用户名: 密码: 验证码:
微量元素对甘草中甘草酸形成与积累影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘草,具有调和诸药的功效,为中国传统大宗中药材。然而,对野生甘草过度的挖掘和开发,导致了全世界范围内其野生种质资源近乎灭绝。人工种植甘草是解决当前甘草资源短缺的有效途径。但是,人工种植甘草的甘草酸含量普遍低于野生甘草。甘草酸是甘草入药的主要化学成分。因此,稳定和提高人工种植甘草质量的研究成为近年的一个研究热点。本研究的目的是定量分析B、Mn、Zn和Mo等4种微量元素对甘草根中主要的次生代谢产物、初生代谢产物、中间合成前体物质、微量元素水平及存在形态、甘草酸生物合成关键酶基因表达的影响。乌拉尔甘草(Glycyrrhizia uralensis Fisch.)(以下简称甘草)为研究材料,上述4种微量元素,分别设置低、中和高浓度处理。本研究可为人工定向调控甘草品质,开发人工栽培甘草专用微量元素肥料提供研究依据。取得的主要研究结果如下:
     1.B、Mn、Zn和Mo等4种微量元素中,对甘草酸形成与积累具有明显促进作用的是Zn、Mo和Mn等3种元素。但不同施肥方式(土壤条施和叶面喷施)间作用结果略有差异。其中叶面喷施可以显著提高甘草根中甘草酸含量的是Mn和Zn元素三种浓度处理(0.05%,0.1%和0.15%),中、高浓度Mo元素处理(0.1%和0.15%)及高浓度B元素处理;根部土壤条施对甘草根中甘草酸积累有显著促进作用的元素及相应处理浓度分别是中、高浓度的Mo元素(75g/hm2和100g/hm2)和Mn元素(6kg/hm2和9kg/hm2),低、中及高浓度的Zn元素(3.4kg/hm2、4.0kg/hm2和4.5kg/hm2)。
     2.施用微量元素后甘草根中甘草酸含量以当年10月和5月含量显著高于其他月份,说明人工栽培甘草适宜的采收期应是春末夏初和秋末这两个时期。
     3.能够促进甘草酸生物合成关键酶——鲨烯合成酶(SQS)基因表达的是高和极高浓度的Zn元素(0.15%和0.3%)和中、高和极高浓度的Mo元素(0.1%,0.15%和0.3%);Zn元素所有处理浓度均可明显提高β-香树脂醇合成酶(β-AS)基因的表达,随着Mo元素处理浓度的提高,β-AS基因的表达量增加。
     4.在甘草根中首次检测到甘草酸合成的中间前体物质——角鲨烯,但含量较低。建立了相应的高效液相及气相色谱质谱检测方法。4种微量元素处理对角鲨烯含量具有极显著提高作用的是高浓度的Zn元素(0.15%)和高浓度的Mo元素(0.15%)处理,此外,中、低浓度的Zn元素(0.1%和0.05%)和中浓度的Mo元素(0.1%)对甘草根中角鲨烯的积累也具有显著的促进作用。各处理下6月份角鲨烯含量极显著高于其他月份。甘草根中角鲨烯含量与甘草酸含量间存在显著正相关关系。
     5.微量元素处理后对甘草根中的物质组分也产生了明显影响,其中4种微量元素高浓度(0.15%)处理显著提高了甘草根中粗纤维的含量,中、高浓度(0.1%和0.15%)B、Mn、Zn元素则显著提高了甘草根中粗蛋白的含量,粗脂肪含量在Mn元素的三种浓度(0.05%、0.1%和0.15%)处理下及中、高浓度(0.1%和0.15%)Mo元素、中、低浓度(0.1%和0.05%)Zn元素和高浓度(0.15%)B元素处理下均显著高于对照处理。
     6.对甘草酸与各物质组分及其他次生代谢产物进行逐步回归分析、通经分析表明,总黄酮含量与甘草酸间直接通径系数最大为1.0467,其次为多糖,直接通径系数为0.5593,再次为角鲨烯,直接通径系数为0.4294,其后依次为粗蛋白(直接通径系数为0.4037),粗脂肪(直接通径系数为0.1745)和甘草苷(直接通径系数为-0.8097)。回归方程为Y=-1.17+0.097x1+0.072x3+1.99x4-0.47x5+0.49x6+0.019x7(其为中x1粗蛋白,x3为粗脂肪,x4为角鲨烯,x5为甘草苷,x6为总黄酮,x7为多糖)
     7.根施微量元素处理后,甘草根中微量元素水平产生了明显变化,存在Zn元素和Mn元素的富集。
     8.甘草根中微量元素初级形态分析表明,各元素的总提取率在1.71-60.06%之间。Zn元素的提取率最高,为60.06%,其次为Mn,Cu和Ca,同时,Zn元素的浸留比为1.682,也是所有被测元素中最大值,可以认为Zn元素是甘草中最特征的元素。次级形态分析表明甘草根中Cu、Mn、Ca、Mg 4种元素主要以游离态存在,Cu、Mn、Ca、Mg、Zn稳定态含量均大于50%,且Cu、Mn、Ca、Mg、Zn元素大部分以无机态形式存在。各元素以多种形态并存
     基于上述实验结果,初步推断微量元素Zn和Mo通过提高甘草酸生物合成关键酶基因的表达最终促进了甘草酸的形成和积累。Mn元素处理对SQS和β-AS基因表达量影响不大,推测其可能是通过在甘草体内富集,影响甘草光合作用、促进同化物质运输等方式促进了甘草酸的积累。
Glycyrrhiza uralensis Fisch. is among the most important and widely used medicinal plants in traditional Chinese medicine. Wild G. uralensis germplasm resources are to be extinguished due to much over excavation and exploitation. Fortunately, artificial cultivation of G uralensis in a large scale of growing areas has been an effective alternative strategy to produce and supply the medicinal plant. However, the glycyrrhizic acid content in cultivated G. uralensis is lower than that in the wild plants. Glycyrrhizic acid is the major chemical to generate medical functions. It is believed that glycyrrhizic acid is mainly responsible for the pharmacological activities of G. uralensis. Therefore, increase of glycyrrhizic acid content in the roots of cultivated plants of G. uralensis would be economically important. The objectives of this investigation were to characterize the effects of applying four micro-elements, B, Mn, Zn, and Mo on the secondary metabolites, primary metabolites, gene of squalene synthase (SQS) andβ-amyrin synthase (β-AS) expression in cultivated G. uralensis. Artificially planted G uralensis was treated with different concentrations of B, Mn, Zn, Mo. The study should provide research-based data for improving cultivation of G. uralensis by increasing its medicinal quality. Major results are described as follows:
     1. Zn, Mo and Mn had significant effects on quality of G. uralensis although the effects of micro-elements were slight different in foliar application and applying micro-element fertilizers into the soil. Glycyrrhizic acid contents with micro-element spraying treatment were increased at applying Mn and Zn of all three concentrations(0.05%,0.1% and 0.15%), Mo of medium to high concentrations(0.1% and 0.15%).
     2. Early summer (May) or late fall (October) were the best harvesting months due to higher glycyrrhizic acid contents in roots of G. uralensis.
     3. The expression of SQS andβ-AS gene were significantly higher with applying Zn of three concentrations(0.05%,0.1% and 0.15%) and Mo of medium to high concentrations(0.1% and 0.15%) than other treatments.
     4. Squalene was detected in roots of G. uralensis, but its content was relatively low. Mo with medium to high concentrations(0.1% and 0.15%) and Zn with three concentrations(0.05%,0.1% and 0.15%) elevated the contents of squalene. Squalene content in June was the highest in a year. Significantly positive correlations were found between the contents of glycyrrhizic acid and squalene.
     5. The chemical composition of the ingredients in the roots of G. uralensis was changed with four micro-elements treatments. Four micro-elements with highest concentration(0.15%) had remarkable influence on crude fiber content in roots of G. uralensis. B, Mn and Zn of medium to high concentrations(0.10% and 0.15%) increaseed the content of crude protein. Mn with three concentrations(0.05%,0.1% and 0.15%) increased crude fat, and so did Mo of medium to high concentrations(0.10% and 0.15%), Zn of low to medium concentrations(0.05% and 0.1%) and high concentration of B(0.15%).
     6. The relationship between glycyrrhizic acid and other metabolites were analyzed via path correlation analysis. The sequence of direct path coefficient were total flavonoids, polysaccharides, squalene, crude protein, crude fat and liquiritin. The regression equation was: Y=-1.17+0.097x1+0.072x3+1.99x4-0.47x5+0.49x6+0.019x7, in which x1 as crude protein, x3 as crude fat, x4 as squalene, x5 as liquiritin, x6 as total flavonoids, x7 as polysaccharides.
     7. Relative enrichment in Zn and Mn was found in roots of G. uralensis after B, Mn, Zn, Mo treatments.
     8. The analyses of Fe, Zn, Cu, Mn, Ca, Mg in G. uralensis showed that the total extraction rate of microelement ranged from 1.71-60.06%, among them the highest was Zn, second was Mn, meanwhile the immerse-residue ratio of Zn was also the highest among the microelements, therefore, Zn could be identified as the characteristic element in G. uralensis. The analyses also indicated that the contents of Cu、Mn、Ca、Mg, and Zn in dissociative and stable forms were more than 50%, the majority of Cu、Mn、Ca、Mg and Zn were in inorganic forms. The second forms of Cu、Fe、Mn、Ca、Mg、Zn in the roots of artificially planted G. uralensis were presented in dissociative and non-dissociative, labile and stable, organic and inorganic forms at the same time.
     In summary, the glycyrrhizic acid biosynthesis and accumulation were increased by enhancing gene expression of SQS andβ-AS which were two key enzymes in synthesis of glycyrrhizic acid under Zn and Mo treatments, while Mn application enriched its content in the roots and promote the assimilate transportation, consequently enhanced glycyrrhizic acid formation and accumulation.
引文
1.曹治权.微量元素与中草药[M].北京:中国中医药出版社,1993:79.
    2.陈建,赵德刚.植物萜类生物合成相关酶类及其编码基因的研究进展[J].分子植物育种,2004,2(6):757-764
    3.陈全斌,程忠泉,杨建香,等.罗汉果种仁中角鲨烯的提取及其结构表征[J].广西植物,2006,26(6):687-689
    4.陈炜,刘建宇,王德军.出口甘草膏中甘草酸含量测定方法对比[J].现代商检科技,1998,8(3):37-38
    5.陈跃华.痕量元素的生理生化作用及生物学作用[J].锦州医学院学报.1986,7(2):202-205.
    6.丛嫒嫒.新疆胀果甘草多糖的分离纯化、结构分析和生物活性研究[D].新疆医科大学博士论文,2008
    7.崔秀明,陈中坚,王朝梁.土壤环境条件对三七皂甙含量的影响[J]人参研究,2000,12(3):18-21
    8.董玉琴,孙运岭.大豆铝素营养的调查研究[J].大豆科学,1990,9(4):332-336
    9.杜学勤,刘焕蓉.HPLC测定冷浸法提取中成药中的甘草酸含量[J].山西大学学报(自然科学版),2002,25(1):48-51
    10.冯薇,王文全,赵平然.甘草活性成分和营养成分动态变化研究[J].中国中药杂志,2008,33(10):1206-1207
    11.冯薇,王文全,赵平然.栽培年限和采收期对甘草总皂甙、总黄酮含量的影响[J].中药材,2008,31(2):184-186
    12.傅克治.国产甘草的质量研究—东北地区野生甘草的质量比较[J].药学学报,1964,11(7):473-483
    13.高素莲,王雪梅.甘草中皂甙和黄酮类化合物的提取分离与测定[J].安徽大学学学报(自然科学版),2000,24(4):70-74
    14.郭兰萍,黄璐琦,阎玉凝.土壤中无机元素对茅苍术道地性的影响[J].中国中药杂志,2002,27(4):245-249
    15.国家药典委员会.中国药典(二部)[M].北京:化学工业出版社,2005,59
    16.郝心敏,王德军,杜建喜等.栽培甘草的质量的考察[J].内蒙古中医药,2002,1:40-41
    17.何水林,郑金贵,王晓峰等.植物次生代谢、功能、调控及其基因工程[J].应用与环境生物学报,2002,8(5):558-563
    18.贾晓光,倪慧,波拉提·马卡比力,等.HPLC法测定种植甘草中甘草酸含量[J].新疆中医药,2003,21(4):425-427
    19.焦峰,吴金花,郑树生,等.大豆钼营养研究进展[J].中国农学通报,2005,21(9):260-262,282
    20.鞠世杰,阎秀峰.高等植物的3-羟基-3-甲基戊二酰辅酶A还原酶[J].植物生理学通讯,2004,40(1):104-110
    21.康鲁平,于雁灵,汪学昭,等.蛇床子中六种金属元素初级形态分析[J].广东微量元素科学,2000,7(6):53-54.
    22.劳家柽.土壤农化分析手册[M].北京:农业出版社,1988
    23.李爱红,孙建民,孙汉文.白术中微量元素的溶出特性和形态分析[J].微量元素与健康研究,2001,18(3):37-39.
    24.李刚.甘草栽培与甘草酸生物合成及其调控的研究进展[J].中药材,2004,27(6):462-464
    25.李慧超,于淑华,闰凤杰,等.高效液相色谱法测定野生甘草及栽培甘草中甘草酸的含量[J].中国药事,2002,16(5):304-306
    26.李磊,谢明勇,吴熙鸿,等.胡桃科植物青钱柳多种微量元素的化学形态研究[J].江西农业大学学报,1999,21(4);546-551.
    27.李明,张清云,蒋齐,等.氮磷钾互作效应对甘草黄酮含量影响的初步研究[J].土壤通报,2007,38(2):301-303
    28.李娜,王世明等.SEFA-PCR法克隆灵芝鲨烯合酶基因启动子及其序列分析[J].菌物学报,2006,25(4):592-598
    29.李强,任茜.伊克昭盟栽培甘草最时采收株龄的研究[J].现代应用药学,1992,9(6):261-263
    30.李威,范利军,郭增福,等.川芎红花液对实验性脑栓塞的治疗作用[J].实用中西医结合杂志,1996,9(12):707-709
    31.李章万,刘三康.甘草及其制剂中甘草酸含量的高效液相色谱测定法[J].华西药学杂志,1990,5(1):19-22
    32.廖杰,赵玉兰,李宁,等.植物中角鲨烯的GC/MS分析[J].现代仪器,2008,5:36-37
    33.林寿全,林琳.生态因子对中药甘草质量影响的初步研究[J].生态学杂志,1992,11(6):1720
    34.刘伯衡,李学禹.新疆产甘草属植物化学成分的研究[J].干旱区研究,1992,9(1):39-46
    35.刘长利,王文全.干旱胁迫对甘草积累影响的物质组分分配研究[J].中国中药杂志,2008,33(23):2851-2853
    36.刘长利.甘草酸在甘草植物体内积累的调控机制研究[D].北京中医药大学博士学位论文,2006
    37.刘刚,王树勋.锰肥的效能及应用概况[J].新疆化工,2007(4):6-7
    38.刘江,郁晓艺,汪河滨,等.人工栽培光果甘草不同根系黄酮含量的测定[J].西北药学杂志,2005,20(1):11-12
    39.刘金龙,赵文彬,江发寿,等.不同生长期栽培甘草中多糖的含量测定[J].中成药,2005,27(6):708-710
    40.刘鹏.钼、硼对大豆产量和品质影响的营养生理机制研究:[D].浙江大学博士学位论文,2000.10
    41.刘琴,张俊勇,郭子建.神经生物系统中的配位化学问题[J].化学进展,2002,14(4):292-295
    42.刘芄岩,胡汉芳,阎正.用比色法测定不同产地甘草中甘草酸的含量[J].河北大学学报(自然科学版),1998,18(4):369-374
    43.刘霞,谢建新,李艳等.甘草多糖的超声提取及含量分析[J].西北药学杂志,2004,19(2):60-61
    44.刘艳华,傅克治.不同土壤环境生长乌拉尔甘草主要化学成分含量测定[J].中国兽药杂志,1996,30(4):25-27
    45.刘勇强.微量元素肥料施用方法及注意事项[J].2003,6:16-17
    46.刘志成,于守祥.营养与食品卫生学(第二版)[M].北京:人民卫生出版社,1987,33-38
    47.罗永明等.植物萜类化合物的生物合成途径及其关键酶的研究进展[J].江西中医学院学报,2003,15(1):45-50
    48.马君义,张继,姚健.相同栽培条件下四种甘草根中总黄酮含量的比较[J].中国医院药学杂志,2008,28(6):416-418
    49.米慕真.不同品种不同产地甘草中甘草酸含量的考察[J].沈阳药科大学报,1995,12(3):214-216,227
    50.牛艳,许兴,魏玉清等.土壤生态因子与宁夏枸杞中甜菜碱含量变化的关系[J].中国农学通报,2005,21(8):221-223
    51.彭军,王复.高效液相色谱法和毛细管电泳法测定甘草制品中甘草酸的含量[J].色谱,1999,17(1):90-92
    52.邱春,张永强,李向高,等.薄层扫描法测定甘草茎叶中甘草次酸的含量[J].吉林农业大学学报,1996,18(1):38-40
    53.任琴.微量元素硼、锌、锰对作物产量和品质的影响[J].集宁师专学报,2004,26(3):44-46
    54.施军霞,罗明,卫立辛,等.高效毛细管电泳法测定甘草酸注射液中甘草酸含量[J].中国现代应用药学杂志,2001,18(6):457-459
    55.宋玉刚.反义鲨烯合酶基因表达对青蒿素生物合成的影响[D].中国科学院硕士学位论文,2006
    56.孙红哲,陈嵘,支志明.金属在生物和医学中的作用[J].化学进展,2002,14(4):257-262
    57.孙奂明.生命必需微量元素锰、铁和锌对芦荟体内芦荟苷、芦荟大黄素含量的影响[D].河北农业大学硕士论文,2003
    58.孙兰.野生与栽培甘草中甘草酸与甘草皂苷的比较[J].中药材,2001,24(8):550-552
    59.唐晓敏.水分和盐分处理对甘草药材质量的影响[D].北京中医药大学博士学位论文,2008
    60.田莉,刘江杰,高晓黎.生物样品中甘草酸及其代谢产物检测方法的研究进展[J].药物分析杂志,2009,29(2):340-345
    61.田晓艳,刘延吉.脱落酸对南果梨色素及部分合成关键酶的影响[J].北方园艺,2008,(12):155-156
    62.汪振辉,徐茂田,刘奇,等.甘草次酸的极谱分析法研究[J].河南师范大学学报(自然科学版,1996,24(1):47-50
    63.王栋,刘丽杰.栽培甘草不同生长期甘草酸变化规律的研究[J].中药材,1991,14(5)9-10
    64.王继永.乌拉尔甘草栽培营养的研究[D].北京林业大学博士研究生论文,2003
    65.王淑英,陈颖,杨昭毅.甘草、陈皮中九种元素的初级形态分析[J].分析测试学报,1993,12(6):39-41.
    66.王树瑞,刘雁清,宋爱萍.栽培甘草的质量研究[J].药物分析杂志,1994,14(3):367-370
    67.王文全.甘草生态学特性及生态环境对其药材质量影响的研究[D].北京林业大学博士论文,2000
    68.王学勇,崔光红,黄璐琦,等.茉莉酸甲酯对丹参毛状根中丹参酮类成分积累和释放的影响[J].中国中药杂志,2007,32(4):300-302
    69.王跃飞,文红梅,郭立玮,等.不同产地甘草的聚类分析[J].中草药,2006,37(3)435-439
    70.王振荣,邓立育,郭伟玲,等.黑龙江、新疆、安徽产甘草中糖、总皂甙及总黄酮成分的比较研究[J].黑龙江大学自然科学学报,2006,17(2):82-84
    71.魏胜利.乌拉尔甘草地理变异与种源选择[D].东北林业大学学位论文,2003
    72.吴金花,郑树生,等.大豆钳营养研究进展[J].中国农学通报,2005,21(9):260-262,282
    73.吴明才,肖昌珍.大豆钼素研究[J].大豆科学,1994,13(3):245-251
    74.吴巧凤,严云良,楼小红.半枝莲中铜、锰、锌的初级形态分析[J].广东微量元素科学,1996,3(1):61-64.
    75.吴容军,刘如石.薄层扫描法测定术苓口服液中甘草酸的含量[J].湖南中医学院学报,2000,20(4):37-38
    76.邢建国,黄华,吴韬.高效液相色谱法测定小儿止咳糖浆中甘草酸的含量[J].中药新药与临床药理,2002,13(4):255-256
    77.徐亮胜,薛晓锋,付春祥.茉莉酸甲酯与水杨酸对肉苁蓉悬浮细胞中苯乙醇甙合成的影响[J].生物工程学报,2005,21(3):402-406
    78.许兴,郑国琦,杨涓,等.宁夏不同地域枸杞多糖和总糖含量与土壤环境因子关系的研究[J].西北植物学报,2005,25(7):1340-1344
    79.杨文远,郝凤霞.用RP-HPLC法同时测定甘草中的甘草酸和甘草次酸[J].宁夏大学学报(自然科学版),2005,26(1):56-58
    80.杨英,郑辉,何峰,等.不同浓度茉莉酸甲酯对悬浮培养胀果甘草细胞合成甘草总黄酮的影响[J].云南植物研究,2008,30(5):586-592
    81.杨英,郑辉.茉莉酸甲酯与二氢茉莉酮酸甲酯对悬浮培养的甘草细胞生长和黄酮积累的影响[J].植物生理学通讯,2008,44(5):903-906
    82.杨永红,赵珊,孙开奇,等.保健食品中的甘草酸的测定方法[J].中国食品卫生杂志2002,14(5):19-20
    83.于树宏,李玲,潘瑞炽,等.茉莉酸甲酯和脱落酸对野葛毛状根中异黄酮含量的影响[J].植物生理学通讯,2002,38(4):344-346
    84.于雁灵,汪学昭,仇必茂.蛇床子中六种金属元素初级形态分析(Ⅱ)[J].广东微量元素科学,2001,8(1):54-56.
    85.增路,楼之岑等.国产甘草的质量评价[J].药学学报,1991,26(10):788-793
    86.张春荣,李玲.水杨酸、茉莉酸甲酯和乙烯利对野葛细胞悬浮培养生产葛根素的影响[J].植物资源与环境学报,2003,12(1):56-57
    87.张继,杨永利.相同条件下的5中甘草中甘草酸含量的比较研究[J].西北植物学报,1997,17(6):111-114
    88.张继,姚健,郭守军,等.乌拉尔甘草营养成分的分析研究[J].西北植物学报,1999,19(6):181-184
    89.张静,刘平,蔡利.中药甘草水溶性多糖的提取与测定[J].陕西师范大学学报(自然科学版),2005,33(2):65
    90.张进杰,徐茂军.NO和茉莉酸甲酯对黄芩悬浮细胞生长及黄芩苷合成的影响[J].植物学通报,2006,23(4):374-379
    91.张燕,王继永,刘勇,等.氮肥对乌拉尔甘草生长及有效成分的影响[J].北京林业大学学报,2005,27(3):57-60
    92.张重义,李萍,陈君,等.金银花道地与非道地产区土壤微量元素分析[J].中国中药杂志,2003,28(3):207-212
    93.赵莉,程争鸣,牟书勇,等.栽培条件下甘草的甘草酸及多糖含量[J].干旱区地理,2005,28(6):843-848
    94.赵杨景,陈四保,高光耀,等.道地与非道地当归栽培土壤的理化性质[J].中国中药杂志,2002,27(1):21
    95.赵则海,曹建国,李庆勇,等.黑龙江西部乌拉尔甘草总黄酮含量的动态变化[J].植物研究,2004,24(2):235-239
    96.中国科学院“中国植物志”编委会.中国植物志[M].北京:科学出版社,1998
    97.中国农业年鉴编辑委员会.中国农业年鉴[J].北京:中国农业出版社,2002,162
    98.中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.中华人民共和国国家标准[M].北京:中国标准出版社,2006
    99.周天泽.无机微量元素形态分析方法学简介[J].分析实验室,1991,10(3):44-50.
    100.周天泽.中草药微量元素形态分析的几个问题[J].中草药,1990,21(10):37-42
    101.朱华.三七鲨烯合酶基因的克隆及其功能的初步研究[D].广西医科大学硕士研究生学位论文,2006
    102.朱淇,梁之婉,陈恩凤.不同土类上施用微量元素与大豆生长、发育、产量及品质的关系[J].土壤学报,1963,(11):417
    103. Abollino O, AcetoM, BruzzonitiM C, et a.1 Speciation of copper and manganese in milk by solid-phase extraction inductively coupled plasma-atomic emission spectrometry[J]AnalyticaChimicaActa,1998,375:299-306.
    104. Afreen F, Zobayed SMA, Kozai T. Spectral quality and UV-B stress stimulate glycyrrhizin concentration of Glycyrrhiza uralensis in hydroponic and pot system[J] Plant Physiology and Biochemistry,2005,43 (12):1074-1081
    105. Alvarez MC, Oliveira LFS, Oliveira FA, et al. Anti-Helicobacter Activity and Gastroprotective Effect of the Mixture of Alpha and Beta Amyrin from Protium heptaphyllum[J].Hellocobacter,2009,14(4):406-406
    106. Asadollahi, M. A, Maury J, Schalk M et al. Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae.[J]. Biotechnol Bioeng,2010,106(1):86-96
    107. BachTJ. Hydroxymethylglutaryl-CoA reductase, a key enzyme in phytosterol synghesis?[J]Lipids,1986,21:82
    108. Basyuni M, Baba S, Inafuku M, et al. Expression of terpenoid synthase mRNA and terpenoid content in salt stressed mangrove[J].Journal of Plant Physiology,2009,166(16): 1786-1800
    109. Choi D W, Jung J, Ha YI, etal. Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identiy genes involved in the biosynthesis of ginsenosides and other secondary metabolites[J].Plant Cell Rep,2005,23(8):557-566
    110. Choi D, Ward BL, Bostock RM.Differential induction and suppression of potato 3-hydroxy-3- methylglutaryl coenzyme Areductase genes in response to Phytophthora infestans and to its elicitor arachidonic aicd [J].Plant cell,1992,4:1333
    111. Choi D, Ward BL, Bostock RM.Differential induction and suppression of potato 3-hydroxy-3- methylglutaryl coenzyme Areductase genes in response to Phytophthora infestans and to its elicitor arachidonic aicd [J].Plant cell,1992,4:1333
    112. Confalonieri M, Cammareri M, Biazzi E et al. Enhanced triterpene saponin biosynthesis and root nodulation in transgenic barrel medic (Medicago truncatula Gaertn.) expressing a novel beta-amyrin synthase (AsOXAl) gene[J].Plant Biotechnology Journal,2009,7(2): 172-182
    113.Daniela M. Biondi, Concetta Rocco, and Giuseppe Ruberto. New dihydrostilbene derivatives from the leaves of Glycyrrhiza glabra and evaluation of their antioxidant activity[J]. J.Nat. Prod.,2003,66:477-480
    114. Dauenpen Meesapyodsuk, John Balsevich, Darwin W. Reed, et al. Saponin biosynthesis in Saponaria vaccaria. cDNAs encoding β-amyrin synthase and a triterpene carboxylic acid glucosyltransferase[J].Plant Physiology,2007,143:959-969
    115. Devarenne T P. Shin D H, Back K et al. Molecular characterization of tobacco squalene synthase and regulation in response to fungal elicitor[J].J Arch Biochem Biophys,1998,349: 205-215
    116. E.Chung, Ch.-W. Cho, K.-Y. Kim, et al. Molecular characterization of the GmAMSl gene encoding β-Amyrin synthase in soybean plants[J]. Russian Journal of Plant Physiology,2007,54(4):518-523
    117. E.Chung, Ch.-W.Cho, K.-Y.Kim, et al. Molecular characterization of the GmAMSl gene encoding β-amyrin synthase and a triterpene carboxylic acid glucosyltransferase[J].Russian Journal of Plant Physiology,2007,54(4):518-523
    118. Fattorini. L, Falasca.G, Kevers. C. Adventitious rooting is enhanced by methyl jasmonate in tobacco thin cell layers[J]. Planta,2009,231 (1):155-168
    119. Fu BQ, Li H, Wang XR, Lee FSC, Cui SF. Isolation and identification of flavonoids in licorice and a study of their inhibitory effects on tyrosinase[J]. Journal of Agricultural and Food Chemistry,2005,53 (19):7408-7414
    120. Fu YJ, Wang W, Zu YG,et al. Study on volatile components of seed oil from Glycyrrhiza uralensis Fisch by supercritical carbon dioxide extraction-gas chromatography-mass spectrometry[J]. Chinese Journal of Analytical Chemistry,2005,33 (4):498-500
    121. Fulton D C, Kroon P A, Matem U et al. Inhibition of phytosterol biosynthesis in elicitor-treated cultures of Ammimajus[J].Phytochemistry,1993,34:139-145
    122. Gabriela Cuesta, Norma Suarez, Maria I.Bessio, et al.Quantitative determination of pneumococcal capsular polysaccharide serotype 14 using a modification of phenol-sulfuric acid method[J]. Journal of Microbiological Methods,2003,52 (1):69-73
    123. Garrido I, Espinosa F, Alvarez-Tinaut M. Oxidative defence reactions in sunflower roots induced by methyl-jasmonate and methyl-salicylate and their relation with calcium signaling[J].Protoplasma,2009,237 (1-4):27-39
    124. Grankina, V. P. Savchenko, T. I. Chankina, et al. Trace element composition of Ural licorice Glycyrrhiza uralensis Fisch. (Fabaceae Family)[J]. Contemporary Problems of Ecology,2009,2:4,396-399.
    125. Gupta U C, Lipestt J. Molybdenum in soils, plants, and animals[J]. Advances in Agronomy,1981,34:73-115
    126. Han JY, In JG, Kwon YS, et al. Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng[J]. Phytochemistry,2010, 71(1):36-46
    127. Haudenschild C, Hartmann M A. Inhibition of sterol biosynthesis during elicitor-induced accumulation of furanocoumarins in parsley cell suspension cultures[J]. Phytochemistry, 1995,40:1117-1124
    128. Hayashi H, Hiraoka N, Ikeshiro Y, et al. Seasonal variation of glycyrrhizin and isoliquiritigenin glycosides in the root of Glycyrrhiza glabra L. [J].Biol Pharm Bull,1998, 21(9):987-989.
    129. Hayashi H, Inoue K, Ozaki K, Watanabe H. Comparative analysis of ten strains of Glycyrrhiza uralensis cultivated in Japan[J]. Bilolgical & Pharmaceutical Bulletin,2005, 28 (6):1113-1116
    130. Hayashi H, Huang P, Inoue K. Molecular cloning and characterization of isomultiflorenol synthase, a new triterpene synthase from Luffa cylindrica, involved ibiosynthesis of bvyonolic acid[J].Eur J Biochem,2001:268(23):6311-6317.
    131. Hayashi H, Huang P, Kirakosyan A.Cloning and characterization of a cDNAencoding beta-amyrin synthase involved in glycyrrhizin and soyasaponinbiosyntheses in licorice[J].Biol Pharm Bull.,2001:24(8):912-6
    132. Hikaru Seki, Kiyoshi Ohyama, Satoru Sawai, et al. Licorice β-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin[J]. PNAS,2008,105(37):14204-14209
    133.Hiroaki Hayashi, Akiko Hirota, Noboru Hiraoka et al. Molecular cloning and characterization of two cDNA for glycyrrhiza glabra squalene synthase[J].Bilo.Pharm.Bull, 1999,22(9):947-950
    134. Hiroaki Hayashi, Hiroshi Fukui, Mamoru Tabata. Distribution pattern of saponins in different organs of glycyrrhiza glabra[J].Planta Med,1993,59:351-353
    135. Hiroaki Hayashi, Noboru Hiraoka, Yasumasa Ikeshiro et al. Molecular cloning and characterization of a cDNA for glycyrrhiza glabra cycloartenol synthase[J].Bilo.Pharm.Bull, 2000,23(2):231-234
    136. Hiroaki Hayashi, Noriko Hosono, Mieo Kondo et al. Phylogenetic relationship of six glycyrrhiza species based on rbcL sequences and chemical constituents[J]. Biol.Pharm.Bull, 2000,23(5):602-606
    137. Hiroaki Hayashi, Pengyu Huang and Kenichiro Inoue. Up-regulation of soyasaponin biosynthesis by methyl jasmonate in cultured cells of glycyrrhiza glabra[J].Plant Cell Physiology,2003,44(4):404-411
    138. Hiroaki Hayashi, Pengyu Huang, Ara Kirakosyan et al. Cloning and characterization of a cDNA encoding β-amyrin synthase involved in glycyrrhizin and soyasaponin biosyntheses in licorice[J]. Bilo.Pharm.Bull,2001,24(8):912-916
    139. Hiroaki Hayashi, Pengyu Huang, Satoko Takada et al. Differential expression of three oxidosqualene cyclase mRNA in glycyrrhiza glabra[J].Bilo.Pharm.Bull,2004,27(7): 1086-1092
    140. Hiroaki Hayashi, Tsutomu Sakai, Hiroshi Fukui et al. Formation of soyasaponins in licorice cell suspension cultures[J].Phytochemistry,1990,29(10):3127-3129
    141. Hiroaki Hayashi, Yumiko Nishiyama, Nobuaki Tomizawa et al. UDP-glucuronic acid: triterpene glucuronosyltransferase activity in culutured licorice cells[J]. Phytochemistry, 1996,42(3):665-666
    142. Inaki Iturbe-Ormaetxe, Kosmas Haralampidis, Kalliopi Papadopoulou, et al. Molecular cloning and characterization of triterpene synthases from Medicago truncatula and Lotus japonicus[J]. Plant Molecular Biology,2003,51:731-743
    143. Isvett J. Flores-Sanchez, Jaime Ortega-Lopez, Maria del Carmen, et al. Biosynthesis of sterols and triterpenes in cell suspension cultures of Uncaria tomentosa[J]. Plant Cell Physiol,2002,43(12):1502-1509
    144. Iturbe-Ormaetxe I, Haralampidis K, Papadopoulou K. Molecular cloning and characterization of triterpene synthases from Medicago truncatula and Lotus japonicus [J].Plant Mol Biol, 2003:51(5):731-43.
    145. Kajikawa M, Yamato KT, Fukuzawa H, Sakai Y, et al. Cloning and characterization of a cDNA encoding beta-amyrin synthase from petroleum plant Euphorbia tirucalli L.[J].Phytochemistry,2005,66(15):1759-1766
    146. Kajikawa M, Yamato KT, Fukuzawa H. Cloning and characterization of a cDNA encoding beta-amyrin synthase from petroleum plant Euphorbiatirucalli L[J].Phytochemistry,2005: 66(15):1759-66.
    147. Kenji Kondo, Mao Shiba, Rie Nakamura, et al. Constituent properties of licorices derived from Glycyrrhiza uralensis, G. glabra, or inflata identifed by genetic information[J]. Biol. Pharm.Bull.,2007,30(7):1271-1277
    148. Kepczynska E, Rudus I, Kepczynski J. Abscisic acid and methyl jasmonate as regulators of ethylene biosynthesis during somatic embryogenesis of Medicago sativa L.[J]. Acta Physiologiae Plantarum,2009,31 (6):1263-1270
    149. Keramat B, Kalantari KM, Arvin MJ. Effects of methyl jasmonate in regulating cadmium induced oxidative stress in soybean plant (Glycine max L.)[J]. African Journal of Microbiology Research,2009,3 (5):240-244
    150. Kim OT, Bang KH, Kim YC, et al. Upregulation of ginsenoside and gene expression related to triterpene biosynthesis in ginseng hairy root cultures elicited by methyl jasmonate[J]. Plant Cell Tissue and Organ Culture,2009,98(1):25-33
    151. Kim OT, Kim SH, Ohyama K, et al. Upregulation of phytosterol and triterpene biosynthesis in Centella asiatica hairy roots overexpressed ginseng farnesyl diphosphate synthase[J]. Plant Cell Reports,2010,29(4):403-411
    152. Kim OT, Kim MY, Huh SM. Cloning of a cDNA probably encoding oxidosqualene cyclase associated with asiaticoside biosynthesis from Centellaasiatica(L.)Urban[J] Plant Cell Rep, 2005:24(5):304-11.
    153. Kim YS, Han JY, Lim S, et al. Ginseng metabolic engineering:Regulation of genes related to ginsenoside biosynthesis[J].Journal of Medicinal Plants Research,2009,3(13): 1270-1276
    154. Knute degard, Walter lund. Multi-element speciation of tea infusion using cation-exchange separation and size-exclusion chromatograph in combination with inductively coupled plasma mass spectrometry[J].JAAS,,1997,12:403-408.
    155. Kushiro T, Shibuya M, Ebizuka Y. Beta-amyrin synthase-cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants[J]. Eur J Biochem.,1998:256(1):238-44.
    156. Langenheim J H. Higher plant terpenoids:A phytocentricove review of their ecological role[J].Chem Ecol,1994,20:1223-1280
    157. Lee, YS, Kim, S H, Kim, JK, et al. Rapid identification and preparative isolation of antioxidant components in licorice[J].JSep Sci,33(4-5):664-71
    158. Li M, Wang GX, Lin JS. Application of external calcium in improving the PEG-induced water stress tolerance in liquorice cells[J]. Botanical Bulletin ofAcademia Sinica,2003,44 (4):275-284
    159. Li M, Wang GX, Lin JS. Calcium stimulates the adaptation of cultured liquorice cells to PEG-induced water stress[J]. Russian Journal of Plant Physiology,2004,51 (4):518-524
    160. Liu J R, Zhao W B, Wang, H Y, et al. Output of cultivated Glycyrrhizain different growth stages and analytical compar-ison of active ingredients [J].Shanghai J Tradit Chin Med, 2004,38(11):56-58.
    161. Liu YL, Cai YF, Zhao ZJ, et al. Cloning and Functional Analysis of a beta-Amyrin Synthase Gene Associated with Oleanolic Acid Biosynthesis in Gentiana straminea MAXIM[J].Bilolgical & Pharmaceutical Bulletin,2009,32(5):818-824
    162. Lu Hongyu, Liu Jingmei, Zhang Haichao, et al. Ri-mediated transformation of Glycyrrhiza uralensis with a squalene synthase gene(GuSQSl) for production of glycyrrhizin[J].Plant Mol Biol Rep,2008,26:1-11
    163. M. Honda, G.S.Tint, A. Honda, et al. Regulation of cholesterol biosynthetic pathway in patients with the Smith-Lemli-Opitz syndrome[J].J.Inherit.Metab.Dis,2000,23:464-474
    164. Ma CJ, Li GS, Zhang DL, et al. One step isolation and purification of liquiritigenin and isoliquiritigenin from Glycyrrhiza uralensis Risch using high-speed counter-current chromatography[J]. Journal of Chromatography A,2005,1078 (1-2):188-192
    165. Martelanc M, Vovk I, Simonovska B. Separation and identification of some common isomeric plant triterpenoids by thin-layer chromatography and high-performance liquid chromatography[J].Journal of Chromatography A,2009,1216(38):6662-6670
    166. Memelink J. Regulation of gene expression by jasmonate hormones[J]. Phytochemistry, 2009,70 (13-14):1560-1570
    167. Mi-Hyun Lee, Jae-Hun Jeong, Jin-Wook Seo, et al. Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene[J]. Plant Cell Physiol, 2004,45(8):976-984
    168. Mukkun L, Singh Z. Methyl jasmonate plays a role in fruit ripening of 'Pajaro'strawberry through stimulation of ethylene biosynthesis[J]. Scientia Horticulturae,2009,123 (1) 5-10
    169. Ohnishi T, Yokota T, Mizutani M, et al. Insights into the function and evolution of P450s in plant steroid metabolism[J]. Phytochemistry,2009,70(17-18):1918-1929
    170. Pak, H, Guo, Y, Chen, M. The effect of exogenous methyl jasmonate on the flowering time, floral organ morphology, and transcript levels of a group of genes implicated in the development of oilseed rape flowers (Brassica napus L.).[J]. Planta,2009,231 (1):79-91
    171. Pan Y, Wu LJ, Yu ZL. Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice(Glycyrrhiza uralensis Fisch)[J].Plant Growth Regulation, 2006,49(2-3):157-165
    172. Peng JR. Gibberellin and Jasmonate Crosstalk during Stamen Development[J]. Journal of IntegrativePlant Biology,2009,51 (12):1064-1070
    173. Rauchensteiner F, Matsumura Y, Yamamoto Y, et al. Analysis and comparison of Radix Glycyrrhizae (licorice) from Europe and China by capillary-zone electrophoresis (CZE)[J] Journal of Pharmaceutical and Biomedical Analysis,2005,38 (4):594-600
    174. Rohmer M, Knani M, Simonin P, et, al. Isoprenoid biosynthesis in bacteria:a novel pathway for the early steps leading to isopentenyl diphosphate[J].Biochem J,1993,295(2):517
    175. Rohmer M.The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants[J].Natprod Rep,1999,16:565
    176. Schaller A, Stintzi A. Enzymes in jasmonate biosynthesis-Structure, function, regulation[J]. Phytochemistry,2009,70 (13-14):1532-1538
    177. Seki H,Ohyama K, Sawai S, et al. Licorice beta-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin[J].Proceedings of the National Academy of Sciences of The United States of America,2008,105(37): 14204-14209
    178. Seo JW, Jeong JH, Shin CG, et al. Over expression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation[J].Phytochemistry,2005,66: 869
    179. Shen SF, Chang ZD, Liu J, et al. Simultaneous determination of glycyrrhizic acid and liquiritin in Glycyrrhiza uralensis extract by HPLC with ELSD detection[J] Journal of Liquid Chromatography & Related Technologies,2006,29(16):2387-2397
    180. Shibuya M, Katsube Y, Otsuka M, et al. Identification of a product specific beta-amyrin synthase from Arabidopsis thaliana[J].Plant Physiology and Biochemistry,2009,47(1): 26-30
    181. Song XM, Hu SH. Adjuvant activities of saponins from traditional Chinese medicinal herbs[J].Vaccine,2009,27(36):4883-4890
    182. Sparzak B, Krauze-Baranowska M, Pobiocka-Olech L. High-Performance Thin-Layer Chromatography Densitometric Determination of beta-Sitosterol in Phyllanthus Species[J]Journal of Aovac International,2009,92(5):1343-1348
    183. Sudo H, Seki H, Sakurai N, et al. Expressed sequence tags from rhizomes of Glycyrrhiza uralensis[J].Plant Biotechnology,2009,26(1):105-107
    184. Sun Q, Li X, Li H, et al. Determination of Hard Rate of Licorice (Glycyrrhiza uralensis F.)Seeds Using Near Infrared Reflectance Spectroscopy[J].Spectroscopy and Spectral Analysis,2010,30(1):70-73
    185. Sung-Won Choi, Dong-Hoon Bai, Ju-Hyun Yu, et al. Characteristics of the squalene synthase inhibitors produced by a Streptomyces species isolated from soils[J]. Can. J. Microbiol,2003,49:663-668
    186. Threfall D R, Whitehead I M. Coordinated inhibition of squalene synthase and induction of enzymes of sesquiterpenoid phytoalexin biosynthesis in cultures of Nicotiana tabacum[J].Phytochemistry,1988,27:2567-2580
    187. Trojanowska MR, Osbourn AE, Daniels MJ, Threlfall DR Investigation of avenacin deficient mutants of Avena strigosa[J]. Phytochemistry,2001:56(2):121
    188. Vallee B L, Auld D S. Zinc cordination, function and structure of zinc enzymes and other protein[J].Biochemistry,1990,29:5647-5659.
    189. Vogeli U, Chappell J.Induction of sesquiterpene cyclase and suppression of squalene synthase activities in plant cell cultures treated with fungal elicitor[J].Plant Physiol,1998, 88:1291-1296
    190. Wang F, Dong L, Yuan JJ.Molecular Cloning and Expression Analysis of an Actin Gene from Chinese Licorice(Glycyrrhiza uralensis Fisch)[J].Chemical Research in Chinese Universities,2009,25(3):357-361
    191. Wongwicha W, Tanaka H, Shoyama Y, et al. Production of glycyrrhizin in callus cultures of licorice[J].Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences,2008, 63(5-6):413-417
    192. Yoon MY, Jun KI, Son ES, et al. Induction of Glutathione S-transferase Activity by the Extracts of Glycyrrhiza uralensis Fischer[J].Journal of the Korean Society for Applied Biological Chemistry,2008,51(3):228-232
    193. Yu MM, Shen L, Fan B. The effect of MeJA on ethylene biosynthesis and induced disease resistance to Botrytis cinerea in tomato[J]. Postharvest Biology and Technology,2009,54 (3):153-158
    194. Yue CJ, Jiang Y. Impact of methyl jasmonate on squalene biosynthesis in microalga Schizochytrium mangrovei[J]. Process Biochemistry,2009,44(8):923-927
    195. Zhang H, Guo ZM, Li W, et al. Purification of flavonoids and triterpene saponins from the licorice extract using preparative HPLC under RP and HILIC mode[J].Journal of Separation Science,2009,32(4):526-535
    196. Zhang H, Shibuya M, Yokota S.Oxidosqualene cyclases from cell suspensicultures of Betula platyphylla var.japonica:molecular evolution ofoxidosqualene cyclases in higher p\ants[J].Biol Pharm Bull,2003:26(5):642-50
    197. Zhang Haichao, Liu Jingmei, Lu Hongyu, et al. Enhanced flavonoid production in hairy root cultures of Glycyrrhiza uralensis Fisch by combining the over-expression of chalcone isomerase gene with the elicitation treatment[J].Plant Cell Rep.,2009,28:1205-1213
    198. Zhou Y, Wang MK, Liao X,et al. Rapid identification of compounds in Glycyrrhiza uralensis by liquid chromatography/tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry,2004,32 (2):174-178

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700