用户名: 密码: 验证码:
新型高效无机传热技术及其在余热回收中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机传热技术及无机传热元件是近年来发展迅速的一项新型高效节能技术,它改善了以往常规碳钢-水热管的诸多局限性,并在传热领域中体现出了不寻常的传热特点和应用潜力。本论文首先分析讨论了普通钢-水热管和无机传热元件的不同传热机理、性能和优缺点,对无机传热元件的性能和应用进行了理论分析和实验研究。理论分析和实验表明,无机传热元件具有奇特的传热性能和效果;无机传热元件加热段的长度对加热段的平均换热系数有明显的影响,加热段长度越短,换热系数越高;无机传热元件的工质充填量仅为碳钢-水热管的1/10左右,其具有的传热性能却优于碳钢-水热管。无机传热技术的优良性能使其在余热回收领域具有广泛的应用前景。
     本论文针对该技术在余热回收中的应用,特别是设备结构与回收效率等方面进行了研究,从热工理论上和技术经济学角度分析了无机传热技术的余热回收设备的性能特点和余热回收的效果。对某钢铁集团炼钢带冷烧结机余热回收和某石油化工企业炼油常减压装置加热炉余热回收项目,采用新型无机传热热管作为传热元件,分别进行余热锅炉和空气预热器余热回收方案的热力计算和实际设计。对余热源排烟的成分和余热资源量进行标定,讨论余热回收产生蒸汽或加热燃烧用空气的可行性和方法,分析常规余热回收技术设计、采用普通钢-水热管和无机传热热管等传热元件的设计余热回收装置的优缺点,并对余热回收设计方案及其特点进行总体评价。在此基础上建立余热回收设计计算数学模型,包括余热回收设计的热力计算、流动阻力计算和强度计算,编制了余热回收设计计算程序和软件,并通过上机计算得到所需的设计参数和结果。完成热管布置设计和设备细部结构设计,绘制余热回收设计图纸。最后对所设计的余热锅炉和空气预热器方案进行热力学分析、投资概算和技术经济分析,从节能和经济性角度评价了设计方案的效益。分析表明,所设计的余热回收装置的投资回收期在5~15个月,经济效益和节能效果十分显著。
     本文还比较了无机传热技术在余热锅炉和空气预热器方面的设计要求和应用特点,得到了一些有用的结论:改变无机传热元件热段长度及肋片均能改善余热锅炉或余热空气预热器的传热效果;在设计中单纯追求回收热功率最大并非最经济;当总投资一定时,用于换热面积的投资越小,在投资回收期最短的情况下,传热有效度越大;无机传热技术余热回收设备具有传热稳定、阻力小、效率高、维修使用方便等优点,适用于大中企业的工业余热回收,且具有良好的经济性和广阔的应用前景。
The inorganic heat transfer technology is a newly-developed high efficient energy conservation technology in recent years. The components of inorganic heat transfer overcome a lot of limits existing in the conventional steel-water heat pipes and show their wonderful characteristics of heat transfer and an application potential. In the first, this paper makes an analysis and discussion on the different mechanism, performances, advantages and disadvantages of heat transfer between conventional steel-water heat pipes and components of inorganic heat transfer. What's more, the theory analysis and experiment research on the performances and applications of the components of inorganic heat transfer are also carried out.
    In the second, the paper carries out an application research on this technology in the field of waste heat recovery, especially on the structure of equipment and the efficiency of heat recovery. Based on these researches, the paper analyzes the performance of the equipments which use the inorganic heat transfer technology and their effects of heat recovery from the view of theory of heat energy engineering and techno-economics. The inorganic heat transfer technology is used to two projects of heat recovery, one is the heat recovery steam-generator retrofit in a steel-making cooling agglomeration machine of a steel group, the other is an air pre-heater design in oil-refining atmospheric pressure heating furnace of a petrochemical enterprise. In addition the thermodynamic calculations and real designs of heat recovery steam generator and air pre-heater in the plans have been carried out.
    In the third, this paper makes a survey on components of the exhausted flue gas and waste heat resource, and discusses the possibility and methods of steam generation and air preheating with the waste heat. And then, the analysis on the advantages and disadvantages of heat recovery plants with conventional steel-water heat pipes and inorganic heat-transfer heat pipes is carried out. The paper also gives a valuation about the plan and features of the design of heat recovery. Based on these analyses, the paper develops a mathematic model for the design calculation of heat recovery, which includes thermodynamic calculation, calculation of flow resistance and calculation of intension, and makes a program for the design calculation of heat recovery. By use of this program this paper gains the parameters and results of the design. Moreover, the paper finishes the design of heat-pipe allocation and the design of detailed structures of the equipment, and gives relevant drawings of the design.
    In the end, the paper makes an thermodynamic analysis, evaluation of investment and techno-economic analysis on the retrofit plans of heat recovery steam generator and air pre-heater, which helps to make the evaluation of the plans from the view of energy conservation and economy benefit. These analyses indicate that the periods of time for equipment investment reclaim are from 5 to 15 months, which shows their economic benefit efficiency and energy conservation efficiency are remarkable.
引文
1.赵洪滨,金红光等.世界能源结构变化趋势与分析.纯净煤技术,2000(03)
    2.(英)贝科维奇.世界能源展望2020年.上海:上海译文出版社,1983
    3.(美)斯托鲍等.能源未来.北京:北京大学出版社,1983
    4.郑铁民.节约能源与环境保护-21世纪世界的热点.河北理工学院学报,1994(01)
    5.王强.我国面临能源问题及其对策研究.水电能源科学,1998(04)
    6.王庆一.中国能源.北京:冶金工业出版社,1988
    7.(苏)斯蒂里科维奇,什皮利来因.能源问题与前景.北京:科学技术文献出版社,1984
    8.陈铭诤.工业节能.北京:国防工业出版社,1989
    9.陈怀斌.余热利用与余热锅炉.应用能源技术,1997(04)
    10.王建成.浅议设备选型的节能性因素.有色设备,1996(10)
    11.张红伟.于学东.热管余热锅炉在回收工业余热中的优势探讨.沈阳工业大学学报,2000
    12.无机传热技术及其应用.大连熵立得传热技术有限公司.2001
    13. Gaugler R S. Heat transfer device. U.S. patent 2350348. Dec. 21, 1942, June. 1994
    14. Trefethen L. On the surface tension pumping of liquids ora possible role of the candlewick in space exploration. G.E. Tech. Info. Serial No. 615 D115
    15. Grover G M, Cotter T P And Erikson G F. Structure of very high thermal conductance. J. Appl. Phys. 1964,35(6)
    16. Cotter T P. Theory of heat pipes. Los Alamos Scientific Lab:report No. LA-3246-MS, 1965
    17. Tice C L, Sun K H. Minimum meniscus radius of heat pipe wicking materials. Int. J. Heat Mass Transfer. 1971,14(11)
    18. Dunn P, Reay D A. Heat pipes, Pergamon Press, 1978
    19. Gray V H. The rotating heat pipe, a wickless hollow shaft for transfer-ring high heat fluxes. ASME paper No. 69-HT-19.1969
    20. Chi S W. Heat pipe theory and practice. McGraw-Hill, 1976
    21. Littwin D A, Mccurley J. Proc. 4th Iht. Heat Pipe Conf..1981.213~224
    22. Cotter T P. Pricipies and Prospects of Micro heat pipes. Proc 5th Int. Heat Pipe Conf..Tsukuba, Japan:1984
    23. Ma T Z, Jiang Z Y. Heat pipe Research and Development in China.Proc. 5th Int. Heat Pipe Conf..Tsukuba, Japan:1984
    24.庄骏,张红.热管技术及其工程应用.北京:化学工业出版社.2000
    25.沈家蓉.热管材料的相容性及可靠性.能源研究与信息.1990,6(1)
    26.靳明聪,陈远国.热管及热管换热器.重庆:重庆大学出版社,1986
    27.无机传热技术及其应用.中国能源.2001
    
    
    28.张蓓等.无机热传导技术及工业应用.油田节能,2000
    29.金恩斯等.采用无机热传导技术改进工业余热回收设备.新疆石油学院学报,2001
    30.陈路.我国钢铁工业能源经济效益分析.冶金能源,1995(01)
    31.宋贵良主编.锅炉计算手册.沈阳:辽宁科学技术出版社,1995
    32.黄问盈.热管与热管换热器设计基础.北京:中国铁道出版社,1995
    33.江红辉.工业锅炉设计大全.北京:科学普及出版社,1990
    34.冯俊凯,沈幼庭.锅炉原理及计算.北京:科学出版社,1992
    35.奚士光.锅炉及锅炉房设备.北京:中国建筑工业出版社.1995
    36.孙恩召.企业节约能源技术.北京:国防工业出版社,1984
    37.王志和.用热管空气预热器回收锅炉排烟余热.林业机械与木工设备,1997
    38.丁泳波.热管空气预热器在常减压装置的应用.中国石化总公司第三届传热技术交流会论文集,1995
    39.秦裕琨.燃油燃气锅炉实用技术.北京:中国电力工业出版社,2001
    40.陈学俊,陈听宽.锅炉原理.北京:机械工业出版社,1991
    41.徐通模.锅炉燃烧设备.西安:西安交通大学出版社,1990
    42.徐旭常.燃烧理论与燃烧设备.北京:机械工业出版社,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700