.46;26株雄株小孢子叶球的相对密度在2006年和2007年间呈高度正相关,R=0.86。174株雌株的种子相对密度同新枝相对密度及最长新枝长度分别呈低度负相关和微弱负相关,相关系数分别为R=-0.47和R=-0.29。
     经过以上研究,我们认为生殖周期长,生殖方式不经济,传粉效率低及雌雄性生殖系统发育不同步是造成云南红豆杉濒危的主要原因。性别比例和搭配及合理利用光因子是人工林建设和管理中首要考虑的问题之一。从性别进化看,红豆杉属植物可能是从雌雄异株向雌雄同株进化,而云南红豆杉处在性别进化的初级阶段。
Taxus yunnanensis Cheng et L. K. Fu, distributing in north Myanmar, north Bhutan and southwest China, is famous for its high content of taxol which is an effective anti-cancer drug, and it becomes a research focus due to its endangered state. Endangered mechanism, however, is unclear till now, thus proper protection measures can not be conducted, and usage of this natural resource is limited. In order to investigate the endangered mechanism, this paper explored reproductive process, pollination mechanism and sexual determination and express in T. yunanens. This study can also contribute to plantation and systematics of T. yunnanensis. Main results are as follow.
     First, development of male reproductive system. Development of the pollen cone began in late June. Microsporogenesis occurred in September and November, and microgametogenesis occurred in December and April in the next years. The first meiotic division of the microspore mother cell formed two hemispherical cells. The second meiotic division formed isobilateral, T-shaped or tetrahedron tetrads of microspores. The mature microspores were uninucleate, non-saccate, and with numerous orbicules. During microgametogenesis in vitro, the first, second and third mitotic divisions were observed on the 6th, 20th and 40th days, respectively, and cell walls were formed on the first and second divisions. Spermatogenesis in vivo, the generative nucleus divided in one hemisphere of generative cell and then two equal-sized sperm were formed.
     Second, development of female reproductive system, development and germination of embryo. Ovule development began in August, and rectangle megasporocyte began to occur in December, and linear tetrads of megaspores were formed in meiosis. In most occasions, only the chalazal megaspore was functional. Then the functional megaspore nucleus began to divide and form a free-nuclear megagametophyte. Megagametophyte got matured when the walls were formed. Ten or more archegoniums occurred at the edge of megagametophyte, and the egg was found after two mitosises. One of two sperm get into an archegonium and fused with egg. The nucleus of fertilized egg began to divide, and the walls were formed after the third division. The eggs without fertilization divided two times and then disappeared. Pollination, with a rate of 44.7%, was a bottleneck in the ovule development. Simple and cleaved polyembryony were found frequently in the embryo development. In vitro, embryos from the newly matured seeds germinated in 2 weeks, but the germination rate declined as seeds were stored in sands. The Length and structure of embryos were invariable as seeds were stored in sands. It took about 14 years for seedlings get matured in sex.
     Third, the anthesis the movement of pollination drops. Microspores were released during the middle of November and the middle of December, and 50% microspores kept alive after been stored in room temperature for 42 days. Mature ovules were present from late December to mid-February in the next year, and the pollination drop were found until mid-March. During pollination, the pollination drops presented for a shorter period, and never appeared once ovules were pollinated. Without being pollinated, the pollination drops presented for a longer period, and it appeared again one more times after disappearance. As alive microspores, the died microspores could be hydrated, and the ovules no longer secret pollination drop once were pollinated.
     Fourth, sexual determination and express. Cytologic studies shew that the karyotype of male was 2n=24=24m, and the karyotype of female was 2n=24=23m+1sm,so it was speculated that sex determination in T. yunnanensis was ZZ/ZW. The results of sex expression shew that most individuals were unisexual, the ratio of unisexual individuals was 92.5%, 92% and 94.2% in 2005, 2006, 2007, respectively. In bisexual individuals, most stems was unisexual, the ratio of unisexual stems was 93.6% and 88.7% in 2006 and 2007, respectively. On bisexual stems, most reproductive organs were abnormal. Between years,the gender of most individuals were invariable, and 10% individuals transformed its gender from 2005 to 2006, and 7.6% individuals transformed its gender from 2006 to 2007. Males and females did not transform to each other directly, but males could transform to females by a medium, bisexual state, and females could also transform to males by a medium, unidentified state. Other gender could transform each other directly. In bisexual individuals, most stems were invariable, and 69.4% female stems, 89.4% male stems and 66.7% bisexual stems kept invariable from 2006 to 2007, and all stem gender could transform to each other directly.
     Fifth, the distribution of pollen cones and seeds. Spacial distribution of seed and pollen cones shew that there was no obvious difference of the relative concentration of seed and pollen cones in horizontal directions, but the difference in vertical height was significant. Down from the top, relative concentration of pollen cones declined, while relative concentration of seeds was the highest in the middle, and the lowest on the base. Difference of seeds and pollen cones’production between years was significant. The seed production of 50 females in 2006 was negatively related to that in 2007, R=-0.46. The pollen cone production of 26 males in 2006 was positively related to that in 2007, R=0.86. The seed production of 174 females was negatively related to the production of new twigs, R=-0.47, and was negatively related to the length of longest new twigs, R=-0.29.
     It can be seen from the results that long life history, uneconomical reproduction, unsynchronizated development between male reproductive system and female reproductive system and ineffective pollination are the possible causes for the endangered state of Taxus yunnanensis. Light and sexual ratio and match are principal factors in developing plantation. In Taxus, monoecious tends to evolve from dioecious, and Taxus yunnanensis is at primary stage in sexual evolution.
引文
[1]. Miller, C.N. Mesozoic conifers. Botanical Review, 1977, 43: 217-280.
    [2]. Price, R.A. The genera of Taxacceae in the Southeastern United States. Journal of the Arnold Arboretum, 1990, 71: 69-91.
    [3]. Cope, E.A. Taxuaceae: the genera and cultivated species. Botamical Review, 1998, 64: 291-322.
    [4].郑万钧,傅立国.中国植物志(第七卷).北京:科学出版社. 1978, 438-448.
    [5].郑万钧,傅立国,诚静容.中国裸子植物.植物分类学报, 1975, 13(4): 65-89.
    [6].傅立国.中国高等植物(第三卷).青岛:青岛出版社. 1999, 105-112.
    [7].郑万钧.中国树木志(第1卷).北京:中国林业出版社. 1985, 386-391.
    [8]. Richard, S. Nomenclatural and taxonomic review of three species and two varieties of Taxus (Taxaceae) in Asia http://www.worldbotanical.com/Taxus, 2007.
    [9].赵东利,迟彦,于昉.云南红豆杉紫杉烷2α-O-苯甲酰转运酶基因的克隆及定性(英文).西北植物学报, 2007, 27(09): 1713-1719.
    [10].杨惠芳,黎荔,刘忠杰.滇西北亚高山地区云南红豆杉扦插育苗技术.林业调查规划, 2007, 32(3): 164-165.
    [11].景跃波,王卫斌,马赛宇.云南红豆杉种子变温层积的萌发效应研究.西部林业科学, 2007, 36(1): 52-56.
    [12]. Zhang, C., Fevereiro, P.S. The effect of heat shock on paclitaxel production in Taxus yunnanensis cell suspension cultures: role of abscisic acid pretreatment. Biotechnol Bioeng, 2007, 96(3): 506-514.
    [13]. Wang, J.W., Zheng, L.P., Tan, R.X. Involvement of nitric oxide in cerebroside-induced defense responses and taxol production in Taxus yunnanensis suspension cells. Applied Microbiology and Biotechnology, 2007, 75(5): 1183-1190.
    [14]. Banerjee, S., Madhusudanan, K.P., Khanuja, S.P. Analysis of cell cultures of Taxus wallichiana using direct analysis in real-time mass spectrometric technique. Biomed Chromatogr, 2008, 22(3): 250-253.
    [15]. Datta, M.M., Majumder, A., Jha, S. Organogenesis and plant regeneration in Taxus wallichiana (Zucc.). Plant Cell Reports, 2006, 25(1): 11-18.
    [16].王卫斌,姜远标,王达明.云南红豆杉的生物学与生态学特性.西部林业科学, 2006, 35(4): 33-39.
    [17].苏建荣,张志钧,邓疆.云南红豆杉的地理分布与气候关系.林业科学研究, 2005, 18(5): 510-515.
    [18].包晴忠,邹光启.云南省红豆杉树种生态特性的比较研究.林业调查规划, 2005, 30(3): 94-99.
    [19].安春志,罗佳波,刘莉. HPLC法测定云南红豆杉枝叶中10-去乙酰巴卡亭Ⅲ的含量.广州医药, 2006, 37(5): 47-49.
    [20].刘莉,罗佳波.云南红豆杉枝叶中紫杉醇和三尖杉宁碱含量的测定.时珍国医国药, 2006, 17(5): 754-755.
    [21].刘莉,徐新刚,陈飞龙.超临界CO2萃取云南红豆杉枝叶中紫杉醇的研究.中成药, 2006, 28(4): 480-482.
    [22].蒋受军,文东旭.从云南红豆杉中分得2个新的紫杉烷二萜dantaxusin C和D.国外医药(植物药分册), 2003, 18(2): 66-67.
    [23].史庆龙,林秀仙,葛发欢.超临界CO2萃取技术在云南红豆杉化学成分研究中的应用.中药材, 2001, 24(5): 338-339.
    [24]. Shi, Q.W., Oritani, T., Sugiyama, T. Three new taxane diterpenoids from seeds of the Chinese yew, Taxus yunnanensis and T. chinensis var. mairei. Planta Medica, 1999, 65(8): 767-770.
    [25]. Banskota, A.H., Usia, T., Tezuka, Y. Three new C-14 oxygenated taxanes from the wood of Taxus yunnanensis. Journal of Natural products, 2002, 65(11): 1700-1702.
    [26].梁素钰,和丽岗,郑学勤.云南红豆杉紫杉烯合成酶基因克隆、序列分析与植物表达载体的构建.生命科学研究, 2005, 9(1): 24-28.
    [27].罗建平,姜绍通,潘丽军.根癌农杆菌对云南红豆杉原生质体的转化.世界科学技术-中医药现代化, 2003, 5(3): 49-52.
    [28].陈永勤,朱蔚华,吴蕴祺.云南红豆杉细胞培养和紫杉醇生产.湖北大学学报(自然科学版), 2001, 23(4): 366-369.
    [29].陈永勤,朱蔚华,吴蕴祺.几种真菌诱导子对云南红豆杉细胞产生紫杉醇的影响.生物工程学报, 1999, 33(4): 213-219.
    [30].甘烦远,郑光植,彭丽萍.云南红豆杉细胞发酵培养的研究.天然产物研究与开发, 1997, 9(03): 96-96.
    [31].黎胜红.三种红豆杉科植物、穗花牡荆和旱生香茶菜的化学及生理活性成分研究.中国科学院昆明植物研究所博士学位论文. 2001, 1-5.
    [32].王达明,周云,张裕农.不同生长类型云南红豆杉林木枝叶的紫杉烷含量测定.西部林业科学, 2007, 36(03): 7-10.
    [33].王卫斌,郭华,王达明.我国的云南红豆杉资源及其药用原料林培育技术的研究进展.西部林业科学, 2007, 36(02): 122-128.
    [34].王卫斌,姜远标,王达明.我国云南红豆杉药用原料林培育技术开发进展.福建林业科技, 2007(02): 169-173.
    [35].王卫斌,姜远标,王达明.云南红豆杉药用原料林营建技术.林业科技开发, 2007(2): 62-65.
    [36].卿文英,刁阳光,袁志明.云南红豆杉的扦插育苗方法.四川林业科技, 2005, 26(01): 76-77.
    [37].李守玉.云南红豆杉扦插育苗试验结果分析.林业调查规划, 2005, 30(01): 27-31.
    [38].王达明,李莲芳,周云.云南红豆杉人工药用原料林的经营技术.西部林业科学, 2004, 33(1): 8-20.
    [39].李莲芳,王达明,周云.云南红豆杉药用人工原料林培育技术进展及发展策略.西部林业科学, 2001(01): 18-20.
    [40].苏建荣.云南红豆杉种群生物学研究.中国林科院博士学位论文. 2006, 49-66.
    [41].陈少瑜,吴丽圆,李江文.云南红豆杉天然种群遗传多样性研究.林业科学, 2001, 37(5): 41-48.
    [42].陈少瑜.云南红豆杉居群的等位酶分析方法.西北林学院学报, 2000, 15(4): 10-15.
    [43].吴丽圆,陈少瑜,项伟.云南红豆杉天然群体内同工酶遗传变异的研究.遗传, 2001, 23(3): 237-242.
    [44].吴丽圆,陈少瑜.云南红豆杉天然群体的遗传多样性和群体分化.中南林学院学报, 2001, 21(3): 37-40.
    [45].周其兴.红豆杉科的系统学研究.中国科学院昆明植物研究所博士学位论文. 2000, 1-5.
    [46]. Sahni, B. On certain archaic features in the seed of Taxus baccata with remarks on the antiquity of the Taxineae. Annals of Botany, 1920, 34: 117-133.
    [47]. Florin, R. On the morphology and relationships of Taxaceae. Botanical Gazette, 1948, 110: 31-39.
    [48]. Florin, R. The reproductive organs of conifers and taxads. Biological Reviews, 1954, 29: 367-389.
    [49]. Pilger, R. Coniferae. Leipzig: W.Engelmann. 1926, 121-407.
    [50]. Takhtajan, A.L. Phylogenetic principles of the system of higher plants. The Botanical Review, 1953, 19(1): 1-45.
    [51]. Fu, D.Z., Yang, Y., Zhu, G.H. A new scheme of classification of living gymnosperms at family level. Kew Bulletin, 2004, 59(1): 111-116.
    [52].胡玉熹.中国特有裸子植物的解剖I穗花杉(Amentotaxus argoteania (Hance)Pilger).植物学集刊(第一集), 1983: 127-134.
    [53].陈祖铿,王伏雄.从胚胎发育看穗花杉属的系统位置.植物分类学报, 1984, 22(4): 269-276.
    [54].陈祖铿.白豆杉的胚胎发育及其系统位置的商榷.植物分类学报, 1978, 16(5): 1-9.
    [55].马忠武,何关福,印万芬.双黄酮成分在红豆杉科各属、种中的分布.植物分类学报, 1985, 23(3): 192-195.
    [56].席以珍.穗花衫属花粉外壁的超微结构及其分类意义.植物分类学报, 1986, 24(6): 439-442.
    [57].席以珍.中国红豆衫科花粉形态的研究.植物分类学报, 1986, 24(4): 247-252.
    [58].张君增,方起程,梁晓天.从化学成分探讨白豆杉属的系统位置.植物分类学报, 1996, 34(03): 282-287.
    [59].胡志昂,王洪新,刘长江.裸子植物的生化系统学(三)——从种子蛋白多肽和针叶过氧化物酶探讨红豆杉科的系统位置.植物分类学报, 1986, 24(4): 260-263.
    [60]. Nan, L., Fu, L.K. Notes on gymnosperms I. Taxonomic treatments of some Chinese conifers. Novon, 1997, 7(3): 261-264.
    [61].李典谟,徐汝梅.物种濒危机制和保育原理.北京:科学出版社. 2005, 27-59.
    [62]. Wildt, D.E., Ellis, S., Janssen, D. Toward more effective reproductive science for conservation. London: Cambridge University Press. 1993, 5-90.
    [63].苏智先,张素兰,钟章成.植物生殖生态学研究进展.生态学杂志, 1998, 17 (1): 39-46.
    [64].苏智先.植物生殖生态学发展简史.四川师范学院学报(自然科学版), 1997, 18(4): 278-286.
    [65].方炎明.植物生殖生态学.济南:山东大学出版社. 1996, 16-29.
    [66]. Maataoui, M., Pictot, C. Microsporogenesis in the endangered species cupressus dupreziana A Camus: evidence for meiotic defects yelding unreduced and abortive pollen. Planta, 2001, 213: 543-549.
    [67].尹增芳,樊汝汶.中国鹅掌楸小孢子发生的细胞化学研究.植物学通报, 1998, 27(3): 42-47.
    [68].张寿洲,潘开玉,张大明.矮牡丹小孢子母细胞减数分裂异常现象的观察.植物学报, 1997, 39(5): 397-404.
    [69].潘开玉,温洁,罗毅波.矮牡丹小孢子发生和雄配子体发育及其与该种濒危的关系.植物分类学报, 1999, 37(3): 244-252.
    [70].王仲礼,刘林德,田国伟.短柄五加大、小孢子发生和雌、雄配子体发育的研究.植物研究, 1998, 18(2): 177-183.
    [71].刘林德,王仲礼,田国伟.刺五加开花后雌蕊的发育状态与受精作用.植物分类学报, 1998, 36(2): 111-118.
    [72].何田华,饶广远,尤瑞麟.濒危植物木根麦冬的胚胎学研究.植物分类学报, 1998, 36(4): 305-309.
    [73].刘林德,王仲礼,田国伟.刺五加大、小孢子发生和雌、雄配子体发育的观察.植物分类学报, 1998, 36(4): 289-297.
    [74].胡适宜.实验(二)花粉发育时期的检查和花粉壁性质的鉴定.植物学通报, 1993, 10(2): 51-52.
    [75].胡适宜.被子植物质体遗传的细胞学研究.植物学报, 1997, 39(4): 363-371.
    [76].胡适宜.被子植物双受精发现100年:回顾与展望.植物学报, 1998, 40(1): 1-3.
    [77].胡适宜.植物胚胎学研究方法(一)花粉活力的检测.植物学通报, 1993, 10(2): 60-62.
    [78].胡适宜.实验三花药绒毡层膜的分离及绒毡层膜用于光镜和电镜观察的样品制作方法.植物学通报, 1993, 10(4): 54-55.
    [79].胡适宜.植物胚胎学研究方法(五)检查花粉在柱头上萌发和花粉管在花柱中生长的制片法.植物学通报, 1994, 11: 58-60.
    [80].黄双全,郭友好.传粉生物学的研究进展.科学通报, 2000(03): 225-237.
    [81].周世良,潘开玉,洪德元.传粉对杭州石荠苎(唇形科)结实的影响.云南植物研究, 1998, 20(4): 445-452.
    [82].龚询,武全安,鲁元学.栽培红花山玉兰的传粉生物学.云南植物研究, 1998, 20(1): 89-93.
    [83]. Tepedino, V.J., Sipes, S.D., Griswold, T.L. The reproductive biology and effective pollinators of the endangered beardtongue Penstemon penlandii (Scrophulariaceae). Plant Systematics and Evolution, 1999,219(1): 39-54.
    [84].祖元刚,唐艳.高山红景天有性生殖过程及濒危原因的生态学分析.植物研究, 1998, 18(03): 336-340.
    [85].徐庆,姜春前,刘世荣.濒危植物四合木种群传粉生态学研究.林业科学研究, 2003, 16(4): 391-397.
    [86]. Clampitt, C.A. Reproductive biology of Aster curtus (Asteraceae), a pacific northwest endemic. American Journal of Botany, 1987, 74(6): 941-946.
    [87].李国平,黄群策.油杉花粉个体发育与传粉过程.林业科学, 2006, 42(5): 42-48.
    [88]. Barrett, S.C.H., Harder, L.D. Ecology and evolution of plant mating. Trends in Ecology & Evolution, 1996, 11(2): 73-79.
    [89]. Frankel, R., Galun, E. Pollination mechanisms, reproduction and plant breeding. Berlin: Springer-Verlag. 1977, 4-21.
    [90].张大勇.植物生活史进化与繁殖生态学.北京:科学出版社. 2004, 258-279.
    [91]. Lloyd, D.G. Some reproductive factors affecting the selection of self-fertilization in plants. The American Naturalist, 1979, 113(1): 67-79.
    [92]. Lloyd, D.G. Sexual strategies in plants. III. A quantitative method for describing the gender of plants. New Zealand Journal of Botany, 1980, 18: 103-108.
    [93]. Lloyd, D.G., Bawa, K.S. Modification of the gender of seed plants in varying conditions. Evolutionary Biology, 1984, 17: 255-338.
    [94]. Dellaporta, S.L., Calderon-Urrea, A. Sex determination in flowering plants. The Plant Cell, 1993, 5: 1241-1251.
    [95]. Westergaard, M. The mechanism of sex determination in dioecious flowering plants. Advances in Genetics, 1958, 9: 217-281.
    [96]. Lloyd, D.G. Theoretical sex ratios of dioecious and gynodioecious angiosperms. Heredity, 1974, 32(1): 11-34.
    [97]. Opler, P.A., Bawa, K.S. Sex ratios in tropical forest trees. Evolution, 1978, 32(4): 812-821.
    [98]. Newbigin, E., Anderson, M.A., Clarke, A.E. Gametophytic self-incompatibility systems. The Plant Cell, 1993, 5(10): 1315-1324.
    [99]. Nasrallah, J.B., Nasrallah, M.E. Pollen-stigma signaling in the sporophytic self-Incompatibility response. The Plant Cell, 1993, 5(10): 1325-1335.
    [100]. Bensen, R.J., Johal, G.S., Crane, V.C. Cloning and characterization of the maize An1 gene. The Plant Cell, 1995, 7(11): 75-84.
    [101]. Spray, C.R., Kobayashi, M., Suzuki, Y. The dwarf-1(dt) Mutant of Zea mays blocks three steps in the gibberellin-biosynthetic pathway. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(19): 10515-10518.
    [102]. Irish, E.E., Nelson, T. Sex determination in monoecious and dioecious plants. The Plant Cell, 1989, 1(8): 737-744.
    [103]. Tanurdzic, M., Banks, J.A. Sex-determining mechanisms in land plants. The Plant Cell, 2004, 16: 61-71.
    [104]. Dupler, A.W. Staminate strobilus of Taxus canadensis. Botanical Gazette, 1919, 68: 345-366.
    [105]. Wilde, M.H. A new interpretation of microsporangiate cones in Cephalotaxiaceae and Taxaceae. Phytomorphology, 1975, 25: 434-450.
    [106]. Pennell, R.I., Bell, P.R. Microsporogenesis in Taxus baccata L.: the development of the archaesporium. Annals of Botany, 1985, 56: 415-427.
    [107]. Pennell, R.I., Bell, P.R. Microsporogenesis in Taxus baccata L.: the formation of tetrad and development of the microspores. Annals of Botany, 1986a, 57: 545-555.
    [108]. Anderson, E.D., Owens, J.N. Microsporogenesis,pollination,pollen germination and male gametophytedevelopment in Taxus brevifolia. Annals of Botany, 2000, 86: 1033-1042.
    [109]. Robertson, A. The taxoideae: a phylogenetic study. New Phytologist, 1907, 6: 92-102.
    [110]. Dupler, A.W. The gametophytes of Taxus canadensis Marsh. Botanical Gazette, 1917, 64: 115-136.
    [111]. Sterling, C. Structure of the male gametophyte in gymnosperms. Botanical Review, 1963, 38: 167-203.
    [112]. Pennell, R.I., Bell, P.R. Insemination of the archegonium and fertilization in Taxus baccata L. Journal of Cell Science, 1988, 89: 551-559.
    [113]. Pennell, R.I., Bell, P.R. The development of the male gametophyte and spermatogenesis in Taxus baccata L. Proceedings of the Royal Society of London,Series B, 1986, 228: 85-96.
    [114].陈祖铿,王伏雄.白豆杉的配子体发育和受精作用.植物学报, 1979, 21: 19-29.
    [115].陈祖铿,王伏雄.穗花杉的胚珠结构与雌、雄配子体的发育.植物学报, 1985, 27(1): 19-25.
    [116]. Fernando, D.D., Lazzaro, M.D., Owens, J.N. Growth and development of conifer pollen tubes. Sexual Plant Reproduction, 2005, 18: 149-162.
    [117]. Brewbaker, J.L., Kwack, B.H. The essential role of calciumion in pollen germination and pollen tube growth. American Journal of Botany, 1963, 50: 859-865.
    [118]. Anderson, E.D., Owens, J.N. Megagametophyte development, fertilization, and cytoplasmic inheritance in Taxus brevifolia. International Journal of Plant Science, 1999, 160(3): 459-469.
    [119]. Sterling, C. Gametophyte development in Taxus cuspidata. Bulletin of the Torrey Botanical Club, 1948, 75(2): 147-165.
    [120]. Allison, T.D. Self-fertility in Canada yew (Taxus Canadensis Marsh.). Bulletin of the Torey Botanical Club, 1993, 120: 115-120.
    [121]. Sterling, C. Proembryo and early embryogeny in Taxus cuspidata. Bulletin of the Torrey Botanical Club, 1948, 75: 469-485.
    [122]. Sterling, C. Embryonic differentiation in Taxus cuspidata. Bulletin of the Torrey Botanical Club, 1949, 76: 116-133.
    [123]. Sugihara, Y. The proembryogeny of Taxus wallichiana Zucc. The Botanic Magzine Tokyo, 1946, 59: 96-99.
    [124]. Singh, H. Embryology of gymnosperms. Berlin: Gerbrüder Borntraeger. 1978, 20-57.
    [125]. Buchholz, J.T. Embryo development and polyembryony in relation to the phylogeny of conifers. American Journal of Botany, 1920, 7(4): 125-145.
    [126]. Allen, G.S. Embryogeny and Development of the Apical Meristems of Pseudotsuga. I. Fertilization and Early Embryogeny. American Journal of Botany, 1946, 33(8): 666-677.
    [127].吉前华,郭雁君,李少琼.不同处理对南方红豆杉种子萌发的影响.安徽农业科学, 2007, 35(31): 9858-9860.
    [128].张志强,陈贤浩,吴晓明.南方红豆杉种子贮藏和催芽对提高发芽率的作用.科技资讯, 2007, 25: 103.
    [129].黄儒珠,郭祥泉,方兴添.变温层积处理对南方红豆杉种子生理生化特性的影响.福建师范大学学报(自然科学版), 2006, 22(2): 95-98.
    [130].程广有,唐晓杰,高红兵.东北红豆杉种子休眠机理与解除技术探讨.北京林业大学学报, 2004, 26(1): 5-9.
    [131].独军,冯晓琴,李平英.红豆杉种子休眠原因与育苗试验的研究.林业科技, 2003, 28(5): 9-11.
    [132].朱念德,刘蔚秋,伍建军.影响南方红豆杉种子萌发因素的研究.中山大学学报(自然科学版), 1999, 38(2): 75-79.
    [133].周洪英,金平,邹天才.温度对南方红豆杉种子萌发的影响.贵州科学, 1998, 16(2): 116-119.
    [134].马小军,丁万隆,陈震.温度对东北红豆杉种子萌发的影响.中国中药杂志, 1996, 21(1): 20-22.
    [135].谭一凡.南方红豆杉种子后熟生理的研究.中南林学院学报, 1991, 11(2): 200-206.
    [136].张艳杰,高捍东,鲁顺保.南方红豆杉种子中发芽抑制物的研究.南京林业大学学报(自然科学版), 2007, 31(4): 51-56.
    [137].刘雄兰,刘建灵,季伟彪.南方红豆杉的生物学特性和种子育苗技术.安徽农学通报, 2007, 13(13): 119.
    [138].张志权,廖文波,钟翎.南方红豆杉种子萌发生物学研究.林业科学研究, 2000, 13(3): 280-295.
    [139].史忠礼,周菊华,王子卿.南方红豆杉种子休眠的研究.浙江林业科技, 1991, 11(05): 1-6.
    [140].赵沛基,沈月毛,彭丽萍.云南红豆杉离体胚的培养.植物生理学通讯, 2003, 39(4): 327-329.
    [141]. Chandler, L.M., Owens, J.N. The pollination mechanism of Abies amabilis. Canadian Journal of Forest Research, 2004, 34(5): 1071-1080.
    [142]. Takaso, T., Owens, J.N. Ovulate cone morphology and pollination in Pseudotsuga and Cedrus. International Journal of Plant Sciences, 1995, 156(5): 630-639.
    [143]. Owens, J.N., Simpson, S.J., Molder, M. The pollination mechanism in yellow cypress (Chamaecyparis nootkatensis). Canadian Journal of Forest Research., 1980, 10(4): 564-572.
    [144]. Owens, J.N., Takaso, T., Runions, C.J. Pollination in conifers. Trends in Plant Science, 1998, 3(12): 479-485.
    [145]. Tomlinson, P.B., Braggins, J.E., Rattenbury, J.A. Pollination drop in relation to cone morphology in Podocarpaceae: a novel reproductive mechanism. American Journal of Botany, 1991, 78(9): 1289-1303.
    [146]. Takaso, T., Owens, J.N. Pollination drop and microdrop secretions in cedrus. International Journal of Plant Sciences, 1995, 156(5): 640-649.
    [147]. Tomlinson, P.B., Braggins, J.E., Rattenbury, J.A. Contrasted pollen capture mechanisms in Phyllocladaceae and certain Podocarpaceae (Coniferales). American Journal of Botany, 1997, 84(2): 214-214.
    [148]. Lill, B.S., Sweet, G.B. Pollination drop in Pinus radiata. New Zealand Journal of Forestry Science, 1977, 7: 21-34.
    [149]. Kono, M., Tobe, H., Takaso, T. Pollination drop and pollen transfer mechanism in Cycas revoluta (Cycadaceae). Journal of Plant Research, 2003, 116: 154-155.
    [150]. Mugnaini, S., Nepi, M., Guarnieri, M. Pollination drop in Juniperus communis: response to deposited material. Annals of Botany, 2007: 1475-1481.
    [151]. Takaso, T., Owens, J.N. Ovulate cone, pollination drop, and pollen capture in sequoiadendron (Taxodiaceae). American Journal of Botany, 1996, 83(9): 1175-1180.
    [152]. Williams, G.L. Reconstructing the ovuliferous scale in Picea pungens to examine the mechanisms surrounding pollination drop secretion. PhD. dissertation, Michigan State University. 2000, 2-31.
    [153]. O'Leary, S.J.B., Joseph, C., Aderkas, P. Origin of arabinogalactan proteins in the pollination drop of Taxus×media. Centralblatt fur das gesamte Forstwesen, 2004, 121(1): 35-46.
    [154].邢树平,陈祖铿,胡玉熹.红豆杉的胚珠发育、传粉滴形成和传粉过程(英文).植物学报, 2000, 42(2): 126-132.
    [155]. Colangeli, A.M., Owens, J.N. The relationship between time of pollination, pollination efficiency and cone size in western redcedar (Thuja Plicata). The Canadian Journal of Research, 1990, 69: 439-443.
    [156]. Allison, T. Variation in sex expression in Canada yew(Taxus canaensis Marsh.). American Journal of Botany, 1991, 78: 569-578.
    [157]. Allison, T. Pollen production and plant density affect pollination and seed production in Taxus canadensis. Ecology, 1990, 71: 516-522.
    [158]. Allison, T. The influence of deer browsing on the reproductive biology of Canada yew(Taxus canaensis Marsh.)Ⅲsex expression. Oecologia, 1992, 89: 223-228.
    [159]. Allison, T. The influence of deer browsing on the reproductive biology of Canada yew(Taxus canaensisMarsh.)Ⅰpollen limitation :direct effect on pollen. Oecologia, 1990, 83: 523-529.
    [160]. Allison, T. the influence of deer browsing on the reproductive biology of Canada yew(Taxus canaensis Marsh.)Ⅱpollen limitation: an indirect effect. Oecologia, 1990, 53: 530-534.
    [161]. Keen, R., Chadwich, L. Warn propagators to watch for sex reversal in Taxus. American Nuseryman, 1954, 100: 13-14.
    [162]. Hogg, K.E., Mitchell, A.K., Clayton, M.R. Confirmation of cosexuality in Pacific yew (Taxus brevifolia Nutt.). Great Basin Naturalist, 1996, 56(4): 377-378.
    [163].管启良,林立.白豆杉的核型及性染色体研究.植物学报, 1993, 20(2): 155-158.
    [164].陈可咏.粗榧的核型及性染色体.植物学报, 1995, 37(2): 159-161.
    [165]. Primack, R.B., Lloyd, D.G. Sexual strategies in plants. IV. The distribution of gender in two monomorphic shrub populations. New Zealand Journal of Botany, 1980, 18: 109-114.
    [166]. Meagher, T.R. Analysis of paternity within a natural population of chamaelirium luteum. II. Patterns of male reproductive success. The American Naturalist, 1991, 137(6): 738-752.
    [167]. Lloyd, D.G. Sexual strategies in plants. I. An hypothesis of serial adjustment of maternal investment during one reproductive session. New Phytologist, 1980, 86(1): 69-79.
    [168]. Schoen, D.J., Stewart, S.C. Variation in male reproductive investment and male reproductive success in white spruce. Evolution, 1986, 40(6): 1109-1120.
    [169]. Elle, E., Meagher, T.R. Sex allocation and reproductive success in the andromonoecious perennial Solanum carolinense(Solanaceae). II. Paternity and functional gender. American Naturalist, 2000, 156(6): 622-636.
    [170]. Devlin, B., Clegg, J., Ellstrand, N.C. The effect of flower production on male reproductive success in wild radish populations. Evolution, 1992, 46(4): 1030-1042.
    [171].李懋学,张斆方.植物染色体研究技术.哈尔滨:东北林业大学出版社. 1991, 148-192.
    [172]. Tanaka, R. Types of resting nuclei in Orchidaceae. The Botanical Magazine, 1971, 84: 118-122.
    [173]. Tanaka, R. Recent karyotype studies. Plant Cytology, 1977: 293-326.
    [174]. Arano, H. Cytological studies in subfamily carduoideae (compositae) of Japan. Botanical Magazine, 1963, 76: 32.
    [175].李懋学,陈瑞阳.关于植物核型分析的标准化问题.武汉植物学研究, 1985, 3(4): 297-302.
    [176]. Stebbins, G.L. Chromosomal Evolution in Higher Plants. London: Edward Arnold. 1971, 85–104.
    [177]. Dark, S.O.S. Chromosomes of Taxus, Sequoia, Cryptomeria and Thuya. Annals of Botany, 1932: 965-977.
    [178].陈可咏.东北红豆杉的核型分析.植物学通报, 1996, 13: 46-47.
    [179].顾志建,周其兴,岳中枢.中国红豆杉属和白豆杉属的核形态学研究.云南植物研究, 1998, 20(3): 329-333.
    [180]. DiFazio, S., Vance, N., Wilson, M. Strobilus production and growth of Pacific yew under a range of overstory condition. Canadian Journal of forest reseach, 1997, 27: 986-993.
    [181]. DiFazio, S., Vance, N., Wilson, M. Variation in sex expression of Taxus brevifolia in western Oregon. Canadian Journal of botany, 1996, 74: 1943-1946.
    [182].瞿礼嘉,邓兴旺.植物发育的机制.北京:高等教育出版社. 2005, 155-156.
    [183]. Silen, R. First- and second-season effect on Douglas-fir cone initiation from a single shade period. Canadian Journal of Forest Research., 1973, 3: 528–534.
    [184]. Dahlem, T.S., Boerner, R.E.J. Effects of canopy light gap and early emergence on the growth and reproduction of Geranium maculatum. Canadian Journal of Botany, 1987, 65(2): 242-245.
    [185]. Devlin, B. The effects of stress on reproductive characters of Lobelia cardinalis. Ecology, 1998, 69: 1716–1720.
    [186]. Dale, M.P., Causton, D.R. The ecophysiology of Veronica Chamaedrys, V. montana and V. officinalis. IV. Effects of shading on nutrient allocations--a field experiment. The Journal of Ecology, 1992, 80(3): 517-526.
    [187]. Givnish, T.J. Ecological constraints on the evolution of breeding systems in seed plants: dioecy and dispersal in gymnosperms. Evolution, 1980, 34(5): 959-972.
    [188]. Maynard, S.J. The evolution of sex. Cambridge: Cambridge University Press. 1978.
    [189]. Howe, H.F., Estabrook, G.F. On intraspecific competition for avian dispersers in tropical trees. The American Naturalist, 1977, 111(981): 817-832.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700