用户名: 密码: 验证码:
黄瓜表皮毛相关基因的定位、同源克隆与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
果实刺瘤是黄瓜(Cucumis sativus L.)重要的外观品质之一。组织学观察发现黄瓜表皮毛和果刺均为多细胞非腺体的柱状结构。黄瓜无毛突变体glabrous1(gl1)的茎、叶、卷须、花萼、子房均没有表皮毛,果实表面也没有果刺和果瘤,是研究黄瓜表皮毛及果实刺瘤形成机理的理想材料。遗传分析结果表明无毛基因(gl1)对控制果瘤性状的果瘤基因(Tu)存在隐性上位作用。因此,研究黄瓜表皮毛形成的分子机制有助于探明黄瓜果实刺瘤的形成机制。另外,表皮毛和果刺是由表皮细胞分化而来,而表皮细胞是研究植物细胞分化最好的模型,因此,对黄瓜表皮毛的形成机制的研究有助于丰富植物细胞分化理论。
     本研究用欧洲温室型黄瓜“壮瓜”与无毛突变体gl1杂交构建了F2群体,利用无毛表型的F2单株为定位群体,进行图位克隆以分离出无毛基因。同时,还利用生物信息学的方法分析了黄瓜中的R2R3MYB, bHLH,WD40-repeat和R3single repeat MYB基因家族的所有成员,并利用同源进化分析找出黄瓜中可能和表皮毛形成相关的同源基因。为了研究这些同源基因的功能,还进行了拟南芥和黄瓜的遗传转化。研究结果如下:
     1.共筛选了322对SSR标记,找到了在无毛突变体和壮瓜之间具有多态的SSR标记21个,并将无毛基因gl1定位在3号染色体上的SSR21054和SSR117之间。这两个标记之间的物理距离为3000Kb。根据无毛突变体的基因组重测序信息,在初步定位区间内找到了在双亲之间有多态的2个STS标记和3个CAPS标记。通过对2400棵无毛表型的F2单株进行标记分析,将gl1基因定位在STS-1和CAPS-1之间,物理距离约311K(28801842-29113539)的区间内,共有52个候选基因。通过对候选基因的注释及与拟南芥同源基因的比较分析发现,这52个基因中没有与细胞分裂、细胞周期或表皮细胞命运决定相关的同源基因。所以,黄瓜表皮细胞的分化机制很有可能与拟南芥有不同之处。
     2.通过数字基因表达谱(DGE)对无毛突变体及其亲本的叶片进行了差异表达基因分析。与亲本相比,在无毛突变体叶片中表达量下调的基因365个,上调的基因139个。其中差异倍数在20倍以上的基因共57个。GO功能富集分析表明,这些差异表达基因主要参与代谢作用、细胞过程、刺激应答、及细胞机构合成等相关生物学过程。
     3.在黄瓜全基因组中,利用BlastP的方法分析了R2R3MYB,bHLH,WD40-repeat和R3single repeat MYB基因家族,分别找到了46个R2R3MYB基因,138个bHLH基因,191个WD40-repeat基因及1个R3single repeat MYB基因。利用同源进化分析找到了拟南芥中TTG1,MYC1和TRY的同源基因,分别命名为CsTTG1,CsMYC1和CsTRY。另外,黄瓜的R2R3MYB基因家族中没有与表皮细胞命运决定相关的基因,但找到了一个与拟南芥GL1同源性最高的R2R3MYB基因,命名为CsGL1-like (CsGL1L)。序列分析表明,CsGL1L,CsMYC1, CsTTG1及CsTRY的CDS长度分别为783bp,1956,1002和249bp,分别编码260,651,333和82个氨基酸。
     4.为了分析CsGL1L,CsMYC1, CsTTG1及CsTRY的亚细胞定位情况,分别构建了CsGL1L,CsMYC1, CsTTG1及CsTRY与GFP的融合蛋白。共聚焦结果显示CsGL1L,CsMYC1, CsTTG1及CsTRY均定位在洋葱表皮的细胞核中。
     5.组织特异性分析结果表明,CsGL1L,CsMYC1, CsTTG1及CsTRY在黄瓜的各组织中均有不同程度的表达。其中CsGL1L主要在果实中表达,CsMYC1在根、茎、叶、花和果实中表达量均较高,只在卷须中表达量较低。CsTTG1在各个组织器官中表达量均较高。CsTRY主要在叶片,根和卷须中表达量高,在茎、雄花和果实中表达量较低。
     6.为了分析CsGL1L,CsMYC1, CsTTG1及CsTRY的功能,分别构建了这四个基因的过表达及RNAi载体。拟南芥的遗传转化实验表明,在拟南芥gl1突变体中过表达CsGL1L没有恢复gl1突变体有毛的表型。在野生型拟南芥Col中分别过表达CsGL1L和CsMYC1可以使转基因植株莲座叶上的表皮毛数量显著增加,但过表达CsTTG1后,转基因植株莲座叶上的表皮毛数量与野生型相比没有明显的变化。
     7.为了进一步分析CsGL1L,CsMYC1, CsTTG1及CsTRY在黄瓜中的功能,利用农杆菌侵染法进行了黄瓜的遗传转化。目前已经分别得到1棵PHB-TTG1和2棵PHB-CsMYC1的转基因植株。对过表达CsTTG1的转基因植株表型分析结果表明,转基因植株的花托和叶片上的表皮毛数量和长度均显著高于对照。转基因植株的果实上的刺瘤数量明显高于对照且出现了明显的棱。
Warty fruit trait is one of the highly valuable external quality traits of cucumber(Cucumis sativus). Histology analysis showed that trichomes and fruit spines aremulti-cellular and non-glandular column-shaped structures. The glabrous1mutant (gl1) is agood material for studying the formation mechanism of the trichomes and fruit spines, whichshowed no trichome on stems, leaves, tendrils, receptacles and ovaries and there were nospine and tumor on cucumber fruit surface. The results of genetic analysis for gl1indicatedthat gl1gene is recessive epistatic to tuberculate gene (Tu). Studying the formationmechanism of trichome can lay the foundation of elucidating the molecular mechanism of thespines and tumors formation on cucumber fruit. In addition, the trichomes and fruit spines aredifferentiated from epidermis cells and the patterning of epidermal cell types in Arabidopsishas become one of the best models for studying the molecular basis of cell specification inplants. It is helpful for enriching the theories of cell differentiation to study the trichomeformation mechanism in cucumber.
     To mapping glabrous1gene (gl1), map-based cloning was used and we constructed F2segregate populations with ‘Zhuanggua’(Europe greenhouse type) and glabrous1mutant. F2glabrous progenies were used as mapping population. Bioinformatics approach was also usedto identify all of the members of R2R3MYB, bHLH, WD40-repeat and R3single repeat MYBfamily, respectively. Phylogenetic analysis was performed to find putative trichome formationrelated homologous genes in cucumber. To study the functions of trichome formationrelated homologous genes, we performed genetic transformation of Arabidopsis andcucumber, respectively. The results as follows:
     1.322SSR markers were screened and21polymorphic SSR markers were identified betweenglabrous1mutant and ‘Zhuanggua’. The gl1gene was delimited in the region between SSR21054and SSR117on chromosome3and their physical distance is about3000Kb.Based on primary mapping of gl1gene and re-sequence of gl1mutant,2polymorphic STSmarkers and3polymorphic CAPS markers were developed in the primary mapping region ofgl1gene. Markers analysis was conducted on2400individuals of F2population using thesenew STS and CAPS primers. Then the gl1gene was fine mapped within the region betweenSTS-1and CAPS-1. The physical distance of the STS-1and CAPS-1was311Kb and there are31candidate genes in this region. The results of genes annotation analysis compared toArabidopsis showed that there was not homologous gene related to cell division or epidermiscell fate determination genes. So the mechanism of cucumber epidermis cell division may bedifferent from Arabidopsis.
     2. Data gene expression profiles of leaves from gl1mutant and ‘Daqingba’ were performedand the results indicated that365genes down-regulated and139genes up-regulated in gl1mutant relative to ‘Daqingba’, respectively. Of these,57genes showed more than20-folddifference. Gene classification based on gene ontology (GO) for differentially expressedgenes in gl1mutant and ‘Daqingba’ showed that the genes related to metabolic, cellular,response to stimulus and cellular biosynthetic processes were abundant in the differentiallyexpressed genes.
     3. Whole-genome wide analysis of R2R3MYB, bHLH, WD40-repeat (WDR) and R3singlerepeat MYB family was performed using BlastP program, respectively. We identified46R2R3MYB,138bHLH,191WDR and1R3single MYB genes in cucumber genomedatabase, respectively. The homologous genes of Arabidopsis TTG1, MYC1and TRY wasidentified and named as CsTTG1, CsMYC1and CsTRY, respectively. It was worth to notethat there are not epidermis cell fate determination genes in cucumber R2R3MYB family.However, the gene most closely related with Arabidopsis GL1was identified and named asCsGL1L. Sequence analysis indicated that the CDS length of CsGL1L, CsMYC1, CsTTG1andCsTRY is783,1956,1002and249bp and encode260,651,333and82amino acids,respectively.
     4. To examine the subcellular distribution of the CsGL1L, CsMYC1, CsTTG1and CsTRY protein, CsGL1L, CsMYC1, CsTTG1and CsTRY was fused with GFP,respectively. Confocalimaging showed the four fusion protein localized exclusively in the nuclei of onion (Alliumcepa) epidermal cells.
     5. Tissue-specific expression of CsGL1L, CsMYC1, CsTTG1and CsTRY were performed andthe results showed that they expressed in different tissues to various degrees. CsGL1L showedhigher expression levels in fruits than any other tissues. CsMYC1showed high expressionlevels in roots, stems, leaves, male flowers and fruits but low levels in tendrils. CsTTG1highly expressed in all of the tested tissues. CsTRY showed higher expression levels in leaves,roots and tendrils and low levels in other tissues.
     6. To analyze the functions of CsGL1L, CsMYC1, CsTTG1and CsTRY, the over-expressionand RNAi recombinants vectors of these genes were constructed, respectively. The results ofgenetic transformation of Arabidopsis indicated that over-expression CsGL1L in Arabidopsisgl1mutant did not rescue the trichome formation of the gl1mutant. We over-expressedCsGL1L and CsMYC1in Col exhibited significantly increased trichome density to variousdegrees on rosette leaves compared to Col. However, over-expressed CsTTG1in wild typeCol, and the trichome number on rosette leaves of transgenic lines was indistinguishable fromthose in wild-type plants.
     7. To further study the functions of CsGL1L, CsMYC1, CsTTG1and CsTRY in cucumber, thegenetic transformation of cucumber were performed using Agrobacterium tumefaciens. Todate, we obtained1CsTTG1over-expression line and2CsMYC1over-expression lines. Thephenotype of over-expression CsTTG1line was also analyzed and the transgenic line showedsignificant increase in trichome number and length relative to control, particularly onreceptacles and adaxial surfaces of the leaves. In addition, there are more spines and tumorson the surface of transgenic fruits and more remarkable ribs were also observed.
引文
曹辰兴,郭红芸.黄瓜突变新类型———无毛黄瓜.中国蔬菜.1999(4):29.
    曹辰兴,张松,郭红芸.黄瓜茎叶无毛性状与果实瘤刺性状的遗传关系.园艺学报.2001,28(6):565-566.
    曹辰兴,张松,郭红芸,郭延奎.黄瓜无毛突变体叶片叶绿体超微结构与光合特性.园艺学报.2002,29(2):145-148.
    柴丹丹,陈书霞,孟焕文,程智慧,李亚利.黄瓜SRAP-PCR反应体系的建立.西北农业学报.2008,17(3):274-279.
    陈飞雪,张桂华,钱文成,韩毅科,陈德富,杜胜利,陈喜文.与黄瓜耐高温QTL连锁的分子标记分析.南开大学学报.2008,41(4):49-54.
    陈青君,张海英,王永健,李婉钰,张峰,毛爱军,程继鸿,陈明远.温室黄瓜产量相关农艺性状QTLs的定位.中国农业科学.2010,43(1):112-122.
    陈学好,王佳,徐强,嵇怡,梁国华.一个与黄瓜单性结实基因连锁的ISSR标记.分子植物育种.2008,6(1):85-88.
    程周超,顾兴芳,张圣平,苗晗,张若纬,刘苗苗,杨双娟.黄瓜瓜长性状的QTL定位分析.中国蔬菜.2010,12:20-25.
    杜辉.黄瓜固定标记图谱的构建及果皮光泽(D)、小刺(ss)性状定位及甘蓝抽薹性状基因的分子标记定位.上海交通大学硕士学位论文.2008:33-35.
    冯芳君,罗利军,李荧,周立国,徐小艳,吴金红,陈宏伟,陈亮,梅捍卫,水稻InDel和SSR标记多态性的比较.分子植物育种.2005,3(5):725-730.
    顾兴芳,张圣平,王烨.我国黄瓜育种研究进展.中国蔬菜.2005,12:1-7.
    关媛,李效尊,潘俊松,何欢乐,吴爱忠,蔡润.黄瓜果实EST-SSR标记的开发.分子植物育种.2007,5(5):725-728.
    关媛.黄瓜果刺形成相关基因的定位与克隆.上海交通大学博士学位论文.2008:36-48.
    郭世荣.无土栽培学.北京:中国农业出版社.2004:114.
    何俊平,阮松林,祝水金,马华升.图位克隆技术在农作物基因分离中的应用与评价.遗传.2010,32(9):903-913.
    胡建斌,李建吾.黄瓜基因组EST-SSRs的分布规律及EST-SSR标记开发.西北植物学报.2008,28(12):2429-2435.
    兰青阔,张桂华,王永,赵新,朱珠,杜胜利,程奕.基于InDel标记快速检测黄瓜津优38种子纯度.种子.2011,30(6):19-23.
    兰青阔,张桂华,王永,赵新,朱珠,孙玉河,郭永泽,程奕.基于高分辨率熔解曲线技术快速筛选黄瓜SNP.分子植物育种.2011,9(5):642-647.
    李怀智.我国黄瓜栽培的现状及其发展趋势.蔬菜.2003,8:3-4.
    李曼,龚义勤,苗晗,武剑,顾兴芳,张圣平,王晓武.黄瓜营养体苦味基因Bi的定位.园艺学报.2010,37(37):1073-1078.
    李锡香,朱德蔚,杜永臣,张广平,沈镝.黄瓜种质资源遗传多样性的RAPD鉴定与分类研究.植物遗传资源学报.2004,5(2):147-152.
    李效尊.黄瓜重要性状的QTL定位与分析.上海交通大学硕士学位论文.2007:31-70.
    李效尊,潘俊松,王刚,田丽波,司龙亭,吴爱忠,蔡润.黄瓜侧枝基因(lb)和全雌基因(f)的定位及RAPD遗传图谱的构建.自然科学选展.2004,14(11):1225-1229.
    李效尊,袁晓君,蒋苏,杜辉,潘俊松,何欢乐,吴爱忠,蔡润.黄瓜序列特征性扩增区域标记(SCAR)的开发.分子植物育种.2007,5(3):393-402.
    李秀兰,孙小秋,王平荣,周慧,邓晓建.一个新的水稻黄绿叶突变体的遗传分析与基因定位.作物学报.2010,36(6):1050-1054.
    凌健.黄瓜WRKY基因家族及microRNA的鉴定与分析.中国农业科学院博士后研究工作报告.2012:10-36.
    刘华,贾继增.指纹图谱在作物品种鉴定中的应用.作物品种资源.1997,2:45-48.
    刘世强.黄瓜性别决定基因M的精细定位及转录表达谱分析.南京农业大学博士学位论文.2008:24-72.
    刘晓虹,陈惠明,许亮,易克,卢向阳.黄瓜性别决定基因相关的分子标记.湖南农业大学学报.2008,34(4):403-408.
    娄群峰,陈劲枫, Molly Jahn,陈龙正,耿红,罗向东.黄瓜全雌性基因连锁的AFLP和SCAR分子标记.园艺学报.2005,32(2):256-261.
    马德华,庞金安,温晓刚,李淑菊,霍振荣,林世青.黄瓜无毛突变体的生理特性研究.园艺学报.2002,29(3):282-284.
    马玉银,李磊,李育红,左示敏,殷跃军,张亚芳,陈宗祥,潘学彪.一个新的水稻隐性高秆突变体的遗传分析和基因定位.中国农业科.2001,41(12):3967-3973.
    苗晗,顾兴芳,张圣平,武剑,方智远,张振贤.黄瓜(Cucumis sativus L.)复雌花性状QTL定位分析.园艺学报.2010,37(9):1449-1455.
    穆生奇,顾兴芳,张圣平等.栽培黄瓜种质遗传多样性的SSR鉴定.园艺学报.2008,35(9):1323-1330.
    潘存红,王子斌,马玉银,殷跃军,张亚芳,左示敏,陈宗祥,潘学彪. InDel和SNP标记在水稻图位克隆中的应用.中国水稻科学.2007,21(5):447-453.
    潘俊松,王刚,李效尊,何欢乐,吴爱忠,蔡润.黄瓜SRAP遗传连锁图的构建及始花节位的基因定位,自然科学进展.2005,15(2):167-172.
    戚春章,胡建平.软毛无卷须黄瓜突变株的性状研究.园艺学报.1989,16(2):123-126.
    萨姆布鲁克,拉塞尔.分子克隆实验指南.科学出版社.1996:30-32.
    尚小红,陆定迎,周生茂,文俊丽,康红卫.分子标记在我国黄瓜遗传育种中的应用.长江蔬菜.2011(14):1-6.
    沈镝.西双版纳黄瓜群体遗传多样性分析及黄瓜果肉色QTL定位研究.中国农业科学院博士学位论文.2009:24-95.
    沈丽平.黄瓜白粉病抗性遗传分析及相关QTL初步定位.扬州大学硕士学位论文.2009:52-60.
    时秋香,刘世强,李征等.与黄瓜M基因连锁的三个共显性标记.园艺学报.2009,36(5):737-742.
    宋慧.黄瓜花药培养及橙色果肉QTL分析和类胡萝卜素合成酶基因定位研究.南京农业大学博士学位论文.2009:46-105.
    宋晓飞,李晓丽,冯志红,闫立英.黄瓜基因组DNA提取及AFLP体系优化研究.安徽农业科学.2009,37(29):14035-14037.
    孙小红,杜胜利,张桂华,王葆利,郭蔼光,裴国亮. AFLP, SSR在黄瓜黑星病抗感材料上的多态性比较.华北农学报.2006,(3):105-107.
    孙涌栋,李贞霞,张兴国,陈碧华,李新峥.黄瓜cDNA-AFLP分析体系的建立.华北农学报.2007,22(4):116-119.
    王刚,潘俊松,李效尊,何欢乐,吴爱忠,蔡润.黄瓜SRAP遗传连锁图的构建及侧枝基因定位.中国科学C辑生命科学.2004,34(6):510-516.
    王桂玲,秦智伟,周秀艳,赵咫云.黄瓜DNA提取及优化SSR反应体系的建立.分子植物育种.2007,5:196-200.
    王惠哲,李淑菊,管炜.与黄瓜抗黑星病相关基因紧密连锁的SSR标记.分子植物育种.2009,7(3):550-554.
    王惠哲,李淑菊,刘秀峰,李平,霍振荣,管炜.与黄瓜抗炭疽病相关基因连锁的AFLP标记的筛选.园艺学报.2007,34(1):213-216.
    王佳,梁国华,缪旻珉,陈学好.正交设计优化黄瓜ISSR体系.分子植物育种.2006,4(3):439-442.
    王佳,徐强,缪旻珉,梁国华,张明志,陈学好.黄瓜种质资源遗传多样性的ISSR分析.分子植物育种.2007,5(5):677-682.
    王岩,付新民,高冠军,何予卿.分子标记辅助选择改良优质水稻恢复系明恢63的稻米品质.分子植物育种.2009,7(4):661-665.
    王振国,张海英,于广建,张峰,王永健,许勇,郭绍贵,宫国义.黄瓜SRAP反应体系的正交设计优化.华北农学报.2007,22(4):112-115.
    向太和,王利琳,庞基.不同性别类型黄瓜ACC合酶基因的单核苷酸多态性标记和酶切扩增长度多态性标记.生物化学与生物物理进展.2006,33(4):362-367.
    辛明,秦智伟,周秀艳.黄瓜植株高度遗传分析及其分子标记.东北农业大学学报.2008,39(5):34-38.
    鄢淑琴.采后不同时期的草菇菌柄表达谱差异分析.福建农林大学硕士学位论文.2011:5.
    杨迪菲.黄瓜耐热性QTL定位的研究.东北农业大学硕士学位论文.2006:35-37.
    杨双娟.黄瓜棒孢叶斑病抗性基因cca-2的遗传分析与定位.中国农业科学院硕士学位论文.2012:22-34.
    张弛.黄瓜Gl基因连锁的SRAP分子标记.上海交通大学硕士学位论文.2009:19-25.
    张海英,葛风伟,王永健,许勇,陈青君.黄瓜分子遗传图谱的构建.园艺学报.2004,31(5):617-622.
    张海英,王振国,毛爱军,张峰,王永健,许勇.与黄瓜白粉病抗病基因紧密连锁的SSR分子标记.华北农学报.2008,23(6):77-80.
    张海英,张洁,毛爱军,张峰,许勇,王永健.黄瓜抗西瓜花叶病毒性状的序列特征性扩增区域(SCAR)标记.农业生物技术学报.2009,17(2):312-316.
    张圣平.黄瓜果实苦味基因遗传分析及精细定位.中国农业科学院博士学位论文.2011:30-54.
    张圣平,刘苗苗,苗晗,张素勤,杨宇红,谢丙炎,顾兴芳.黄瓜白粉病抗性基因的QTL定位.中国农业科学.2011,44(17):3584-3593.
    张素勤,顾兴芳,张圣平,王晓武,邹志荣.黄瓜AFLP反应体系的优化.西北农业学报.2008,17(3):271-273.
    张向前,邹金松,朱海涛,李晓燕,曾瑞珍.水稻早熟多子房突变体fon5的遗传分析和基因定位.遗传.2008,30(10):1349-1355.
    张振贤.蔬菜栽培学,北京:中国农业大学出版社.2003:139.
    赵鹏.黄瓜瓜把长度的遗传分析及其QTL的定位研究.东北农业大学硕士学位论文.2011:31-38.
    周延清. DNA分子标记技术在植物研究中的应用.北京:化学工业出版社.2005:56-57.
    庄飞云,陈劲枫.黄瓜栽培种、近缘野生种、种间杂种及其回交后代的RAPD分析.园艺学报.2003,30(1):47-50.
    Abe H., Urao T., Ito T., Seki M., Shinozaki K., Yamaguchi-Shinozaki K.. ArabidopsisAtMYC2(bHLH) and AtMYB2(MYB) function as transcriptional activators in abscisicacid signaling. Plant Cell,2003,15:63-78.
    Abe H., Yamaguchi-Shinozaki K., Urao T., Iwasaki T., Hosokawa D., Shinozaki K.. Role ofArabidopsis MYC and MYB homologs in drought and abscisic acid regulated geneexpression. Plant Cell,1997,9:1859-1868.
    Audic S., Claverie J. M.. The significance of digital gene expression profiles. Genome Res,1997,7:986-95.
    Baudry A., Heim M. A., Dubreucq B., Caboche M., Weisshaar B., Lepiniec L.. TT2, TT8, andTTG1synergistically specify the expression of BANYULS and proanthocyanidinbiosynthesis in Arabidopsis thaliana. Plant J,2004,39:366-80.
    Behera1T. K., Staub J. E., Behera S., Rao A. R., Mason S.. One cycle of phenotypic selectioncombined with marker assisted selection for improving yield and quality in cucumber.2008. Cucurbitaceae2008, Proceedings of the IXth EUCARPIA meeting on genetics andbreedingof Cucurbitaceae (Pitrat M, ed), INRA, Avignon (France), May21-24th,2008.
    Benjamini Y., Yekutieli D.. The control of the false discovery rate in multiple testing underdependency. The Annals of Statistics,2001,29:1165-1188.
    Blundell T. L., Esch J. J., Marks M. D., Gray J. C.. The TRANSPARENT TESTA GLABRA1Locus, Which Regulates Trichome Differentiation and Anthocyanin Biosynthesis inArabidopsis, Encodes a WD40Repeat Protein. Plant Cell,1999,11:1337-1349.
    Brownfield L., Hafidh S., Borg M., Sidorova A., Mori T., Twell D.. A plant germline-specificintegrator of sperm specification and cell cycle progression. PLoS Genet,2009,5:e1000430.
    Bouyer D, Geier F, Kragler F, Schnittger A, Pesch M, Wester K., Balkunde R., Timmer J.,Fleck C., Hulskamp M.. Two-dimensional patterning by a trapping/depletion mechanism:the role of TTG1and GL3in Arabidopsis trichome formation. PLoS Biol,2008,6(6):e141.
    Carretero-Paulet L., Galstyan A., Roig-Villanova I., Martínez-García J. F., Bilbao-Castro J. R.,Robertson D. L.. Genome-Wide Classification and Evolutionary Analysis of the bHLHFamily of Transcription Factors in Arabidopsis, Poplar, Rice, Moss, and Algae. PlantPhysiol,2010.153:1398-1412.
    Chen, H.M., Tian, Y., Lu, X. Y., Liu, X.H.. The inheritance of two novel subgynoecious genesin cucumber (Cucumis sativus L.). Scientia Horticulturae,2011,127:464-467.
    Chen Y. H., Yang X. Y., He K., Liu M. H., Li J. G., Gao Z. F., Li Z. Q., Zhang Y. F., Wang X.X., Qiu X. M., Shen Y. P., Zhang L., Deng X. H., Luo J. C., Deng X. W., Chen Z. L.,Guo H. Y., Qu L. J.. The MYB transcription factor superfamily of Arabidopsis:expression analysis and phylogenetic comparison with the rice MYB family. Plant MolBiol,2006,60:107-124.
    Cui H., Zhang S. T., Yang H.J., Ji H., Wang X. J.. Gene expression profile analysis of tobaccoleaf trichomes. BMC Plant Biology,2011,11:76.
    Daniel X., Lacomme C., Morel J. B., Roby D.. A novel myb oncogene homologue inArabidopsis thaliana related to hypersensitive cell death. Plant J,1999,20:57-66.
    Delourme R., Falentin C., Huteau V., Clouet V., Horvais R., Gandon B., Specel S., HannetonL., Dheu J.E., Deschamps M., Margale E., Vincourt P., Renard M.. Genetic control of oilcontent in oilseed rape (Brassica napus L.). Theor Appl Genet,2006,113:1331-1345.
    Dubos C., Stracke R., Grotewold E., Weisshaar B., Martin C., Lepiniec L.. MYB transcriptionfactors in Arabidopsis. Trends Plant Sci,2010,15:573-581.
    Du H., Feng B. R., Yang S. S., Huang Y. B., Tang Y. X.. The R2R3-MYB Transcription FactorGene Family in Maize. PLoS one,2012,7: e37463.
    Du H., Yang S. S., Feng B. R., Liu L., Huang Y. B., Tang Y. X.. Genome-wide analysis of theMYB transcription factor superfamily in soybean. BMC Plant Biol,2012,12:106.
    Du H., Zhang L., Liu L., Tang X. F., Yang W. J., Wu Y. M., Huang Y. B., Tang Y. X..Biochemical and molecular characterization of plant MYB transcription factor family.Biochemistry,2009,74:1-11.
    Esch J. J., Chen M. A., Hillestad M., Marks M. D.. Comparison of TRY and the closely relatedAt1g01380gene in controlling Arabidopsis trichome patterning. Plant J,2004,40:860-869.
    Fazio G., Chung S. M., Staub J. E.. Comparative analysis of response to phenotypic andmarker-assisted selection for multiple ateral branching in cucumber (Cucumis sativus L.).Theor Appl Genet,2003,107(5):875-883.
    Fazio G., Staub J. E., Stevens M. R.. Genetic mapping and QTL analysis of horticultural traitsin cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet,2003,107:864-874.
    Feller A., Machemer K., Braun E. L., Grotewold E.. Evolutionary and comparative analysis ofMYB and bHLH plant transcription factors. Plant J,2011,66:94-116.
    Feltus F. A., Wan J., Schulze S. R., Estill J. C., Paterson A. H.. An SNP resource for ricegenetics and breeding based on subspecies indica and japonica genome alignments.Genome Res,2004,14:1812-1819.
    Gan L.C., Xia K., Chen J.G., Wang S.C.. Functional characterization of TRICHOMELESS2, anew single-repeat R3MYB transcription factor in the regulation of trichome patterningin Arabidopsis. BMC Plant Biology,2011,11:176.
    Gao Z. X., Wehner T. C., Chen H., Lin Y., Wang X. F., Wei M., Yang F. J., Shi Q. H..Deciphering the possible mechanism of exogenous NO alleviating alkali stress oncucumber leaves by transcriptomic analysis. Sci Hortic,2013,150:377-386.
    Glover B. J., Perez-Rodriguez M., Martin C.. Development of several epidermal cell typescan be specified by the same MYB-related plant transcription factor. Development,1998,125:3497-3508.
    Gonzalez A., Zhao M., Leavitt J. M., Lloyd A. M.. Regulation of the anthocyanin biosyntheticpathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings.Plant J,2008,53:814-827.
    Guo A. Y., Zhu Q. H., Chen X., Luo J. C.. GSDS: a gene structure display server. Yi Chuan,2007,29:1023-1026.
    Gupta P. K., Varshney R. K.. The development and use of microsatellite markers for geneticanalysis and plant breeding with emphasis on bread wheat. Euphytica,2000,113:163-185.
    Hu H, Boisson-Dernier A, Israelsson-Nordstr m M, B hmer M, Xue S, Ries A, Godoski J.,Kuhn J. M., Schroeder J. I.. Carbonic anhydrases are upstream regulators ofCO2-controlled stomatal movements in guard cells. Nat Cell Biol,2010,12:87-93.
    Hu L. F., Liu S. Q.. Genome-wide analysis of the MADS-box gene family in cucumber.Genome,2012,55:245-256.
    Hu L. F., Liu S. Q.. Genome-wide identification and phylogenetic analysis of the ERF genefamily in cucumbers. Genet Mol Biol,2011,34:624-633.
    Huang S. W., Li R. Q., Zhang Z. H., Li L., Gu X. F., Fan W., Lucas W. J., Wang X. W., Xie B.Y., Ni P. X., Ren Y., Zhu H. M., Li J., Lin K., Jin W. W., Fei Z. J., Li G. C., Staub J. B.,Kilian A., van der Vossen E. A. G., Wu Y., Guo J., He J., Jia Z. Q., Ren Y., Tian G., Lu Y.,Ruan J., Qian W., Wang M. W., Huang Q. F., Li B., Xuan Z. L., Cao J. J., San A., Wu Z.G., Zhang J. B., Cai Q. L., Bai Y. Q., Zhao B. W., Han Y. H., Li Y., Li X. F., Wang S. H.,Shi Q. X., Liu S. Q., Cho W. K., Kim J. Y., Xu Y., Heller-Uszynska K., Miao H., ChengZ. C., Zhang S. P., Wu J., Yang Y. H., Kang H. X., Li M., Liang H. Q., Ren X. L., Shi Z.B., Wen M., Jian M., Yang H. L., Zhang G. J., Yang Z. T., Chen R., Liu S. F., Li J. W.,Ma L. J., Liu H., Zhou Y., Zhao J., Fang X. D., Li G. Q., Fang L., Li Y. G., Liu D. Y.,Zheng H. K., Zhang Y., Qin N., Li Z., Yang G. H., Yang S., Bolund L., Kristiansen K.,Zheng H. C., Li S. C., Zhang X. Q., Yang H. M., Wang J., Sun R. F., Zhang B. X., JiangS. Z., Wang J., Du Y. C., Li S. G.. The genome of the cucumber, Cucumis sativus L.Nature Genetic,2009,41:1275-1281.
    Hulskamp M.. Plant trichomes: A model for cell differentiation. Nat Rev Mol Cell Biol,2004,5:471-480.
    Hulskamp M., Schnittger A.. Spatial regulation of trichome formation in Arabidopsis thaliana.Semin Cell Dev Biol,1998,9:213-220.
    Hulskamp M., Schnittger A., Folkers U.. Pattern formation and cell differentiation: trichomesin Arabidopsis as a genetic model system. Int Rev Cytol,1999,186:147-178.
    Humphries J.A., Walker A.R., Timmis,J.N., Orford S.J.. Two WD-repeat genes from cottonare functional homologues of the Arabidopsis thaliana TRANSPARENT TESTAGLABRA1(TTG1) gene. Plant Molecular Biology,2005,57:67-81.
    Inggamer H., Ponti O. M. B.. The identity of genes for glabrousness in Cucumis sativus L.Cucurbit Genetics Cooperative Report.1980,3:14.
    Jander G., Norris S.R., Rounsley S.D., Bush D.F., Levin I.M., Last R.L.. Arabidopsismap-based cloning in the post-genome era. Plant Physiol,2002,129:440-450.
    Jansen R. K., Kaittanis C., Saski C., Lee S. B., Tomkins J., Alverson A. J., Daniell H..Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genomesequences: effects of taxon sampling and phylogenetic methods on resolvingrelationships among rosids. BMC Evol Biol,2006,6:32.
    Jiang C. Z., Gu X., Peterson T.. Identification of conserved gene structures andcarboxy-terminal motifs in the Myb gene family of Arabidopsis and Oryza sativa L. ssp.Indica. Genome Biol,2004,5: R46.
    Jiang Y. Q., Deyholos M. K., Comprehensive transcriptional profiling of NaCl-stressedArabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol,2006,6:25.
    Johnson C.S., Kolevski B., Smyth D.R.. TRANSPARENT TESTA GLABRA2, a trichome andseed coat development gene of Arabidopsis, encodes a WRKY transcription factor. PlantCell,2002,14:1359-1375.
    Johnson H. B.. Plant pubescence: an Ecological perspective. The Botanical Review,1975,41:233-258.
    Kennard W. C., Havey M. J.. Quantitative trait analysis of fruit quality in cucumber,QTLdetection, confirmation. and comparison with mating-design variation. Theor ApplGenet,1995,91:53-61.
    Kiribuchi K., Sugimori M., Takeda M., Otani T., Okada K., Onodera H., Ugaki M., Tanaka Y.,Tomiyama-Akimoto C., Yamaguchi T., Minami E., Shibuya N., Omori T., Nishiyama M.,Nojiri H., Yamane H.. RERJ1, a jasmonic acid-responsive gene from rice, encodes abasic helixloop-helix protein. Biochem Biophys Res Commun,2004,325:857-863.
    Kirik V., Lee M. M., Wester K., Herrmann U., Zheng Z., Oppenheimer D., Schiefelbein J.,Hulskamp M.. Functional diversification of MYB23and GL1genes in trichomemorphogenesis and initiation. Development,2005,132,1477-1485.
    Kirik V., Schnittger A., Radchuk V., Adler K., Hülskamp M., B umlein H.. Ectopicexpression of the Arabidopsis AtMYB23gene induces differentiation of trichome cells.Development,2001,235:366-377.
    Kirik V., Simon M., Hülskamp M., Schiefelbein,J.. The ENHANCER OF TRY AND CPC1gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cellpatterning in Arabidopsis. Dev. Biol,2004a,268:506-513.
    Kirik V., Simon M., Wester K., Schiefelbein J., Hülskamp M.. ENHANCER of TRY and CPC2(ETC2) reveals redundancy in the region-specific control of trichome development ofArabidopsis. Plant Mol. Biol,2004b,55:389-398.
    Komatsu K., Maekawa M., Ujiie S., Satake Y., Furutani I., Okamoto H., Shimamoto K.,Kyozuka J.. LAX and SPA: major regulators of shoot branching in rice. Proc Natl AcadSci USA,2003,100:11765-11770.
    Komori T., Nitta N.. Utilization of the CAPS/dCAPS method to convert rice SNPs intoPCR-based Markers. Breeding Sci,2005,55:93-98.
    Konieczny A., Ausubel F.M.. A procedure for mapping Arabidopsis mutations usingcodominant ecotype-specific PCR-based markers.Plant,1993,4:403-410.
    Koornneef M., Dellaert S. W. M., Veen J. H.. EMS-and radiation-induced mutationfrequencies at individual loci in Arabidopsis thaliana (L.) Heynh. Mutat. Res,1982,93:109-123.
    Larkin J.C., Oppenheimer D.G., Lloyd A.M., Paparozzi E.T., Marks M.D.. Roles of theGLABROUS1and TRANSPARENT TESTA GLABRA genes in Arabidopsis trichomedevelopment. Plant Cell,1994,6:1065-1076.
    Larkin J.C., Oppenheimer D.G., Pollock S., Marks M.D.. Arabidopsis GLABROUS1generequires downstream sequences for function. Plant Cell,1993,5:1739-1748.
    Larkin J. C., Brown M.L., Schiefelbein J.. How do cells know what they want to be whenthey grow up? Lessons from epidermal patterning in Arabidopsis. Annu Rev Plant Biol,2003,54,403-430.
    Li D., Roberts R.. WD-repeat protein: structure characteristics, biological function, and theirinvolvement in human diseases. Cel Mol Life Sci,2001,58:2085-2097.
    Li Q., Zhang C. J., Li J., Wang L. N., Ren Z. H.. Genome-Wide Identification andCharacterization of R2R3MYB Family in Cucumis sativus. PLoS One,2012,7: e47576.
    Li S. F., Milliken O. N., Pham H., Seyit R., Napoli R., Preston J., Koltunow A. M., Parish R.W.. The Arabidopsis MYB5transcription factor regulates mucilage synthesis, seed coatdevelopment, and trichome morphogenesis. Plant Cell,2009,21:72-89.
    Livak K. J., Schmittgen T. D.. Analysis of relative gene expression data using Real-TimeQuantitative PCR and the2‐Ctmethod. Methods,2001,25:402-408.
    Li X. Z., Pan J. S., Wang G., Tian L. B., Si L. T., Wu A. Z., Cai R.. Localization of genes forlatera branch and female sex expression and construction of a molecular linkage map incucumber (Cucumis sativus L.) with RAPD markers. Prog Nat Sci,2005,15:143-148.
    Ling J., Jiang W. J., Zhang Y., Yu H. J., Mao Z. C., Gu X. F., Huang S. W., Xie B. Y..Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genomics,2011,12:471.
    Liu S. Q., Xu L., Jia Z. Q., Xu Y., Yang Q., Fei Z. J., Lu X. Y., Chen H. M., Huang S. W..Genetic association of ETHYLENE-INSENSmVE3-like sequence with thesex-determining M locus in cucumber (Cucumis sativus L.). Theor Appl Genet,2004,117:927-933.
    Lloyd A.M., Walbot V., Davis R.W.. Arabidopsis and Nicotiana anthocyanin productionactivated by maize regulators R and C1. Science,1992,258:1773-1775.
    Machado A., Wu Y. R., Yang Y. M., Llewellyn D. J., Dennis E. S.. The MYB transcriptionfactor GhMYB25regulates early fibre and trichome development. Plant J,2009,59:52-62.
    Margulies M., Egholm M., Altman W. E., Attiya S., Bader J. S., Bemben L. A., Berka J.,Braverman M. S., Chen Y. J., Chen Z., Dewell S. B., Du L., Fierro J. M., Gomes X. V.,Godwin B. C., He W., Helgesen S., Ho C. H., Irzyk G. P., Jando S. C., Alenquer M. L.,Jarvie T. P., Jirage K. B., Kim J. B., Knight J. R., Lanza J. R., Leamon J. H., Lefkowitz S.M., Lei M., Li J., Lohman K. L., Lu H., Makhijani V. B., McDade K. E., McKenna M. P.,Myers E. W., Nickerson E., Nobile J. R., Plant R., Puc B. P., Ronan M. T., Roth G. T.,Sarkis G. J., Simons J. F., Simpson J. W., Srinivasan M., Tartaro K. R., Tomasz A., VogtK. A., Volkmer G. A., Wang S. H., Wang Y., Weiner M. P., Yu P., Begley R. F., Rothberg J.M.. Genome sequencing in microfabricated high-density picolitre reactors.Nature,2005,437:376-380.
    Marks M. D. Molecular genetic analysis of trichomedevelopment in Arabidopsis. Annu RevPlant Physiol Plant Mol Biol,1997,48:137-163.
    Masucci J. D., Rerie W. G., Foreman D. R., Zhang M., Galway M. E., Marks M. D.,Schiefelbein J. W.. The homeobox gene GLABRA2is required for position-dependentcell differentiation in the root epidermis of Arabidopsis thaliana. Development,1996,122:1253-1260.
    Matus J. T., Aquea F., Arce-Johnson P.. Analysis of the grape MYB R2R3subfamily revealsexpanded wine quality-related clades and conserved gene structure organization acrossVitis and Arabidopsis genomes. BMC Plant Biol,2008,8:83.
    Mauricio R., Rausher M. D.. Experimental manipulation of putative selective agents providesevidence for the role of natural enemies in the evolution of plant defense. Evolution,1997,51:1435-1444.
    Millar A. A., Gubler F.. The Arabidopsis GAMYB-like genes, MYB33and MYB65, aremicroRNA-regulated genes that redundantly facilitate anther development. Plant Cell,2005,17:705-721.
    Mooney M., Desnos T., Harrison K., Jones J., Carpenter R., Coen E.. Altered regulation oftomato and tobacco pigmentation genes caused by delila gene of Antirrhinum. Plant J,1995,7:333-339.
    Nesi N., Jond C., Debeaujon I., Caboche M., Lepiniec L.. The Arabidopsis TT2gene encodesan R2R3MYB domain protein that acts as a key determinant for proanthocyanidinaccumulation in developing seed. Plant Cell,2001,13:2099-2114.
    Ondov B. D., Varadarajan A., Passalacqua K. D., Bergman N. H.. Efficient mapping ofApplied Biosystems SOLiD sequence data to a reference genome for functional genomicapplications. Bioinformatics,2008,24:2776-2777.
    Oppenheimer D.G., Herman P.L., Sivakumaran S., Esch J., Marks M.D.. A myb gene requiredfor leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell,1991,67:483-493.
    Pablo F. C.,Douglas A. S., Luming Y,Philipp W. S., Timothy T. H., Chinnappa D. K., SanwenH., Yiqun W.. Genome-wide characterization of simple sequence repeats in cucumber(Cucumis sativus L.).Genomics,2010,11:569.
    Pabo C. O., Sauer R. T.. Transcription factors: structural families and principles of DNArecognition. Annu Rev Biochem,1992,61:1053-1095.
    Padmaja K. L., Arumugam N., Gupta V., Mukhopadhyay A., Sodhi Y.S., Pental D., PradhanA.K.. Mapping and tagging of seed coat colour and the identification of microsatellitemarkers for marker-assisted manipulation of the trait in Brassica juncea. Thero ApplGenet,2005,111:8-14.
    Payne C. T., Clement J., Arnold D., Lioyd A.. Heterologous MYB genes distinct from GL1enhance trichome production when overexpressed in Nicotiana tabacum. Development,1999,126:671-682.
    Porreca G. J., Zhang K., Li J. B., Xie B., Austin D., Vassallo S. L., LeProust E. M., Peck B. J.,Emig C. J., Dahl F., Gao Y., Church G. M., Shendure J.. Multiplex amplification of largesets of human exons. Nat Methods,2007,11:931-936.
    Qi X. H., Xu X. W., Lin X. J., Zhang W. J., Chen X. H.. Identification of differentiallyexpressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress bydigital gene expression profile. Genomics,2012.99:160-168.
    Quattrocchio F., Wing J.F., Leppen H., Mol J., Koes R.. Regulatory genes controllinganthocyanin pigmentation are functionally conserved among plant species and havedistinct sets of target genes. Plant Cell,1993,5:1497-1512.
    Ramsay N.A., Glover B.J.. MYB-bHLH-WD40protein complex and the evolution of cellulardiversity. Trends Plant Sci,2005,10:63-70.
    Rerie W. G., Feldmann K. A., Marks M. D.. The GLABRA2gene encodes a homeo domainprotein required for normal trichome development in Arabidopsis. Genes&Development,1994,8:1388-1399.
    Ren Y., Zhang Z. H., Liu J. H., Staub J. E., Han Y. H., Cheng Z. C., Li X. F., Lu J. Y., Miao H.,Kang H. X., Xie B. Y., Gu X. F., Wang X. W., Du Y. C., Jin W. W., Huang S. W.. Anintegrated genetic and cytogenetic map of the cucumber genome.Plos One,2009,4:e5795.
    Riechmann J. L., Heard J., Martin G., Reuber L., Jiang C., Keddie J., Adam L., Pineda O.,Ratcliffe O. J., Samaha R. R., Creelman R., Pilgrim M., Broun P., Zhang J. Z.,Ghandehari D., Sherman B. K., Yu G.. Arabidopsis transcription factors: genome-widecomparative analysis among eukaryotes. Science,2000,290:2105-2110.
    Robinson R. W., Mishanec W.. A radiation-induce seedlingmarker gene for cucumbers. Veg.Imp. Nwsl,1964:2.
    Ryu K. H., Zheng X., Huang L., Schiefelbein J.. Computational modeling of epidermal cellfate determination systems. Curr Opin Plant Biol,2013,16:5-10.
    Schellmann S., Hulskamp M.. Epidermal differentiation: trichomes in Arabidopsis as a modelsystem. Int J Dev Biol,2005,49:579-584.
    Schellmann S., Hulskamp M., Uhrig J.. Epidermal pattern formation in the root and shoot ofArabidopsis. Biochem Soc Trans,2007,35:146-148.
    Schellmann S., Schnittger A., Kirik V., Wada T., Okada K., Beermann A., Thumfahrt J.,Jürgens G., Hülskamp M.. TRIPTYCHON and CAPRICE mediate lateral inhibitionduring trichome and root hair patterning in Arabidopsis. EMBO J,2002,21:5036-5046.
    Schnabel R. D., Kim J. J., Ashwell M. S., Sonstegard T. S., Van Tassell C. P., Connor E. E.,Taylor J. F.. Fine-mapping milk production quantitative trait loci on BTA6: analysis ofthe bovine osteopontin gene. Proc Natl Acad Sci USA,2005,102:6896-6901.
    Schnittger A., Hulskamp M.. Trichome morphogenesis: a cell-cycle perspective. Philos TransR Soc Lond B Biol Sci,2002,357:823-826.
    Seo J. S., Joo J..S, Kim M. J., Kim Y. K., Nahm B. H., Song S. I., Cheong J. J., Lee J. S., KimJ. K., Choi Y. D.. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZproteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J,2011,65:907-921.
    Serna L., Martin C.. Trichomes: different regulatory networks lead to convergent structures.Trends Plant Sci,2006,11:274-280.
    Shendure J., Porreca G. J., Reppas N. B., Lin X., McCutcheon J. P., Rosenbaum A. M., WangM. D., Zhang K., Mitra R. D., Church G. M...Accurate multiplex polony sequencing ofan evolved bacterial genome. Science,2005,309:1728-1732.
    Shen Y. Y., Wang X. F., Wu F. Q., Du S. Y., Cao Z., Shang Y., Wang X. L., Peng C. C., Yu X.C., Zhu S.Y., Fan R. C., Xu Y. H., Zhang D. P.. The Mg-chelatase H subunit is anabscisic acid receptor. Nature,2006,443:823-826.
    Simon M. I., Strathmann M. P., Gautam N.. Diversity of G proteins in signal transduction.Science,1991,252:802-808.
    Smith T. F., Gaitatzes C., Saxena K., Neer E. J.. The WD repeat: a common architecture fordiverse functions. Trends Biochem Sci,1999:181-185.
    Spelt C., Quattrocchio F., Mol J., Koes R.. anthocyanin1of petunia encodes a basic-helix loophelix protein that directly activates structural anthocyanin genes. Plant Cell,2000,12:1619-1631.
    Staub J. E., Serquen F. C.. Towards an integrated linkage map of cucumber: map merging.Acta Hort,2000,510:357-336.
    Stracke R., Werber M., Weisshaar B.. The R2R3-MYB gene family in Arabidopsis thaliana.Curr Opin Plant Biol,2001,4:447-456.
    Suo J. F., Liang X. E., Pu L., Zhang Y. S., Xue Y. B.. Identification of GhMYB109encodinga R2R3MYB transcription factor that expressed specifically in fiber initials andelongating fibers of cotton (Gossypium hirsutum L.). Biochim Biophys Acta,2003,1630:25-34.
    Symonds V. V., Hatlestad G., Lloyd A. M.. Natural Allelic Variation Defines a Role forATMYC1: Trichome Cell Fate Determination. PLoS Genet,2011,7: e1002069.
    Syvnen A.C.. Accessing genetic variation: Genotyping single nucleotide polymorphisms. NatRev Genet,2001,2:930-942.
    Szymanski D.B., David M. D.. GLABROUS1overexpression and TRIPTYCHON alter the cellcycle and trichome cell fate in Arabidopsis. Plant Cell,1998,10:2047-2062.
    Szymanski D. B., Lloyd A. M., Marks M. D.. Progress in the molecular genetic analysis oftrichome initiation and morphogenesis in Arabidopsis. Trends Plant Sci,2000,5,214-219.
    Tautz D.. Hypervariability of simple sequence as a general source of polymorphic DNAmarkers. Nucleic Acids Res,1989,17:6463-6471.
    Toyama T., Teramoto H., Ishiguro S., Tanaka A., Okada K., Takeba G.. A cytokinin-repressedgene in cucumber for a bHLH protein homologue is regulated by light. Plant CellPhysiol,1999,40:1087-1092.
    Van Nocker S., Ludwig P.. The WD-repeat protein superfamily in Arabidopsis: conservationand divergence in structure and function. BMC Genomics,2003,4:50.
    Veetn N., Quattrocchio F., Mol J., Koes R.. The an11locus controlling flower pigmentation inpetunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals.Genes Dev,1997,11:1422-1434.
    Wada T., Tachibana T., Shimura Y., Okada K.. Epidermal cell differentiation in Arabidopsisdetermined by a Myb homolog, CPC. Science,1997,277:1113-1116.
    Walker A. R., Davison P. A., Bolognesi-Winfield A. C., James C.M., Srinivasan N., PayneC.T., Zhang F., Lloyd A.M.. GL3encodes a bHLH protein that regulates trichomedevelopment in Arabidopsis through interaction with GL1and TTG1. Genetics,2000,156:1349-1362.
    Wang D.G., Fan J.B., Shao C.J. Berno A., Young P., Sapolsky R., Ghandour G., Perkins N.,Winchester E., Spencer J., Kruglyak L., Stein L., Hsie L., Topaloglou T., Hubbell E.,Robinson E., Mittmann M., Morris M.S., Shen N., Kilburn D., Rioux J., Nusbaum C.,Rozen S., Hudson T.J., Lipshutz R., Chee M., Lander E.S.. Large-scale identification,mapping and genotyping of single-nucleotide polymorphisms in the human genome.Science,1998,280:1077-1082.
    Wang G., Pan J. S., Li X. Z., He H., Wu A., Cai R.. Construction of a cucumber geneticlinkage map with SRAP markers and location of the genes for lateral branch traits. SciChina C Life Sci,2005,43:213-220.
    Wang S., Kwak S.H., Zeng Q., Ellis B.E., Chen,X.Y., Schiefelbein J., Chen J.G..TRICHOMELESS1regulates trichome patterning by suppressing GLABRA1inArabidopsis. Development,2007,134:3873-3882.
    Wang S., Wang J.W., Yu N., Li C.H., Luo B., Guo J.Y., Wang L.J., Chen X.Y.. Control ofplant trichome development by a cotton fiber MYB gene. Plant Cell,2004,16:2323-2334.
    Wester K., Digiuni S., Geier F., Timmer J., Fleck C., Hülskamp M.. Functional diversity ofR3single-repeat genes in trichome development. Development,2009,136:1487-1496.
    Wilkins O., Nahal H., Foong J., Provart N. J., Campbell M. M.. Expansion and diversificationof the Populus R2R3-MYB family of transcription factors. Plant Physiol,2009,149:981-993.
    Yang C. X., Li H. X., Zhang J. H., Luo Z. D., Gong P. J., Zhang C. J., Li J. H., Wang T. T.,Zhang Y. Y., Lu Y. E., Ye Z. B.. A regulatory gene induces trichome formation andembryo lethality in tomato. Proc. Natl. Acad. Sci. USA,2011,108:11836-41.
    Yu N., Cai W. J., Wang S. C., Shan C. M., Wang L. J., Chen X. Y.. Temporal Control ofTrichome Distribution by MicroRNA156-Targeted SPL Genes in Arabidopsis thaliana.Plant Cell,2010,22:2322-2335.
    Yuan X. J., Pan J. S., Cai R., Guan Y., Liu L. Z., Zhang W. W., Li Z., He H. L., Zhang C., Si L.T., Zhu L. H.. Genetic mapping and QTL analysis of fruit and flower related traits incucumber(Cucumis sativus L.)using recombinant inbred lines. Euphytica,2008,164:473-491.
    Zhang F., Gonzalez A., Zhao M., Payne C. T., Lloyd A.. A network of redundant bHLHproteins functions in all TTG1-dependent pathways of Arabidopsis. Development,2003,130:4859-4869.
    Zhang L. C., Zhao G. Y., Jia J. Z., Liu X., Kong X. Y.. Molecular characterization of60isolated wheat MYB genes and analysis of their expression during abiotic stress. J ExpBot,2012,63:203-214.
    Zhang S. P., Miao H., Gu X. F., Yang Y. H., Xie B. Y., Wang X. W., Huang S. W., Du Y.C.,Sun R. F., Wehner T. C..Genetic Mapping of the Scab Resistance Gene (Ccu) incucumber (Cucumis sativus L.). J Am Soc Hortic Sci,2010,135:53-58.
    Zhang W. W., He H., Guan Y., Du H., Yuan L. H., Li X. Z., Yao D. Q., Pan J. S., Cai R..Identification andmapping of molecular markers linked to the tuberculate fruit gene inthe cucumber (Cucumis sativus L.).Theor Appl Genet,2010,120:645-654.
    Zhao H., Wang X., Zhu D., Cui S., Li X., Cao Y., Ma L.. A single amino acid substitution inIIIf subfamily of basic helix-loop-helix transcription factor AtMYC1leads to trichomeand root hair patterning defects by abolishing its interaction with partner proteins inArabidopsis. J Biol Chem,2012,287:14109-14121.
    Zhao J., Becker H.C., Zhang D., Zhang Y., Ecke W.. Conditional QTL mapping of oil contentin rapeseed with respect to protein content and traits related to plant development andgrain yield. Theor Appl Genet,2006,113:33-38.
    Zhao M., Morohashi K., Hatlestad G., Grotewold E., Lloyd A.. The TTG1-bHLH-MYBcomplex controls trichome cell fate and patterning through direct targeting of regulatoryloci. Development,2008,135:1991-1999.
    Zhu J., Verslues P. E., Zheng X., Lee B. H., Zhan X., Manabe Y., Sokolchik I., Zhu Y., DongC. H., Zhu J. K., Hasegawa P. M., Bressan R. A... HOS10encodes an R2R3-type MYBtranscription factor essential for cold acclimation in plants. Proc Natl Acad Sci USA,2005,102:9966-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700