用户名: 密码: 验证码:
碳纳米管负载锰氧化物的NH_3-SCR反应性能及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管是具有纳米管腔结构的一种新型碳材料,具有机械强度高、热稳定性好、限域效应以及良好的导电性等独特的物化性质,已被应用于多个领域,包括作为催化剂载体,而以氨作为还原剂的选择性催化还原技术(NH_3-SCR)是目前国内外用于控制固定源氮氧化物排放的一项主要技术,但是对碳纳米管作为NH_3-SCR催化剂载体的研究相对较少,本文就对其在SCR中的应用进行研究。
     本课题选择多壁碳纳米管作为NH_3-SCR的催化剂载体,制备出不同的催化剂,并对系列催化剂进行NH_3-SCR活性评价和结构表征,最后结合原位红外漫反射技术(in situDRIFTS)对反应分子在催化剂表面的吸附物种及反应路径进行了探讨。
     用低表面张力的乙醇作为溶剂可以将锰氧化物颗粒均匀附着在碳纳米管两壁,得到两壁负载型碳纳米管催化剂,通过二甲苯暂时性封闭碳纳米管的开口端,使锰氧化物颗粒仅引入到碳管的外壁,并且颗粒大小比较均匀,从而得到外壁负载型碳纳米管催化剂。通过活性评价,发现锰氧化物的引入,明显提高了碳纳米管在SCR脱氮反应的活性,并且在整个温度区间,两壁负载型碳纳米管催化剂在SCR反应中的催化活性优于外壁负载型催化剂,尤其是180-300℃范围内。3%Mn-both-CNT_s_(400)在整个测试温度范围内,其催化活性明显高于3%Mn-out-CNT_s_(400)。对于两壁负载型催化剂,随着温度的升高催化活性有很大的提高,在250℃时活性达到最大值,并且3%Mn-both-CNT_s_(400)对NO_x的转化率均接近100%。
     通过结构表征,发现催化剂3%Mn-both-CNT_s_(400)和3%Mn-out-CNT_s_(400)的表面锰元素均以Mn~(3+)和Mn~(4+)共存,分子吸附氧和晶格氧共存,且两种价态的锰和两种氧物种在两种催化剂表面的相对含量很接近,这种共存现象为催化剂在SCR反应中的催化活性提供了有利条件;同时,根据不同焙烧温度下制备出的催化剂XPS测试结果与其活性评价作对比,发现催化剂表面含氧的酸性官能团对SCR催化反应有明显的促进作用。Raman结果显示,当部分锰氧化物被引入到碳纳米管内壁时,Mn-O键有明显的红移现象,说明在碳纳米管管腔中的金属与管内壁之间有更强的相互作用;H_2-TPR结果显示,两壁负载型碳纳米管催化剂中的锰氧化物在整个还原温度范围内由常规的三步还原转变成两步还原过程,进一步说明锰氧化物被限制在一定的纳米空间内,容易被还原,跟其所处的电子环境有一定关系。
     In situ DRIFTS技术研究表明,对于两壁负载型和外壁负载型碳纳米管催化剂来说,低温时,负载型碳纳米管催化剂表面NH_3-SCR反应以物理吸附为主,伴有极微弱的化学反应;高温时,催化剂表面SCR反应以遵循L-H机理为主,只是两种催化剂上的关键中间产物有所不同,在两壁负载型催化剂上为[NH_4]_2N_2O_2,而外壁负载型碳纳米管催化剂上则为[NH_2]_2N_2O_2。
Carbon nanotubes (CNTs), as one of the new carbon material, have been reported to beapplied in the various fields based on their unique electronic properties and nano-channelstructure, such as high mechanical strength, thermol-chemical stability, confinement effect,and well conductivity, etc. Selective catalytic reduction (SCR) of NO_xwith NH_3is one of themost effective flue gas cleaning technologies for stationary sources, but CNTs as the carrier ofNH_3-SCR catalysts still need to be studied.
     A series of MnO_x/MWCNTs catalysts were prepared by the different methods. Thecatalytic activity messurement and chemical characteristics were carried out. And then thereaction process on the surface was discussed by in situ DRIFTS analysis.
     For loading MnO_xparticles on both inside and outside surfaces of CNTs, ethanol wasused as a solvent for manganese acetate because of its low surface tension, which canfacilitate the introduction of metal salt solution into CNT channels by a wet chemical method.For introducing MnO_xparticles only outside the CNT channels, xylene was chosen totemporarily block the CNT channels before decoration of the exterior CNT surface withMnO_x. Deionized water was used as a solvent for manganese acetate, which can preventmanganese acetate from infiltrating the channels. It was found that MnO_xenhanced thecatalytic activity of CNTs in NH_3-SCR, and Mn-both-CNTs played the better activity thanMn-out-CNTs all over the whole temperature range, especially3%Mn-both-CNT_s_(400)in180-300℃. For Mn-both-CNTs, the catalytic activity increased with the increasingtemperature. NO_xconversion can reach nearly100%at250℃over3%Mn-both-CNT_s_(400).
     It was found that Mn~(3+)and Mn~(4+)coexisted and the relative ratio between them was verysimilar on the surface between3%Mn-both-CNT_s_(400)and3%Mn-out-CNT_s_(400), and somolecule adsorbed oxygen and lattice oxygen was. This coexistence and the surface acidfunctional group can increase the catalytic activity. The result of Raman showed that theMn-O band had the distinct red shift when some manganese was confined in the CNTchannels. In addition, the catalyst,3%Mn-both-CNT_s_(400), showed a two-step reduction process of the MnO_x, which illustrated the stronger interaction between metallic oxides and the innersurface when part of metal oxides was introduced into the CNT channel. It could be easier forthe inside metal to donate more electrons, leading to be reduced easily.
     DRIFTS found that the reactant was physically absorbed on the catalyst surface at thelow temperature, along with very weak chemical reaction. However, catalytic reaction tookplace and the routine of the SCR reaction on the MnO_x/MWCNTs catalysts mainly belongedto the L-H mechanism at the high temperature, but different intermediate products could bedetected between these two catalysts. One was [NH_4]_2N_2O_2,and another was [NH_2]_2N_2O_2.
引文
[1]中华人民共和国环境保护部
    [2]国家统计局.第一次全国污染源普查公报.2010.2.6
    [3]中国环境报. http://www.cnr.cn/allnews/201011/t20101109_507292943.html.2011-11-09
    [4]国务院关于印发”十二五”节能减排综合性工作方案的通知.国发〔2011〕26号
    [5]上海证券报http://stock.jrj.com.cn/2012/02/09022612201481.shtml.2012-02-09
    [6]苏亚欣,毛玉如,徐璋.燃煤氮氧化物排放控制技术[M].北京:化学工业出版社,2004,13-16.
    [7] Giakoumelou I, Fountzoula C, Kordulis C, et al. Molecular structure and catalytic activityof V2O5/TiO2catalysts for the SCR of NO by NH3: In situ Raman spectra in the presenceof O2, NH3, NO, H2, H2O, and SO2[J]. Journ. Catal.,2006,239(1):1-12
    [8] Koebel M, Elsener M, Madia G. Reaction pathways in the selective catalytic reductionprocess with NO and NO2at low temperatures[J]. Ind. Eng. Chem. Res.,2001,40(1):52-59
    [9] Koebel M, Madia G, Elsener M. Selective catalytic reduction of NO and NO2at lowtemperatures [J]. Catal. Today,2002,73(3-4):239-247
    [10] Kang M, Kim D J, Park E D, et al. Two-stage catalyst system for selective catalyticreduction of NOxby NH3at low temperatures[J]. Appl. Catal. B: Environ.,2006,68(1-2):21-27
    [11] Arve K, Klingstedt F, Er nen K, et al. Engineering HC-SCR: Improved low temperatureperformance through a cascade concept[J]. Catal. Lett.,2005,105:133-138
    [12] Klingstedt F, Arve K, Er nen K, et al. Toward improved catalytic low-temperature NOxremoval in diesel-powered vehicles[J]. Acc. Chem. Res.,2006,39(4):273-282
    [13] Lee J Y, Hong S H, Cho S P, et al. The study of deNOxcatalyst in low temperatureusing nano-sized supports [J]. Curr. Appl. Phys.,2006,6(6):996-1001
    [14] Qi G, Yang R T, Chang R. MnOx-CeO2mixed oxides prepared by co-precipitation forselective catalytic reduction of NO with NH3at low temperatures [J]. Appl. Catal. B:Environ.,2004,51(2):93-106
    [15] Qi G, Yang R T. Performance and kinetics study for low-temperature SCR of NO withNH3over MnOx-CeO2catalyst[J]. J. Catal.,2003,217(2):434-441
    [16] Long R. Q, Yang R.T. Superior Fe-ZSM-5catalyst for selective catalytic reduction ofnitric oxide by ammonia[J]. J. Am. Chem. Soc.,1999,121(23):5595-5596
    [17] Long R Q, Yang R T. Selective catalytic reduction of NO with ammonia over V2O5doped TiO2pillared clay catalysts[J]. Appl. Catal. B: Environ.,2000,27(2):87-95
    [18] Kim Y A, Choi J H, Scott J, et al. Preparation of high porous Pt-V2O5-WO3/TiO2/SiCfilter for simultaneous removal of NO and particulates[J]. Powder Technol.,2008,180(1-2):79-85
    [19] Grossale A, Nova I, Tronconi E. Study of a Fe-zeolite-based system as NH3-SCRcatalyst for Diesel exhaust aftertreatment[J]. Catal. Today,2008,136(1-2):18-27
    [20] Krishna K, Bueno-López A, Makkee M, et al. Potential rare-earth modified CeO2catalysts for soot oxidation part II: Characterisation and catalytic activity withNO+O2[J]. Appl. Catal. B: Environ.,2007,75(3-4):201-209
    [21] Zhou G, Shah P R, Gorte RJ. A Study of Cerium–Manganese Mixed Oxides forOxidation Catalysis[J]. Catal. Lett.,2008,120(3-4):191-197
    [22] Irfan M F, Goo J H, Kim S D. Co3O4based catalysts for NO oxidation and NOxreduction in fast SCR process[J]. Appl. Catal. B: Environ.,2008,78(3-4):267-274
    [23] Grossale A, Nova I, Tronconi E, et al. The chemistry of the NO/NO2–NH3“fast” SCRreaction over Fe-ZSM5investigated by transient reaction analysis[J]. J. Catal.,2008,256(2):312-322
    [24] Pe a D A, Uphade B S, Smirniotis P G. TiO2-supported metal oxide catalysts forlow-temperature selective catalytic reduction of NO with NH3: I. Evaluation andcharacterization of first row transition metals[J]. J. Catal.,2004,221(2):421-431
    [25]唐晓龙(Tang XL).低温选择性催化还原NOx技术及反应机理(Technology andMechanisms of Low-Temperature Selective Catalytic Reduction of NOx)[M].北京:冶金工业出版社(Beijing: Metallurgical Industry Press),2007.23-34110-130
    [26] Kijlstra W S, Brands D S, Poels E K, et al. Characterization of Al2O3-supportedmanganese oxides by electron spin resonance and diffuse reflectance spectroscopy[J]. J.Catal.,1997,171(1):208-218
    [27] Kijlstra W S, Brands D S, Smit H I, et al. Mechanism of the selective catalytic reductionof NO with NH3over MnO x/Al2O3. II. Reactivity of adsorbed NH3and NOcomplexes[J]. J. Catal.,1997,171(1):219-230
    [28] Kapteijn F, Singoredjo L, van Driel M, et al. Alumina-Supported Manganese OxideCatalysts: II. Surface Characterization and Adsorption of Ammonia and Nitric Oxide[J].J. Catal.,1994,150(1):105-116
    [29] Yao H C, Shelef M. The surface interaction of O2and NO with manganous oxide[J]. J.Catal.,1973,31(3):377-383
    [30] Baltanas MA, Stiles A B, Katzer J R. An infrared spectroscopic study of the adsorptionand surface reactions of oxygen on supported manganese oxides[J]. J. Catal.,1984,88(2):362-373
    [31] Singoredio L, Korver R, Kapteijn F, et al. Alumina supported manganese oxides for thelow-temperature selective catalytic reduction of nitric oxide with ammonia[J]. Appl.Catal. B: Environ.,1992,1(4):297-316
    [32] Marbán G, Fuertes A B. Kinetics of the Low-Temperature Selective Catalytic Reductionof NO with NH3Over Activated Carbon Fiber Composite-Supported Iron Oxides[J].Catal. Lett.,2002,84:13-19
    [33] Richter M, Trunschke A, Bentrup U, et al. Selective catalytic reduction of nitric oxide byammonia over egg-shell MnOx/NaY composite catalysts[J]. J. Catal.,2002,206(1):98-113
    [34] G. Marbán, Valdés-Solís T, A. B. Fuertes. Mechanism of low temperature selectivecatalytic reduction of NO with NH3over carbon-supported Mn3O4[J]. Phys. Chem.Chem.Phys.,2004,6(2):453-464
    [35] Huang Z, Liu Z, Zhang X, et al. Inhibition effect of H2O on V2O5/AC catalyst forcatalytic reduction of NO with NH3at low temperature[J]. Appl. Catal. B: Environ.,2006,63(3-4):260-265
    [36] Amore J M G S, Escribano V S, Ramis G, et al. An FT-IR study of ammonia adsorptionand oxidation over anatase-supported metal oxides[J]. Appl. Catal. B: Environ.,1997,13(1):45-58
    [37] Wu Z, Jiang B, Liu Y, et al. DRIFT study of manganese/titania-based catalysts forlow-temperature selective catalytic reduction of NO with NH3[J]. Environ. Sci.&Technol.,2007,41(16):5812-5817
    [38] Li J, Chen J, Ke R, et al. Effects of precursors on the surface Mn species and theactivities for NO reduction over MnOx/TiO2catalysts[J]. Catal. Commun.,2007,8(12):1896-1900
    [39] Tops e N Y. Characterization of the nature of surface sites on vanadia-titania catalysts byFTIR[J]. J. Catal.,1991,128(2):499-511
    [40] Tops e N Y, Tops e H, Dumesic J A. Vanadia/Titania Catalysts for Selective CatalyticReduction (SCR) of Nitric-Oxide by Ammonia: I. Combined Temperature-Programmedin-Situ FTIR and On-line Mass-Spectroscopy Studies[J]. J. Catal.,1995(1),151:226-240
    [41] Schneider H, Tschudin S, Schneider M, et al. In situ diffuse reflectance FTIR study of theselective catalytic reduction of NO by NH3over vanadia-titania aerogels[J]. J. Catal.,1994,147(1):5-14
    [42] Tops e N Y, Dumesic J A, Tops e H. Vanadia-Titania Catalysts for Selective CatalyticReduction of Nitric-Oxide by Ammonia: I.I. Studies of Active Sites and Formulation ofCatalytic Cycles[J]. J. Catal.,1995,151(1):241-252
    [43] P. G. Smirniotis, D. A. Pe a, B. S. Uphade. Low-Temperature Selective CatalyticReduction (SCR) of NO with NH3by Using Mn, Cr, and Cu Oxides Supported onHombikat TiO2[J]. Angew. Chem. Int. Ed.,2001,40(13):2479-2482
    [44] Liang X, Li J H, Lin Q C, et al. Synthesis and characterization of mesoporousMn/Al-SBA-15and its catalytic activity for NO reduction with ammonia[J]. Catal.Commun.,2007,8(12):1901-1904
    [45]沈学静,王海舟.固定源NOx的排放控制及DeNOx催化剂的应用[J].钢铁,2000.9:68-72
    [46] S.Iijima. Helical microtubules of graphitic carbon[J]. Nature,1991,354,56-58
    [47] D.S.Bethune, C.H.Klang, M.S.de Vries, et al. Cobalt-eatalysed growth of carbonnanotubes with single-atomic-layer walls[J]. Nature,1993,363:605-607
    [48] M.Ouyang, J.L.Huang, C.M.Lieber. Fundamental electronic properties and applicationsof single-walled cabron nanotube[J]s. Aee.Chem.Res.,2002,35:1018-1025
    [49] F.Nunzi, F.Mercuri, A.Sgamellotti,et al. The Coodrination Chemistry of CarbonNanotubes: a Densiyt Funetional Study through a Cluster Model Approach[J].J.Phys.Chem.B,2002,106:10622-10633
    [50] R. Saito, M. Fujita, G. Dresselhaus, et al. Electronic structure and growth mechanism ofcarbon tubules[J]. Materials Science and Engineering,1993,19(1-2):185-191
    [51] F.Salman, C.Park, R.T.K. Baker. Hydrogenation of crotonaldehyde over garphitcnanofiber supported nickel[J]. Catal.Today,1999,53(3):385-394
    [52] J. Ma, C. Park, N. M. Rodriguez, et al. Characteristics of copper particles supported onvarious types of graphite nanofibers[J]. J.Phys.Chem.B,2001,105:11994-12002
    [53] M. Menon, A. N, Andriotis, G. E. Froudkais, Curvaturer dependence of the metal catalystatom interaction with carbon nanotubes walls[J]. Chem. Phys. Lett.,2000,320(5-6):425-434
    [54]成会明.纳米碳管——制备、结构、物性及应用[M].北京.化学工业出版社,2002
    [55]日本炭素材料学会编中国金属学会碳材料专业委员会编译新炭材料入门[M].2000:1-4
    [56]杨全红.纳米碳管的表面、孔隙及其与储氢性能关系,中国科学院金属研究所博士后研究工作报告,2001
    [57] K. A. Williams, P. C. Eklund, Monte Carlo simulations of H2Physisorption infinite-diameter carbon nanotube ropes[J]. Chem.Phys.Lett.,2000,320(3-4):352-358
    [58] S. Inoue, N. Ichikuni, T. Suzuki, et al. Capillary condensation of N2on multiwall carbonnanotubes[J]. J. Phys. Chem. B,1998,102:4689-4692
    [59] M. Eswaramoorthy, R. Sen, C. N. R. Rao. A study of micropores in single-walled carbonnanotubes by the adsorption of gases and vapors[J]. Chem. Phys. Lett.,1999,304(3-4):207-210
    [60] J. Hilding, E. A. Grulke, S. B. Sinnott, et al. Sorption of Butane on Carbon MultiwallNanotubes at Room Temperature[J]. Langmuir,2001,17:7540-7544
    [61] M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson. Exceptionally high Young’s modulusobserved for individual carbon nanotubes[J]. Nature,1996,381:678-680
    [62] M. T. Martinez, M. A. Callejas, A. M. Benito, et al. Sensitivity of single wall carbonnanotubes to oxidative processing: structural modification, intercalation andfunctionalisation[J]. Carbon,2003,41(12):2247-2256
    [63] J. M. Moon, K. H. An, Y. H. Lee, et al. High-Yield Purification Process of Single walledCarbon Nanotubes[J]. J. Phys. Chem. B,2001,105:5677-5681
    [64]姚蒙正,程侣柏,王加儒.精细化一厂产品合成原理.第一版.北京:中国化工出版社,1995.80-149
    [65] C. Pham-Huu, N. keller, G. Ehret, et al. Carbon nanofiber supported palladium catalystfor1iquid-phase reactions an active and selective catalyst for hydrogenation ofcinnamaldehyde into hydrocinnamaldehyde[J]. J. Mol. Catal. A,2001,170(1-2):155-163
    [66] J. M. Nhut, R. Vieira, L. pesant, et al. Synthesis and catalytic uses of carbon and siliconcarbide nanostructures[J]. Catal. Today,2002,76(1):11-32
    [67] V. Lordi, N. Yao, J. Wei. Method for supporting Platinum on single-walled carbonnanotubes for a selective hydrogenation catalyst[J]. Chem. Mater.,2001,13:733-737
    [68]吕德义,徐铸德,徐丽萍,等. CNTs作为载体在邻硝基甲苯多相催化加氢中的应用[J].浙江工业大学学报,2002,30:464-466
    [69]梁长海. Ru-Mn+/C催化剂上氨合成反应性能研究:助剂和载体的影响[D].中国科学院大连化学物理研究所博十学位论文,2001
    [70] H. B. Chen, J. D. Lin, Y. Cai, et al. Novel multi-walled nanotubes-supported andalkali-promoted Ru catalysts for ammonia synthesis under atmospheric pressure[J]. AppI.Surf. Sic.,2001,180(3-4):328-335
    [71] R. Gao, C. D. Tan, R. T. K. Baker. Ethylene hydroformylation on graphite nanofibersupported rhodium catalysts[J]. Catal. Today,2001,65(1):19-29
    [72] R. Giodrano, P. Serp, P. Kalck, et al. Duvail. Preparation of rhodium catalysts supportedon carbon nanofibers by a surface mediated organometallic reaction[J]. Eur. J. Inogr.Chem.,2003,610-617
    [73]李文震,直接甲醇燃料电池阴极碳载铂基催化剂的研究[D],中国科学院大连化学物理研究所博士学位论文,2003
    [74] C. A. Bessel, K. laubernds, N. M. Rodriguez, et al. Graphite Nanofibers as an Electrodefor Fuel Cell Applications[J]. J. Phys. Chem. B,2001,105,1115-1118
    [75] E. S. Steigerwalt, G. A. Deluga, D. E. Cliffel, et al. A pt-Ru/GraPhitic Carbon NanofiberNanocomposite Exhibiting High Relative Performance as a Direct-Methanol Fuel CellAnode Catalyst[J]. J. phys. Chem. B,2001,105:8097-8101
    [76] G. L. Che, B. B. Lakshmi, C. R. Martin, et al. Metal-nanocluster-Filled CarbonNanotubes: Catalytic Properties and Possible Applications in Electrochemical EnergyStorage and Production[J]. Langmuir,1999,15:750-758
    [77] Z. L. Liu, X. H. Lin, J. Y. Lee, et al. Preparation and Characterization of Platinum-BasedElectrocatalysts on Multiwalled Carbon Nanotubes for Proton Exchange Membrane FuelCells[J]. Langmuir,2002,18:4054-4060
    [78] E. van Steen, F. F. Prinsloo. Comparison of preparation methods for carbon nnaotubessupported iorn Fischer-Tropsch catalysts[J]. Catal. Today,2002,71(3-4):327-334
    [79]陈为,李家麟,周明华,等.高分散CNTs载银催化剂的制备[J].华中师范大学学报(自然科学版),2003,37:21-214
    [80] J. M. Nhut, L. Pesant, J. P. Tessonnier, et al. Mesopororous carbon nnaotubes for use assupport in catalysis and as nanosized reactors for one-dimensional inorganic materialsynthesis[J]. Appl. Catal. A: Gen.,2003,254(2):345-363
    [81] Z. J. Liu, Z. Y. Yuan, W. Z. Zhou, et al. Co/carbon-nanotube monometallic system: theeffects of oxidation by nitric acid [J]. Phys. Chem. Chem. Phys.,2001,3(12):2518-2521
    [82] S. J. Wang, S. F. Yin, L. Li, et al. Investigation on modification of Ru/CNTs catalyst forthe generation of COx-free hydrogen from amonia[J]. Appl. Catal. B Environ.,2004,52(4):287-299
    [83] W. D. Wang, P. Serp, P. Kalck, et al. Visible light photodegradation of phenol onMWNT-TiO2composite catalysts prepared by a modified sol-gel method[J]. Joumal ofMolecular Catalysis A: Chemical,2005,235(1-2):194-199
    [84] G, Mestl, N. I, maksimova, N. Keller, V. V. Roddatis, R. Schlogl. Carbon Nanofilamentsin Heterogeneous Catalysis: in Industrial Application for New Carbon Materials?[J].Angew. Chem. Int. Ed.,2001,40(11):2066-2068
    [85] M. F. R. Pereira. J. L. Figueiredo, J. J, M. Orfao, P. Serp, P. Kalck, Y. Kihn. Catalyticactivity of carbon nanotubes in the oxidative dehydrogenation of ethylbenenze[J].Carbon,2004,42(14):2807-2813
    [86] J. Z. Luo, L. Z. Gao, Y. L. leung and C. T. Au. The decomposition of NO on CNTs and1wt%Rh/CNTs[J]. Catal. Lett.,2000,66:91-97
    [87] D.Morales-Acosta, J.Ledesma-Garcia. Development of Pd and Pd-Co catalysts supportedon multi-walled carbon nanotubes for formic acid oxidation[J]. Journal of power sources.2010,195(2),461-465
    [88] J.B.Xu, T.S.Zhao. Synthesis of well-dispersed Pt/carbon nanotubes catalyst usingdimethyformamide as a cross-link[J]. Journal of power sources.2010,195(4),1071-1075
    [89] N.Bouazza, M.Ouzzine, M.A.Lillo-rodenas. TiO2nanotubes and CNT-TiO2hybridmaterials for the photocatalytic oxidation of propene at low concentration[J]. Appliedcatalysis B: Environ.2009,92(3-4),377-383
    [90] Bichun Huang, Rong Huang, Dongjie Jin, Daiqi Ye. Low temperature SCR of NO withNH3over carbon nanotubes supported vanadium oxides[J]. Catal. today.2007,126(3-4),279-283
    [91]罗瑶,李彩亭等.新型MnOx/CNTs催化剂低温选择性催化还原NO[J].环境工程学报.2009,3(10).1844-1847
    [92] Shujing Guo, Xiulian Pan, Xinhe Bao. Probing the electronic effect of carbon nanobubein catalysis: NH3synthesis over Ru nanoparticles[J]. Chemistry-a European journal.2010,1-7
    [93]唐亚文,曹爽等. CNTs结构对CNTs载Pt催化剂电催化性能的影响[J].高等学校化学学报:2007.5(28),936-939
    [94] Xiulian Pan, Xinhe Bao. Reactions over catalysts confined in carbon nanotubes[J].Chemical communicateons,2008:6271-6281
    [95] J. Y. Park, Y. Yaish, M. Brink, S. Rosenblatt and P. L. McEuen. Electrical cutting andnicking of carbon nanotubes using an atomic force microscope[J]. Appl. Phys. Lett.,2002,80(23),4446-4448
    [96] F. Banhart, J. Li and M. Terrones. Cutting single-walled carbon nanotubes with anelectron beam: evidence for atom migration inside nanotubes[J]. Small,2005,1(10),953-956
    [97] N. Pierard, A. Fonseca, Z. Konya, I. Willems, G. Van Tendeloo and J. B. Nagy.Production of short carbon nanotubes with open tips by ball milling[J]. Chem. Phys.Lett.,2001,335(1-2),1-8
    [98] X. X. Wang, J. N. Wang, L. F. Su and J. J. Niu. Cutting of multi-walled carbon nanotubesby solid-state reaction[J]. J. Mater. Chem.,2006,16,4231-4234
    [99] M. Q. Tran, C. Tridech, A. Alfrey, A. Bismarck and M. S. P. Shaffer. Thermal oxidativecutting of multi-walled carbon nanotubes[J]. Carbon,2007,45(12),2341-2350
    [100] K. J. Ziegler, Z. N. Gu, H. Q. Peng, E. L. Flor, R. H. Hauge and R. E. Smalley. REcontrolled oxidative cutting of single-walled carbon nanotubes[J]. J. Am. Chem. Soc.,2005,127(5),1541-1547
    [101]廖晓宁. CNTs的功能化及其对Ni/CNTs催化苯加氢性能的影响[D].南昌:南昌大学,2007
    [102]沈剑锋,黄玮石,吴利平等.多壁CNTs的纯化及修饰[J].材料导报,2006,20:117
    [103] Wang Z M, Liu Q C, Zhu H. Dispersing multi-walled carbon nanotubes withwater-soluble block copolymers and their use as supports for metal nanopanicles[J].Carbon,2007,45(2):285-292
    [104] Yan Bingyong, Qian Kaiyou, Zhang Yafei. Low-dimensional Systems andNanostructures[J]. Physica E,2005,28(1):88-92
    [105] Ahn, Kyung Soo, Kim, J une Sik, Kim, Chae Ok. Non-reactive rf treatment ofmultiwall carbon nanotube with inert argon plasma for enhanced field emission[J].Carbon,2003,41(13):2481-2485
    [106] Yu Ke, Zhu Ziqiang, Xu Min. Electron field emission from soluble carbon nanotubefilms treated by hydrogen plasma[J]. Chem. Phys. Lett.,2003,373(1):109-114
    [107] Chen Qidao, Dai Liming, Gao Mei. Plasma activation of carbon nanotubes forchemical modification[J]. J. Phys. Chem. B,2001,105(3):618-622
    [108] Wei Chen, Xiulian Pan, Xinhe Bao. Facial autoreduction of Iron oxide/carbonnanotubes encapsulates[J]. J Am Chem Soc.2006,128,3136-3137
    [109] Kandaz M, Yarasir M N U, Koca A. Polytopic cation receptor functionalphthalocyanines: synthesis, characterization, electrochemistry and metal ion binding.Polyhedron[J].2002,21(3):255-263
    [110] E. Dujardin, T. W. Ebbesen, H. Hiura and K. Tanigaki. Capillarity and wetting of carbonnanotubes[J]. Science,1994,265,1850-1852
    [111] H. Ma, L. Wang, L. Chen, C. Dong, W. Yu, T. Huang and Y. Qian. Pt nanoparticlesdeposited over carbon nanotubes for selective hydrogenation of cinnamaldehyde[J].Catal. Commun.,2007,8(3),452-456
    [112] Ajayan P M, Iijima S. Capillarity-induced filling of varbon nanotubes[J]. Nature,1993,361(6410):333-334
    [113] Ajayan P M, Ebbesen T W, Ichihashi T, Lijima S, et al. Opening carbon nanotubes withoxygen and implications for filling[J]. Nature,1995,362(6420):522-525
    [114] Ajayan P M, Stephan O, Redlich P, Collicx C. Carbon nanotubes as removabletemplates for metal-oxide nanocomposites and nanostructures[J]. Nature,1995,375(6532):564-567
    [115] Shimoda H, Gao B, Tang X P, et al. Lithium intercalation into etched single-wall carbonnanotubes[J]. Physica B-Condensed Matter,2002,323(1-4):133-134
    [116] Tsang S C, Chen Y K, Harris P J F, Green M L H. A simple chemical method of openingand filling carbon nanotubes[J]. Nature,1994,372(6502):159-162
    [117] Pham-Huu C, Keller N, Estournes C, Ehret G, Ledoux M J. Synthesis of CoFe2O4nanowire in carbon nanotubes. A new use of the confinement effect[J]. ChemicalCommunications,2002,(17):1882-1883
    [118] Ajayan P M, Colliex C, Lamber J M, el al. Growth of manganese filled carbonnanofibers in the vapor-phase[J]. Physical Review Letters,1994,72(11):1722-1725
    [119] N. Demoncy, O. Stephan, N. Brun, C. Colliex, A. Loiseau, H. Pascard. Filling carbonnanotubes with metals by the arc discharge method: the key role of sulfur[J]. EuropeanPhysical Journal B,1998,4(2):147-157
    [120] Guerretpiecourt C, Lebouar Y, Loiseau A, Pascard H. Relation between metalelectronic-structure and morphology of metal-compounds inside carbon nanotubes[J].Nature,1994,372(6508):761-765
    [121] Loiseau A. Nanotubes: Structure, growth and characterization[J]. Vide-ScienceTechnique Et Applications,2001,56(300):209
    [122] Liu M G, Cowley J M. Encapsulation of manganese carbides within carbon nanotubesand nanoparticles[J]. Carbon,1995,33(6):749-756
    [123] Liu M Q, Cowley J M. Encapsulation of lanthanum carbide in carbon nanotubes andcarbon nanoparticles[J]. Carbon,1995,33(2):225-232
    [124] Hu C G, Zhang Y Y, Bao G, Zhang Y L, Liu M L, Wang ZL. DNA functionalizedsingle-walled carbon nanotubes for electrochemical detection[J]. Journal of PhysicalChemistry B,2005,109(43):20072-20076
    [125] Banhart F, Grobert N, Terrones M, Charlier J C, Ajayan P M. Metal stoms in carbonnanotubes and related nanoparticles[J]. International Journal of Modern Physics B,2001,15(31):4037-4069
    [126] Massimo Colombo, Isabella Nova, Enrico Tronconi. A comparative study of theNH3-SCR reactions over a Cu-zeolite and a Fe-zeolite catalyst[J]. Catal. Today.2010,151(3-4):223-230
    [127] Liang Chen, Junhua Li, Maofa Ge, Ronghai Zhu. Enhanced activity of tungstenmodified CeO2/TiO2for SCR of N0x with NH3[J]. Catalysis Today.2010,153(3-4):77-83
    [128] Fudong Liu, Hong He, Changbin Zhang. Selective catalytic reduction of NO with NH3over iron titanate catalyst: Catalytic performance and characterization[J]. Appliedcatalysis B: Environmental.2010,96(3-4):408-420
    [129] Jian Yu, Feng Guo, Shiqiu Gao, Guangwen Xu. Sulfur poisoning resistant mesoporousMn-base catalyst for low-temperature SCR of NO with NH3[J]. Applied Catalysis B:Environmental2010,95(1-2):160–168.
    [130] S. Sitshebo, A. Tsolakis. Improving the low temperature NOxreduction activity over aAg-Al2O3catalyst[J]. Chem. Eng. Journal.2010,158(3):402-410
    [131] Zhichun Si, Duan Weng. Structure, acidity and activity of CuOx/WOx–ZrO2catalyst forselective catalytic reduction of NO by NH3[J]. Journal of Catalysis.2010,271(1):43-51
    [132]沈伯雄,刘亭等.低温SCR脱硝催化剂过渡金属氧化物改性及硫中毒失活机制研究[J].环境科学.2009,30(8):2204-2209
    [133]罗瑶,李彩亭等.新型MnOx/CNTs催化剂低温选择性催化还原NO[J].环境工程学报.2009,3(10):1844-1847
    [134]白书立,赵江红等. V2O5/CNTs催化剂低温NH3选择催化还原NO的研究[J].燃料化学学报.2009,37(5):583-587
    [135] L.S. Wang, B.C. Huang, Y.X. Su, G.Y. Zhou, K.L. Wang, H.C. Luo, D.Q. Ye.Manganese oxides supported on muti-walled carbon nanotubes for selective catalyticreduction of NO with NH3: Catalytic activity and characterization[J]. Chem. Engin. Jour.,2012,192(1):232-241
    [136] Chen W, Pan X L, Bao X H. Tuning of redox properties of iron and iron oxides viaencapsulation within carbon nanotubes[J]. J Am Chem Soc,2007,129(23):7421-7426
    [137] Chen W, Pan X, Willinger M G, Su D S, Bao X. Facile autoreduction of ironoxide/carbon nanotube encapsulates[J]. J. Am. Chem. Soc.,2006,128(10):3136-3137
    [138] Pan X L, Fan Z L, Chen W, Ding Y J, Luo H Y, Bao X H. Enhanced ethanol productioninside carbon nanotube reactors containing catalytic particles[J]. Nature Materials,2007,6:507-511
    [139] Chen W, Fan Z L, Pan X L, Bao X H. Effect of confinement in carbon nanotubes on theactivity of fischer-tropsch iron catalyst[J]. J. Am. Chem. Soc.,2008,130(29):9414-9419.
    [140] C.Y. Shi, Y.M. Hao, Z.B. Hu, Microstructure and colossal dielectric behavior ofCa2TiMnO6ceramics[J]. Scr. Mater.2011,64(3):272-275.
    [141]钟标城,周广英,王文辉,等.Fe掺杂对MnOX催化剂结构性质及低温SCR反应机制的影响[J].环境科学学学报,2011,10
    [142] M.Machida, M.Uto, D.Kurogi, et al. MnOxCeO2binary oxides for catalytic NOxabsorption at low temperatures. Sorptive removal of NOx[J]. Chem. Mater.,2000,12(10):3158–3164
    [143] M. Koudelka, A. Monnier, J. Sanchez, J. Augustynski, Correlation between the surfacecomposition of Pt/TiO2catalysts and their adsorption behavior in aqueous solutions, J.Mol. Catal.,1984,25(1-3):295-305
    [144] F.D. Liu, H. He, Y. Ding, el al. Effect of manganese substitution on the structure andactivity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J].Appl.Catal.B: Environ.,2009,93(1-2):194-204
    [145] C.V. Ramana, M. Massot, C.M. Julien. XPS and Raman spectroscopic characterizationof LiMn2O4spinels[J]. Surf. Interface Anal.2005,37(4):412-416
    [146] F.J. Owens, J. Orosz. Effect of nanosizing on lattice and magnon modes of hematite[J].Solid State Commun.,2006,138(2):95-98
    [147] F. Kapteijn, L. Singoredjo. A. Andreini, J.A. Moulijn. Activity and selectivity of puremanganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J].Appl. Catal. B: Environ.1994,3(3):173-189
    [148] P.R. Ettireddy, N. Ettireddy, S. Mamedov, P. Boolchand, P.G. Smirniotis. Surfacecharacterization studies of TiO2supported manganese oxide catalysts for lowtemperature SCR of NO with NH3[J]. Appl. Catal. B: Environ.2007,76(1-2):123-134
    [149] F.D. Liu, H. He, Y. Ding, C.B. Zhang, Effect of manganese substitution on the structureand activity of iron titanate catalyst for the selective catalytic reduction of NO withNH3[J]. Appl. Catal. B.2009,93(1-2):194-204
    [150] F.D. Liu, K. Asakura, H. He, Y.C. Liu, W.P. Shan, X.Y. Shi, C.B. Zhang, Influence ofcalcination temperature on iron titanate catalyst for the selective catalytic reduction ofNOxwith NH3[J]. Catal. Today,2011,164(1):520-527.
    [151] M. Kantcheva. Identification, Stability, and Reactivity of NOxSpecies Adsorbed onTitania Supported Manganese Catalysts[J]. J. Catal.2001,204(2):479-494
    [152] K. Hadjiivanov. D. Klissurski, G. Ramis, G. Busca. Fourier transform IR study of NOxadsorption on a Cu/ZSM-5DeNOxcatalyst[J]. Appl. Catal. B,1996,7(3-4):251-267
    [153] A. Penkova, K. Hadjiivanov, M. Mihaylov, M. Daturi, J. Saussey, J.C. Lavalley. FTIRSpectroscopic Study of Low Temperature NO Adsorption and NO+O2Coadsorption onH-ZSM-5[J]. Langmuir2004,20(13):5425-5431
    [154] L. Zhang, H. He. Mechanism of selective catalytic oxidation of ammonia to nitrogenover Ag/Al2O3[J]. J. Catal.,2009,268(1):18-25
    [155] G.Y. Zhou, B.C. Zhong, W.H. Wang, B.C. Huang, D.Q. Ye, et al., In situ DRIFTS studyof NO reduction by NH3over Fe–Ce–Mn/ZSM-5catalysts[J]. Catal. Today,2011,175(1):157-163
    [156] Lin S.D.; Gluhoi A.C.; Nieuwenhuys B.E. Ammonia oxidation over Au/MOx/γ-Al2O3activity, selectivity and FTIR measurements. Catal. Today,2004,90(1-2):3-14
    [157] G. Ramis, L. Yi, G. Busca. Ammonia activation over catalysts for the selective catalyticreduction of NOxand the selective catalytic oxidation of NH3. An FT-IR study[J]. Cata.Today,1996,28(4):373-380
    [158] M. Koebel, G. Madia, F. Raimondi, A. Wokaun. Enhanced Reoxidation of Vanadia byNO2in the Fast SCR reaction[J]. J. Catal.2002,209(1):159-165
    [159] M. Amblard, R. Burch, B.W.L. Southward. A study of the mechanism of selectiveconversion of ammonia to nitrogen on Ni/γ-Al2O3under strongly oxidizing conditions[J], Catal. Today2000,59(3-4):365-371
    [160] Z.B. Wu, B.Q. Jiang, Y. Liu, et al. Experimental study on a low-temperature SCRcatalyst based on MnOx/TiO2prepared by sol-gel method[J]. Journal of hazardousmaterials,2007,145(3):488-494
    [161] D.A. Pe a, B.S. Uphade, E.P. Reddy, P.G. Smirniotis. Identification of surface specieson titania-supported manganese, chromium and copper oxide low-temperature SCRcatalysts [J], J. Phys. Chem. B2004,108(28):9927-9936
    [162] R.Q. Long, R.T. Yang. Reaction mechanism of selective catalytic reduction of NO withNH3over Fe-ZSM-5catalysts [J], J. Catal.2002,207(2):224-231

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700