用户名: 密码: 验证码:
氧化锆纤维和制品的制备及烧结研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以部分稳定的超细氧化锆微粉制备的水基泥浆为原材料,通过挤出—聚凝成型工艺成功制备了氧化锆陶瓷纤维。论文对该工艺制备氧化锆纤维的成型机理,氧化锆纤维制备过程的影响因素以及在烧结过程中氧化锆陶瓷纤维内的晶粒生长动力学和以及氧化锆陶瓷纤维烧结动力学进行了深入的研究。
     通过上述研究,获得主要成果如下:
     提出了一种新的氧化锆纤维成型方法,即挤出—聚凝法。该成型方法的工艺原理为:通过挤压作用,使稳定悬浮的氧化锆泥浆通过喷丝头微孔挤出成细柱状泥浆,降低细柱泥浆中氧化锆颗粒周围液相的介电常数,使颗粒周围双电层急剧变薄,颗粒间静电斥力减小,颗粒之间的作用力失去平衡,从而发生氧化锆微粉颗粒之间聚集,从流态变成固态,并保留了柱状泥浆的长径比。另外,氧化锆泥浆细流中的水基本上被聚凝剂所萃取掉,凝固下来的氧化锆纤维表面包覆的是表面张力很小的聚凝剂,避免了氧化锆纤维纤维在烘干过程中互相之间发生粘结而导致纤维断裂。
     对纤维表面的粗糙和纤维中心部位的小孔的成因进行了解释:①当泥浆接触聚凝剂的时候,由于聚凝剂与泥浆的界面张力很小,氧化锆颗粒周围水化膜中的水被聚凝剂瞬间萃取,泥浆因为失去颗粒表面水化膜中的水而失去了恢复光滑表面的驱动力,使挤出过程中形成的不均匀表面得以保留;②由于聚凝剂对水的萃取作用,使泥浆已经固化的部分和泥浆内部没有固化的部分形成水的浓度差,水在浓差作用下,不断的从内部向表面运动,从而形成无数的水流通道,宏观表现为表面的粗糙;③泥浆内储存的压应力使泥浆细流离开喷丝孔后发生微小的膨胀,使固化的表面产生裂隙。这些裂隙在宏观上也表现为表面的粗糙;④由于浓差作用,泥浆内部的水分不断向聚凝剂中运动,带动纤维内部流体中被水包围的氧化锆颗粒向已经固化的表面方向运动,形成中空结构。
     成功地制备出成功制备出密度为6.05g╱cm~3氧化锆陶瓷纤维。并提出挤出—聚凝成型制备氧化锆纤维的最佳工艺参数:泥浆的固相含量为47vol%,分散剂加入量为氧化锆微粉的0.7%(质量分数),球磨时间为24小时、聚凝剂为丙酮,挤出压力在3.28 KPa~4.92 KPa之间,烧结温度为1530℃,保温时间为300min。
     根据烧结过程中氧化锆纤维晶粒尺寸与烧结温度和保温时间的变化规律,研究了氧化锆纤维的晶粒生长动力学,根据烧结时的氧化锆纤维的密度变化,对氧化锆纤维的烧结动力学进行了研究,提出氧化锆纤维的烧结与块状材料的烧结情况相同观点。实验还发现,氧化锆纤维集合体在高温下有很大的收缩,纤维之间有烧结颈部出现:已经烧结致密的氧化锆陶瓷纤维组成的集合体,在高温下有一定的收缩,但是纤维之间很难看到烧结的颈部。
In this paper, Zirconia fiber green body was prepared with extrusion-conglomeration molding sucessfully, using Zirconium water based slurry made of partial stabilized Zirconia super fine powder. The molding mechanism, influence factors on preparation of Zirconia fiber, grains growth kinetic and sintering kinetics of Zirconia fiber during sintering were studied systematically.
     All of achievements of this study were obtained as follows: extrusion-conglomeration molding for forming Zirconia fiber was put forward for the first time. The molding mechanism was discussed at the same time. When the Zirconium slurry was displaced into conglomerating solvent with low dielectric constant and mutual solubility to water, Zirconia particles would conglomerate because of the electric double layer being thin rapidly, static repulsive falling and equipment breaking among Zirconia particles. When the conglomeration generated continuously, zirconium slurry passed through spinneret orifice changed from fluid state to solid state and become Zirconia fiber with slenderness ratio. In addition, water in Zirconia slurry was extracted and remained little, and conglomerating solution with minute surface tension around Zirconia fiber. During drying process, adhesion between two Zirconia fibers was avoided.
     The explain of forming coarseness on Zirconia fiber green body surface was given as follows: first, the interfacial tension between organic solvent and Zirconia slurry result in water in film around grains surface was extracted instantly and driver force for decreasing surface area and forming a smooth surface became faintness result in minute surface tension of conglomerating solvent. So that the non-uniform surface created by slurry flowing was kept. Second, when Water, extracted from fiber interior by conglomerating solvent continuously, numerous capillary generated and they looked like minute protuberance at macroscopic. Third, slurry streamlet expanded slightly for the reason of the Barus effect after leaving the spinneret orifice. This expander made the coagulated surface cracked and generated some minute crannies and they looked like minute protuberance at macroscopic as well.
     The hole appeared in fiber center was because of that the particles were carried by water from slurry center to surface due to water differential concentration between solvent and interior of slurry. On the other hand, the slurry exterior surface was solidified already, so the shrinkage generated just from interior to surface of fiber.
     Forming optimum parameters of preparation of Zirconia fiber were given such as, In 47vol% slurry, the amount of dispersant agent PAANH4 was about 0.7 wt.% of Zirconia powder and milling time was about 24h. Acetone was used as the conglomerating agent. Extrusion press was from 3.28 KPa to 4.92 KPa. The Zirconia fiber was sintered at 1530℃for soaking 300min and it's density is about 6.05g/cm~3.
     Zirconia fiber's grain growth kinetic was studied and the grain growth activation energy was calculated according to the law of Zirconia fiber's grain size change during sintering. Further more, the sintering kinetic of Zirconia fiber was studied via the change of fiber density during sintering. The result shows that sintering process of Zirconia fiber is similar to block materials.
     The sintering of Zirconia fiber aggregation was also studied in this paper. The result showed that, neck between two pieces of fiber could be observed after sintering in aggregation made of Zirconia fiber green body. If the aggregation made up of Zirconia fiber fired at 1530℃for soaking 300min, there were small shrinkage of aggregation but the neck between two pieces of fibers was observed hardly.
引文
[1]崔之开编著.陶瓷纤维.化学工业出版社2004年1月.
    [2]National Materials Advisory Board Commission on Engineering and Technical Systems Report of the Committee on High-performance Synthetic Fibers for Composites,National Academy Press Washington,D.C.1992.
    [3]尹衍升等著,氧化锆陶瓷的掺杂稳定及生长动力学,化学工业出版社,2004年11月.
    [4]Tragert W.E,et al.Fuel Cell.U.S.Pat.No 3138487,June 23,1964.
    [5]贾德昌,周玉,陶瓷材料抗热震性研究进展,材料科学与工艺,1993,1(4):96-102
    [6]徐平坤,魏国钊编著.耐火材料新工艺技术.冶金出版社,2005.
    [7]Refractory Zirconia Fibers for Molded Aerospace Components.Tool and Manufacturing Engineer,1964,3:88-93.
    [8]张定金,高防热性能氧化锆纤维及其在航天工业中的应用,工业陶瓷,1992,51(1):2-8
    [9]早濑稚博著,氧化锆纤维的开发及其用途.国外耐火材料,1989,(4):26-33
    [10]Bernard H.Hamling,Process for Producing Metal Oxide Fibers,Textiles and Shapes.U.S.Pat.No3385915,1968,5,28.
    [11]Bernard H.Harnling,Metal Oxide Fibers.U.S.Pat.No3663182,1972,5,16.
    [12]Ritzert F.J.,YUN H.M,Single Crystal Fibers of Yttria-stabilized Cubic Zirconia with Ernary Oxide Additions.J.Mater Sci,1998,33:5339-5349
    [13]Shoji Kawakami,Preparation of Zirconia Fibers by Directional Solidifcation of ZrO_2-Fe_3O_4 Eutectic.Journal of Crystal Growth,2000,212:456-458.
    [14]Pefia J.I..Miao H.,Polymer Matrix Synthesis of Zirconia Eutectics Solidification into Single Crystal Fibres.Solid State Ionics,1997,103:143-147.
    [15]Bernard H.Hamling,Stabilized Tetragonal Zirconia Fiber and Textiles.U.S.Pat.No.3860529.1972,5,1
    [16]胡利明,氧化锆纤维布的研究.武汉理工大学硕士学位论文,2002,5.
    [17]胡利明,陈虹.氧化锆纤维布的研究.硅酸盐通报,2002,1:21-24.
    [18]贾光耀,卫星电池用高性能氧化锆纤维布膜的研制,硅酸盐通报,2004,(5):20-23;
    [19]王玲,超高温绝热氧化锆纤维毡的烧成控制.现代技术陶瓷,1996,68(2):38-41.
    [20]周晓东,古宏晨,喷雾分级法制备氧化锆纤维的过程研究。无机学报材料。1998,6(3).401-406
    [21]Pullar R.C.,The Manufacture of Partially-stabilised Zirconia Fibres Blow Spun from an Alkoxide Derived Aqueous and Fully-stabilised Sol-gel Precursor.J.Euro.Ceram.Soc.,2001,21:19-27.
    [22]Azad Abdul-Majeed,Fabrication of Yttria-stabilized Zirconia Nanofibers by Electro-spinning.Materials Letters,2006,60:67-72
    [23]Nan Jing,Fabrication of Ultrathin ZrO_2 Nanofibers by Electro-spinning.J.Photopolymer science and technology.2005,18(4):503-505.
    [24]关宏宇,邵长路等,静电纺丝法制备ZrO_2纳米纤维.高等学校化学学报,200425(8):1413-1415
    [25]Chakrabarty P.K.,Zirconia Fiber Mats Prepared by a Sol-gel Spinning Technique.J.Euro Ceram.Soc.,2001,21:355-361
    [26]Marshall David B.et al.,High-Strength Zirconia Fibers.J.Am.Ceram.Soc.1987,70[8]:C187-C188.
    [27]Yoshimoto ABE et al..,Preparation of continuous Zirconia fiber from Polyzirconoxane Synthesized by the Facile One-pot Reaction.J.materials science,1998,33:1863-1870.
    [28]Liu Heyi,Fabrication of High-strength Continuous Zirconia Fibers and Their Formation Mechanism Study.J.Am.Ceram Soc..2004,87(12):2237-2241.
    [29]Naskar M.K.,Rare Earth Doped Zirconia Fibers by Sol-Gel Processing.J.Maters Sci.,1996,31:6263-6267.
    [30]Gunji Takahiro,Preparation of Polyzirconoxane from Zirconium Oxychloride Octahydrate and Ethylene Glycol as a Precursor for Zirconia Ceramics.Appl.Organometal.Chem.200014:119-126
    [31]刘久荣,潘梅.由二氯氧锆-醇-醋酸盐体系制备氧化锆纤维.硅酸盐通报,2001,3:66-69.
    [32]潘梅等,由醋酸锆前驱体制备ZrO_2连续纤维的过程研究,无机材料学报,2001,16(4):729-733.
    [33]李建军,氧化锆连续陶瓷纤维关键制备技术.山东大学博士学位论文,2007,6
    [34]宫原健一郎等,部分稳定的氧化锆纤维,.昭59-144620,1984,8
    [35]神谷宽一等,氧化锆纤维的制造方法.平—1132831A 1989.5.
    [36]近藤 知,氧化锆纤维的制造方法.特开平5-321036,1993,12.
    [37]许东等,有机锆前驱体纺丝液甩丝法制备氧化锆纤维棉.公开号CN.1584155A
    [38]Winter Gerhard,Production of Inorganic Fibers.U.S.Pat.No3846527,1974,11,5.
    [39]Alan,et al.,Production of Continuous Ceramica Fibers.U.S.Pat.No 4071594.1978,3
    [40]Peter Sagesser et al.,Polyerystalline Ceramic Fibers by Extrusion.The Korean Journal of Ceramics,1998,4(4):382-386.
    [41]孟秀霞,杨乃涛等,Y_2O_3/ZrO_2中空纤维陶瓷膜的制备与表征.高等学校化学学报,2006,27(4):599-601.
    [42]Zhiomirsky L.Gal-Or.,Formation of Hollow Fibers by Electrophoretic Deposition.Materials Letters,1999,38:10-17.
    [43]尹衍升,水热法制备氧化锆纳米管的影响因素及形成机理.现代化工,2005,25(5):28-43..
    [44]Eduardo Pena dos,Zireonia Needles Synthesized Inside Hexagonal Swollen Liquid Crystals.Chem.Mater.2004,16:4187-4192.
    [45]Klngery等著,庄炳群译 陶瓷导论 中国建筑工业出版社 1982.12
    [46]浙江大学等编.硅酸盐物理化学 中国建筑工业出版社 1981.8
    [47]贺可音编.硅酸盐物理化学 武汉工业大学出版社 1995年11月.
    [48]Coble R L.,Diffusion Models for Hot Pressing with Surface Energy and Pressure Effect as Driving Forces.J Appl Phys,1970;41(12):4798-7807
    [49]Johnson D.Lynn,A General Model of the Intermediate Stage of Sintering..J Am Ceram Soc,1970;53(10):574-577
    [50]Johnson D.Lynn,Fundamentals of the Sintering of Ceramics,Materials science research,1979,11:137-149.
    [51]Upadhyaya G.S.,Some Issues in Sintering Science and Technology.Materials Chemistry and Physics,2001,67:1-5
    [52]Burke J.E.and J.H.Rosolowski Sintering J.Applied Physics 1974,2:1-18.
    [53]Robert W.,Rajarao,A Study of Sintered Apart.J Dent Res November-December 1974 6
    [54]Suk-Joong L.Kang Sintermg—densification,Grain Growth,Microstructure.Jordan Hill Oxford.2005
    [55]Rahaman M.N.,Ceramic Processing and Sintering.Marcel.INC.NEW YORK 2003
    [56]Kellet B.J.,Lange F.F,Thermodynamics of Densification:Ⅰ Sintering of Simple Particle Arrays,Equilibrium Configurations Pore Stability,and Shrinkage J.Am.Ceram.Soc..1989;725):725-734;
    [57]Lange F.F.,Sinterability of Agglomerated Powders.J.Am.Ceram.Soc..,1984;67:83-91
    [58]Lange F F,Kellet B J.Thermodynamics of Densifieation:Ⅱ Grain Growth in Porous Compacts and Relation to Densification.J.Am.Ceram.Soc..,1989;72(5):735-741
    [59]Wakai F.,Aldinger F.,Sintering Forces in Equilibrium and Non-equilibrium States During Sintering of Two Particles.Science and Technology of Advanced Materials,2004,5:521-525
    [60]施剑林固相烧结—Ⅰ气孔显微结构模型及其热力学稳定性、致密化方程,硅酸盐学报.1997,25(5):499-513
    [61]施剑林,固相烧结-Ⅱ粗化与致密化关系及物质传输途径.硅酸盐学报,1997,25,(6):657-667;
    [62]施剑林,固相烧结-Ⅲ实验:超细氧化锆素坯烧结过程中的晶粒与气孔生长及致密化行为.硅酸盐学报,1998,26,(1):1-13.
    [63]Kwon Y.S.,et al.,Volume Change of Binary Mixtures During Solid State Sintering.Powder Metallurgy,2002,45(3):261-265;
    [64]Parhami F.,A Network Model for Initial Stage Sintering.Mechanics of Materials,1998,27:111-124;
    [65]Lu P.et al..Microstructural Evolution and Macroscopic Behavior during Solid State Sintering.Powder Metallurgy,2001,44(4):363-368;
    [66]Torsten Kraft,Hermann Riedel,Numerical Simulation of Solid Sintering;Model and Application.J.Euro.Ceram.Soc,2004,24:345-361;
    [67]Michael Braginsky,et al.,Numerical Simulation of Solid State Sintering.International journal of Solid and Structure,2005,42:621-636;
    [68]SukJoong L.Kang,Sintering Kinetics at Final Stage Sintering:Model Calculation and Map Construction.Acta Materialia 52(2004) 4573-4578
    [69]Yurkov A.L.et al..Final Stages of Sintering of Ceramic Materials:Effect of Residual Porosity and Microstructure on Mechanical Characteristics of Surface.Ceramic International,1997,23:389-399
    [70]May-Ying Chu,Sintering Stress and Microstructure in Ceramic Powder Compacts,Ph.D. Thesis,University of California,August,1990
    [71]Andrey L.Maximenko,Effective diffusion coefficients in solid-state sintering.Acta Materialia,2004,52:2953-2963.
    [72]Stefan Luding et al.,A discrete model for long time sintering.Journal of Mechanics and Physics of solids.53(2005) 455-491.
    [73]何顺爱,高温处理莫来石纤维微观观察.稀有金属材料与工程,2007,36 suppl(1):298-301
    [74]Robert W.Hopper,Coalescence of two equal cylinders:exact result for creeping viscous plane flow driven by capillarity.J.Am.Ceram Soc,1984;67:c262-c264;
    [75]Takashi Yamaguchi,Behavior of Pores in the Sintering of Fe_2O_3 Powder,J.Am.ceramic society,1983,66,210-213.
    [76]Fernando J.A.Improving an Alumina Fiber Membrane for Hot Gas Filtration Using an Acid Phosphate Binder.J.Mater Sci..2001,36:5079-5085
    [77]Peng H.X.,Cellular Arrays of Aluminia Fibres.J.Materials Science,2001,36:1007-1013
    [78]袁军,二氧化硅粉末的浸润性能与浸润功.武汉化工学院学报,1999,21(3):10-12
    [79]Li Maoqiang,Making Spherical Zirconia Particles from Inorganic Zirconium Aqueous Sols.Powder Technology,2003,137:95-98.
    [80]孙静等,纳米Y-TZP凝胶注模成型的研究.无机材料学报,1998,13(5):733-788.
    [81]杨静漪等,纳米ZrO_2水悬浮液稳定性的研究.无机材料学报,1997,12(5)665-670
    [82]崔洪梅等,纳米粉体的团聚与分散.机械工程材料,2004,28(8)38V41
    [83]刘晓光等,氧化锆水系料浆稳定性研究.材料工程,2003,9:30-33.
    [84]白占鸿等,粗颗粒氧化锆粉体凝胶注模成型工艺研究.红河学院学报,2003,1(2):73-77
    [85]易中周,凝胶注模成型氧化锆耐火材料的研究.耐火材料,2002,36(1):9-12.
    [86]王刚等,精密陶瓷凝胶注模成型工艺评述.材料科学与工程学报,2003,21(14):602-607
    [87]陈礼永,袁继祖,陶瓷浆料稳定机理研究.中国陶瓷,1995,31(3):1-3.
    [88]李斌等,ZrO_2基陶瓷注凝成型料浆流变性的研究.南京工业大学学报,2005,27(5):89-92.
    [89]Mark A.Janney,et al..Gelcasting.The Handbook of Ceramic Engineering,1998.
    [90]王金锋,固相含量对氧化锆陶瓷注凝成型的影响.中国陶瓷,2007,43(3):26-29.
    [91]汤枫秋等,纳米氧化锆粉体流变性能的研究.材料科学与工程,1999,17(1):8-11.
    [92]刘忆明,易中周,表面改性对超细氧化锆悬浮体的流变性影响,红河学院学报,2004,2(4):4-7.
    [93]赵光好,纳米二氧化锆悬浮液分散稳定性研究.无机盐工业,2006,38(1):23-25;
    [94]张宗涛,纳米氧化锆粉末的塑性挤制成型研究.无机材料学报,1996,11,(3):155-159;
    [95]贾成志等,纳米氧化锆在水中分散性研究.化学工程,2005,33,(5):47-49
    [96]高雅春等,超细二氧化锆注凝成形料浆流变性研究胸瓷,2007,18:8-11.
    [97]张永胜等,氧化锆纳米陶瓷素坯成型研究,材料热处理学报,2005,26(6):5-8;
    [98]刘旭俐,氧化锆陶瓷注凝成型研究.硅酸盐通报 2000,3,31-34;
    [99]饶坚,分散剂(PMAA-NH4)质量分数和pH值对纳米氧化锆悬浮液分散效果的影响.青岛大学学报,2003,16(3):37-39
    [100]路建美,朱秀林.低分子量聚丙烯酸钠的研制及应用.化学世界,1994,(9):471-474
    [102]李家科等,陶瓷坯体增强剂聚丙烯酸钠在艺术瓷成形过程的应用.陶瓷学报,2006,27(1):79-82.
    [103]沈钟,王果庭,胶体与表面化学,化学工业出版社,1991
    [104]Hoffmanrl.Discontinuous Viscosity Behavior in Concentrated Suspension.Trans Soc,1972,16:155-159.
    [105]Napper D.H.,Streic stabilization,J.Colloid Interface Sci,1977,58(2):390-407.
    [106]Ottewill R.H,Stability and Instability in Disperse Systems,J Colloid Interface Sci,1977,58(2):683-692
    [107]Ackerson B J,Sheer-induced Order and Shear Processing of Model Hard-sphere Suspension,JRheol,1990,34(4):553-559
    [108]Gabriel T M,Halloran J W,Curing of High—loading Ceramic Suspension in Crylates,J.Am.Ceram Soc,2000,83(10):2375-2380.
    [109]Tadros T F,Steric stabilization and flocculation by polymers.Polymer,1991,23(5):683-696.
    [110]陈玉峰,碳化硅/炭黑水基料浆凝胶注模成型的研究,中国建筑材料科学研究院,博士学位论文,2003;
    [111]傅献彩,陈瑞华编,物理化学.高等教育出版社,1980.
    [112]陶坤译,苏联化学手册.科学出版社,1958
    [113].王福安,二元非电聚凝剂介电常数随浓度变化的关系.郑州大学学报,1981,1: 104-119.
    [114]王华,反应烧结碳化硅的冷凝浇注成型.中国建筑材料科学研究院,博士学位论文,2007,6;
    [115]周达飞,唐颂超,高分子材料成型加工.中国轻工业出版社,2000年5月.
    [116]休斯W.F著,徐燕侯等译,流体动力学.科学出版社,2002.
    [117]安立国,氧化镁部分稳定氧化锆超细粉末及其烧结特性.耐火材料,1998,23(4):140-142.
    [118]Lamas D.G.,et at.,Synthesis and Characterization of Nanocrystallme Powders for Partially Stabilized Zirconia Ceramics.J.Euro.Ceram Soc.,1998,18:1217-1221
    [119]李蔚等,纳米Y-TZP材料烧结过程晶粒生长的分析.无机材料学报,2000,15(3):536-540
    [120]许勇等人,ZrO_2的烧结动力学研究,天然气化学,1996,19(3):14-18.
    [121]杨峥等,Y_2O_3-ZrO_2超微粉体烧结初期动力学研究.西北工业大学学报,1996,14(2):175-17
    [122]Shinn-Yih Lee,Sintering behavior and mechanical properties of injection-molded Zirconia powder,Ceramics International 30(2004) 579-584
    [123]孟国文等,Y_2O_3含量及制备工艺参数对ZrO_2纳米粉烧结体性能的影响.功能材料,1996,27(6):92-94
    [124]Dajang chen et al..Rapid rate sintering of nanocrystalline ZrO_2-3Y_2O_3.J.Am.Ceram.Soc.,1996;79(4):906-912;
    [125]Zheng Jingmin,James S.Reed,Effecta of Particle Packing Characteristics on Solid-state Sintering.J.Am.Ceram.Soc.,1989,72[5]:810-817;
    [126]郑明银,氧化锆陶瓷材料的晶粒生长控制研究.上海材料研究所,硕士学位论文2006,5
    [127]Rhodes W.H.,Controlled transient solid second phase sintering of yttria.J.Am.Ceram.Soc.,1987,64(1):13-19
    [128]Dynys E.E.W.,Influence of Aggregates on Sintering.J.Am.Ceram.Soc.,1984;67(9):596-601;
    [129]Mineiro S.L.,Sintering Behavior of Tetragonal Zirconia Ceramic Stabilized with Yttira and Rare Earth Oxide(YRE) Mixtures.J.Materials Science Forum.2003:609-614;
    [130]Rhodes W.H.,Agglomerate and Particle Size Effects on Sintering Ytria-stabilized Zirconia..J.Am.Ceram.Soc.,1981;64(1):19-22;
    [131]Shi J.L.et al..Sintering Behavior of Fully Agglomerated Zirconia Compacts.J.Am.Ceram.Soc.,1991;74(5):994-997;
    [132]Shi J L.Yen T S.,Crystallite Growth Characteristics in Superfine Y-TZP and YSZ Powders and Compacts.J.Eur.Ceram.Soc.,1994;14:505-509;
    [133]Shi J L,Lm Z.X,Yen T S.Effect of Agglomerates in Superfine Zirconia Powder Compacts on Microstructural Development.J.Mater.Sci.,1993;28(2):342-347;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700