用户名: 密码: 验证码:
磷化物催化剂的制备及其加氢脱硫反应性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,各国制定越来越严厉的环境法规限制轻质油品中硫的含量,这激发了石油炼制行业对高活性加氢脱硫催化剂的探索和研究。一些研究表明过渡金属磷化物在许多反应中都表现出好的催化性能,特别是在加氢脱硫反应中显示了优异的催化活性,被认为是新一代的加氢脱硫催化剂;整体式催化剂作为一种新型催化剂,它与传统的颗粒状催化剂相比具有压降低、反应物径向分布均匀,良好的传递能力等优点。正由于这些优点,整体式催化剂已经成功地应用在环境污染控制领域,但在石油脱硫方面的应用有较少的报道。
     经过我们前期的研究,发现Ni2P/SBA-15催化剂具有很好的噻吩和二苯并噻吩加氢脱硫反应活性,而对于Ni2P/SBA-15前躯体负载到堇青石上的整体式催化剂的加氢脱硫性能还没有进行系统的考察。本文的研究是将前躯体Ni2P引入到介孔分子SBA-15中,再将助剂Co、La、W、Ce引入到Ni2P/SBA-15前躯体中,采用程序升温还原的方法制备了Co-Ni2P/SBA-15、La-Ni2P/SBA-15、W-Ni2P/SBA-15、Ce-Ni2P/SBA-15等催化剂体系。同时以堇青石为载体,将NixP/SBA-15前躯体涂覆到预处理后的堇青石上,采用程序升温还原方法制备了不同NixP质量含量(NixP=6%-31%)和P/Ni比(P/Ni=1/3,1,2,3)的NixP/SBA-15/堇青石整体式催化剂;以Co-Ni2P/SBA-15和La-Ni2P/SBA-15为活性涂层,制备了Co-Ni2P/SBA-15/堇青石和La-Ni2P/SBA-15/堇青石整体式催化剂。通过XRD、N2吸脱附等温线、HRTEM、SEM、TEM. NH3-TPD和XPS等分析手段对所得催化剂进行结构表征,采用二苯并噻吩的加氢脱硫模型反应评价了催化剂的性能。
     对于不同NixP含量的NixP/SBA-15/堇青石整体式催化剂(P/Ni=1/2),所制备的样品中Ni2P和Ni12P5为活性相,NixP/SBA-15活性涂层能够大幅度提高整体式催化剂的比表面积。其中31%NixP/SBA-15/堇青石整体式催化剂有最好的加氢脱硫性能,在360℃C时DBT转化率能够达到93%。对于不同P/Ni比的NixP/SBA-15/堇青石整体式催化剂,当P/Ni=1/3时,活性相是Ni3P;P/Ni=1,2,3时,活性相是Ni2P。随着P/Ni比的增加,NixP/SBA-15/堇青石整体式催化剂的比表面积和孔体积降低。P/Ni=1的NixP/SBA-15/堇青石整体式催化剂有最好的加氢脱硫活性,在360℃C时DBT转化率能够达到99%。
     对于不同Co含量的Co-Ni2P/SBA-15催化剂,所制备的样品中都形成了Ni2P,样品中仍然保留很好的介孔结构,在360℃时,4% Co-Ni2P/SBA-15催化剂有最高的DBT加氢脱硫活性,DBT转化率为99%,Co的加入能够提高加氢脱硫反应产物BP的选择性,在360℃时,4%Co-Ni2P/SBA-15催化剂的BP选择性比Ni2P/SBA-15催化剂提高了9%。对于不同Co含量的Co-Ni2P/SBA-15/堇青石整体式催化剂,Ni2P是活性相,Co能够提高整体式催化剂的比表面积和孔体积,0.55%Co的加入能够提高催化剂表面Niδ+的相对浓度,Co的加入使得催化剂表面富磷。0.55%Co-Ni2P/SBA-15/堇青石整体式催化剂有最高的加氢脱硫活性,在360℃时DBT转化率为95%。
     对于不同La含量的La-Ni2P/SBA-15催化剂,Ni2P是活性相,La的加入能够降低Ni2P颗粒尺寸,La以La3+的形成存在于催化剂表面,Ni以Niδ+和Ni2+形式存在于催化剂表面,P以P6-和P5+形式存在于催化剂表面。在340℃时,4% La-Ni2P/SBA-15催化剂有高的加氢脱硫活性,DBT转化率为94%。在不同La含量的La-Ni2P/SBA-15/堇青石整体式催化剂体系中,随着La含量的增加,催化剂比表面积和孔体积先增加后减少。1.5%La-Ni2P/SBA-15/堇青石整体式催化有最高的活性,在360℃时,DBT转化率为94%。
     对于不同W含量的W-Ni2P/SBA-15催化剂,W添加到Ni2P/SBA-15催化剂中提高了催化剂的比表面积和孔体积,当W加入到Ni2P/SBA-15中,催化剂表面酸性发生改变,随着W含量的增加,催化剂的酸强度和总酸量增加,W的加入抑制了Ni2P的生成。在360-380℃, W-Ni2P/SBA-15催化剂的BP选择性比Ni2P/SBA-15催化剂高18%左右。
     对于不同Ce含量的Ce-Ni2P/SBA-15催化剂,当Ce=7%时,催化剂中形成了Ni2P和Ni12P5混合物相,当Ce<5%时,催化剂中形成了纯的Ni2P相,Ce添加到Ni2P/SBA-15催化剂中提高了催化剂的比表面积和孔体积,随着Ce含量的增加,催化剂的酸强度和总酸量增加。在360-380℃,Ce-Ni2P/SBA-15催化剂的BP选择性比Ni2P/SBA-15催化剂高13%左右。
Recently, many countries enact severe regulations to limit the sulfur contents in fuel. It has stimulated the investigation and development of high performance hydrodesulfurization (HDS) catalysts. Transition metal phosphides exhibit very good catalytic performance in some catalytic reactions, especially for HDS reaction. Transition metal phosphides are considered as new generation of HDS catalysts due to excellent desulfurization performance. Monolithic catalysts have obvious advantages, such as low-pressure drop over the catalyst bed, favorable heat and mass transfer properties, and uniform profiles of concentration and temperature in comparison with the conventional fixed-bed catalytic reactors. Therefore, monolithic catalysts have been extensively applied to the control of emissions. However, the applications of monolithic catalysts in petroleum and chemical industry are being explored.
     In previous research work, Ni2P/SBA-15 catalysts had showed good activity for HDS of thiophene and dibenzothiophene. The activity for HDS of DBT over Ni2P/SBA-15/cordierite monolithic catalyst is not investigated. In this paper, Ni2P was introduced into SBA-15 by impregnation method, and then promoters (Co, W, La, and Ce) were introduced into Ni2P/SBA-15 precursor. A series of Co-Ni2P/SBA-15、W-Ni2P/SBA-15、La-Ni2P/SBA-15、Ce-Ni2P/SBA-15 catalysts were prepared by TPR. Addition, NixP/SBA-15 precursors were coated onto the pretreated cordierite and NixP/SBA-15/cordierite monolithic catalysts with different NixP content (NixP=6%-31%) and P/Ni ratio (P/Ni= 1/3,1,2,3) were obtained by TPR. Co-Ni2P/SBA-15/cordierite and La-Ni2P/SBA-15/cordierite catalysts were also prepared using cordierite as support and Co-Ni2P/SBA-15 and La-Ni2P/SBA-15 precursors as active washcoat. Then, the prepared catalysts were characterized by XRD, N2 adsorption-desorption isotherms, HRTEM, SEM, TEM, NH3-TPD, and XPS. The catalytic performances of the catalysts were evaluated by HDS of dibenzothiophene (DBT).
     For NixP/SBA-15/cordierite monolithic catalysts with different NixP content and P/Ni=0.5, Ni2P and Ni12P5 were the active phases. Surface area of cordierite increased when NixP/SBA-15 was coated onto cordierite and the thickness of washcoat was about 90μm. The 31%NixP/SBA-15/cordierite monolithic catalyst had the highest HDS activity, which DBT conversion can reach 99% at 360℃. For NixP/SBA-15/cordieritemonolithic catalysts with different P/Ni ratio, the active phase is Ni3P for NixP/SBA-15/cordierite (P/Ni=1/3), whereas the active phase is Ni2P for the catalysts with P/Ni of 1,2, 3. The surface area and pore volume of NixP/SBA-15/cordierite decreased with increasing P/Ni ratio. The catalytic activity over Ni2P for HDS of DBT was higher than that of Ni12P5 and Ni3P. NixP/SBA-15/cordierite with P/Ni of 1 had the highest HDS activity, which DBT conversion can be reach 95% at 360℃.
     For Co-Ni2P/SBA-15 catalysts with different Co content, Ni2P existed in Co-Ni2P/SBA-15 catalysts. All obtained samples have mesoporous structure. The addition of Co to Ni2P/SBA-15 catalyst can increase surface area and pore volume of samples; 4%Co-Ni2P/SBA-15 catalysts had the best HDS activity, which DBT conversion can reach 99% at 360℃. The addition of Co can improve BP selectivity. Compared to N2P/SBA-15 catalyst, BP selectivity over Co-N2P/SBA-15 catalysts was increased by 9%. In case of Co-N2P/SBA-15/cordierite monolithic catalyst, the active phase was Ni2P. The surface area and pore volume increased due to the addition of Co. The additions of 0.55%Co to Ni2P/SBA-15/cordierite monolithic catalysts can promote Niδ+ relative concentration. Excess P existed on the surface of monolithic catalyst.0.55%Co-Ni2P/SBA-15/cordierite monolithic catalyst had the best HDS activity, which DBT conversion can reach 95%.
     For La-Ni2P/SBA-15 catalysts with different La content, Ni2P was active phase. The size of Ni2P particles decreased when La was introduced into Ni2P/SBA-15 catalyst. La, Ni and P existed as the form of La3+, Niδ+and Ni2+, Pδ+ and P5+ respectively on the surface of catalysts. The 4%La-Ni2P/SBA-15 catalyst had the best HDS activity, which DBT can reach 94% at 340℃. In case of La-Ni2P/SBA-15/cordierite monolithic catalysts with different La content, the value of the surface area and pore volume of samples first increased, and then decreased with increasing La content. The 1.5%La-Ni2P/SBA-15 catalyst had the best HDS activity, which DBT conversion can reach 94%.
     In case of W-Ni2P/SBA-15 catalysts with different W content, the values of the surface area and pore volume of W-Ni2P/SBA-15 catalysts increased when W was added to Ni2P/SBA-15 catalysts. The acid properties of the samples were affected when W was added to Ni2P/SBA-15 catalyst. The strength of acid and the amount of total acid increased with increasing W content. The addition of W to Ni2P/SBA-15 catalyst decreased the Niδ+ concentration in Ni2P. BP selectivity over W-Ni2P/SBA-15 catalyst was increased by 18% at 360℃-380℃.
     For Ce-Ni2P/SBA-15 catalysts with different Ce content, Only Ni2P phase was formed in Ce-Ni2P/SAB-15 catalysts with Ce≤5%. Ni2P and Ni12P5 phases existed in 7%Ce-Ni2P/SBA-15 catalyst. The surface area and pore volume increased when Ce was added to Ni2P/SBA-15 catalyst. Ce-Ni2P/SBA-15 gave a higher the strength of the acid sites and total acid amount. The addition of Ce to the Ni2P/SBA-15 catalyst decreased the amount of active sites in Ni2P/SBA-15. BP selectivity over Ce-Ni2P/SBA-15 catalyst was increased by 13%.
引文
[1]Fujikawa T, Kimura H, Kiriyama K, et al. Development of ultra-deep HDS catalyst for production of clean diesel fuels [J]. Catal.Today,2006,111:188-193
    [2]Faro J A C, Ana S C B. Cumene hydrocracking and thiophene HDS on niobia-supported Ni, Mo and Ni-Mo catalysts [J] Catal. Today,2006,118:402-409
    [3]Hatanaka S, Sadakane M. Hydrodesulfurization of Catalytic Cracked Gasoline.2. The difference between HDS active site and olefin hydrogenation active site [J]. Ind. Eng. Chem. Res.1997,36: 5110-5117
    [4]Coulier G, Kishan, Veen J A R, Niemantsverdriet J W. Influence of support-interaction on the sulfidation behavior and hydrodesulfurization activity of Al2O3-supported W, CoW, and NiW model catalysts [J]. J. Phys. Chem. B,2002,106:5897-5906
    [5]Dhas N A, Ekhtiarzadeh A, Suslick K S. Sonochemical preparation of supported hydrodesulfurization catalysts [J]. J. Am. Chem. Soc.2001,123:8310-8316
    [6]Zhang X, Guo Ai, Wang F, et al. Directly producing clean and low softening point diesel using integrated hydrotreating and hydroisomerizing catalysts[J]. Energy Fuels,2010,24:3772-3777
    [7]Lew R L, Boudart M. Platinum-like behavior of tungsten carbide in surface catalysis [J]. Science, 1973,181:547-549
    [8]Liu Y, Liu C, Que G. Hydrodesulfurization of dibenzothiophene over cobalt-molybdenum nitride catalysts[J]. Energy Fuels,2002,16:531-535
    [9]Schwartz V, Oyama S T. supported bimetallic Nb-Mo carbide:synthesis, characterization, and reactivity [J]. J. Phys. Chem. B,2000,104:8800-8806
    [10]Gong S W, Chen H K, Li W, et al. catalytic behaviors of β-Mo2N0.78 as a hydrodesulfurization catalyst [J]. Energy Fuels,2006,20:1372-1376
    [11]Wang H, Wang X, Zhang M, et al. synthesis of bulk and supported molybdenum carbide by a single-step thermal carburization method [J]. Chem. Mater.2007,19:1801-1807
    [12]Korlann S, Diaz B, Bussell M E. Synthesis of bulk and alumina-supported bimetallic carbide and nitride catalysts [J]. Chem. Mater.,2002,14:4049-4058
    [13]Furimsky E. Metal carbides and nitrides as potential catalysts for hydroprocessing [J]. Appl.Catal. A:Gen.2003,240:1-28
    [14]Costa P D, Potvin C, Manoli J M, et al. Deep hydrodesulphurization and hydrogenation of diesel fuels on alumina-supported and bulk molybdenum carbide catalysts [J]. Energy Fuel 2004, 83:1717-1726
    [15]Rodriguez J A, Kim J Y, Hanson J C. Physical and Chemical Properties of MoP, Ni2P, and MoNiP hydrodesulfurization catalysts:Time-Resolved X-ray diffraction, density functional, and hydrodesulfurization activity studies [J]. J. Phys. Chem. B,2003,107:6276-6285
    [16]Oyama S T, Clark P, Teixeira da Silva V L S, et al. XAFS characterization of highly active alumina-supported molybdenum phosphide catalysts (MoP/Al2O3) for Hydrotreating [J]. J. Phys. Chem. B,2001,105:4961-4966
    [17]Li C, Sun G, Li C, et al. Preparation, characterization, hydrodesulfurization and hydrodenitrogenation activities of alumina-supported tungsten phosphide catalysts [J].Chin. J. Chem. Eng.,2006,14:184-193
    [18]Cecilia J A, Infantes-Molina A, E. Rodnguez-Castellon et al. Dibenzothiophene hydrodesulfurization over cobalt phosphide catalysts prepared through a new synthetic approach: Effect of the support dibenzothiophene hydrodesulfurization over cobalt phosphide catalysts prepared through a new synthetic approach:Effect of the support [J]. Appl. Catal. B:Envir.,2009, 92:100-113
    [19]Cho K S, Lee Y K. XAFS studies on highly dispersed Ni2P/Si02 catalysts for hydrodesulfurization of 4,6-dimethyldibenzothiophene [J]. Nuclear Instruments and Methods in Physics Research A, 2010,621:690-694
    [20]Oyama S T, Wang X, Lee Y K, et al. Active phase of Ni2P/SiO2 in hydroprocessing reactions [J]. J. Catal.,2004,221:263-273
    [21]Xu C, Hamilton S, Mallik A, et al. Department upgrading of athabasca vacuum tower bottoms (VTB) in supercritical hydrocarbon solvents with activated carbon-supported metallic catalysts [J]. Energy Fuels,2007,21:3490-3498
    [22]Kouzu M, Kuriki Y, Hamdy F, et al. Catalytic potential of carbon-supported NiMo-sulfide for ultra-deep hydrodesulfurization of diesel fuel [J]. Appl. Catal. A:Gen.,2004,265:61-67
    [23]Venezia A M, La Parola V, Deganello G,et al. Influence of the preparation method on the thiophene HDS activity of silica supported CoMo catalysts [J]. Appl. Catal. A:Gen.,2002,229:261-271
    [24]Okamoto Y, Hioka K, Arakawa K, et al. Effect of sulfidation atmosphere on the hydrodesulfurization activity of SiO2-supported Co-Mo sulfide catalysts:Local structure and intrinsic activity of the active sites [J]. J Catal.,2009,268:49-59
    [25]Schacht P, Hernandez G, Cedeno L, et al. Hydrodesulfurization activity of CoMo catalysts supported on stabilized TiO2 [J].Energy Fuels,2003,17:81-86
    [26]Maity S K, Rana M S., Srinivas B N, et al. Characterization and evaluation of ZrO2 supported hydrotreating catalysts [J]. J. Mol.Catal. A:Chem.,2000,153:121-127
    [27]Hensen E J M, Poduval D G, Veen J A R. Promotion of thiophene hydrodesulfurization by ammonia over amorphous-silica-alumina-supported CoMo and NiMo sulfides [J]. Ind. Eng. Chem. Res., 2007,46,4202-4211
    [28]Kumaran G M, Garg S, Soni K, et al. Catalytic functionalities of H-β-zeolite-supported molybdenum hydrotreating catalysts [J]. Energy Fuels,2006,20:1784-1790
    [29]刘迪,张景成,刘晨光.非负载型加氢精制催化剂的制备及工业应用研究进展[J].化工进展,2010,29:643-664
    [30]Zhang L, Mao X, Hen Y et al. Monolithic catalysts with low noble metal content for exhaust Pd cation of small gasoline engines [J]. J. rare earths,2007,25:512-514
    [31]Avila P, Montes M, Miro E E. Monolithic reactors for environmental applications a review on preparation technologies [J].Chem. Eng. J.,2005,109:11-36
    [32]Mokhnachuk O V, Soloviev S O, Yu A. et al. Effect of rare-earth element oxides (La2O3, Ce2O3) on the structural and physico-chemical characteristics of Pd/Al2O3 monolithi catalysts of nitrogen oxide reduction by methane[J]. Catal. Today,2007,119:145-151
    [33]单学蕾,关乃佳,曾翔等.不同硅铝比的Cu-ZSM-5/堇青石整体型催化剂的NO分解反应性能[J].催化学报,2001,22:242-244
    [34]刘亚俊,赵生权,刘崴等.泡沫金属制备方法及其研究概况[J].现代制造工程,2004,9:83-86
    [35]翟彦青.催化燃烧用金属载体整体型催化剂的制备及表征[D].天津:天津大学化工学院,2004
    [36]Wang C, Wang T, Ma L et al. Steam reforming of biomass raw fuel gas over NiO-MgO solid solution cordierite monolith catalyst[J]. Energy Conversion and Management,2010,51:446-451
    [37]Valencia D, Klimova T. Effect of the support composition on the characteristics of NiMo and CoMo/(Zr)SBA-15 catalysts and their performance in deep hydrodesulfurization [J],Catal. Today, 2011,166:91-101
    [38]李宝忠,张中清,王风秀.汽油与柴油吸附脱硫技术研究与开发[J].石油化工高等学校学报.2002,15:31-35
    [39]曹湘洪.我国石油化工产业面临的资源瓶颈环境压力及对策[J].中国科学人,2006,2:22-28
    [40]王云芳,尹风利,史德清.车用燃料油吸附法深度脱硫技术进展[J].石油化工,2006,35:94-99
    [41]沈俭一,石国军.燃料油深度加氢脱硫催化剂的研究进展[J].石油化工,2008,37:1111-1120
    [42]葛晖,李学宽,秦张峰,等.油品深度加氢脱硫催化研究进展[J].石油化工,2008,27:1490-1497
    [43]Thomson J S, Green, J B, McWilliams T B. Determination of sulfides and thiols in petroleumdistillates using solid-phase extraction and derivatization with Pentafluorobenzoyl chloride [J]. Energy Fuels,1997,11:909-914,
    [44]王天普.催化裂化汽油脱硫技术进展[J].齐鲁石油工,2001,29:48-51
    [45]鲁勋.Ce02改性贵金属催化剂在加氢脱硫反应的性能研究[D].南昌:南昌大学,2008
    [46]Bianchini C, Meli A, Vizza F. Role of single-site catalysts in the hydrogenation of thiophenes:from models systems to effective HDS catalysts [J]. Journal of Organometallic Chemistry,2004, 689:4277-4290
    [47]Benson J W, Schrader G L, Angelici R J. Studies of the mechanism of thiophene hydrodesulfurization:2H NMR and mass spectral analysis of 1,3-butadiene produced in the deuterodesulfurization (DDS) of thiophene over Pb-Mo2S catalyst J. Mol. Catal. A:Chem.,1995, 96:283-299
    [48]李大东.加氢处理工艺与工程[M].北京:中国石化出版社,2004,917-929
    [49]Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel andjet fuel[J]. Catal. Today,2003,86:211-263
    [50]冯冬梅,刘雪暖.催化蒸馏技术的研究现状及其应用[J].化学工业与工程,2004,21:388-391
    [51]丛义春,高金森,徐春明.国内外加氢技术的最新进展[J]当代石油化工,2003,11:29-32
    [52]王倩聂红龙湘云.H2S对NiW/Al2O3和CoMo/Al2O3上二苯并噻吩和4,6-二甲基二苯并噻吩加氢脱硫反应的影响[J].催化学报,2005:399-402
    [53]Shafia R, Hutchings G J. Hydrodesulfurization of hindered dibenzothiophenes:an overview [J]. Catal. Today,2000,59:423-442
    [54]Gates B C, Topsoe H. Reactivities in deep catalytichydrodesulfurization:challenges, opportunities, and the importance of 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene [J]. Polyhedron,1997,16:3213-3217
    [55]胡海荣,姚丽.低成本生产清洁燃料的STARS催化剂技术[J].南炼科技,2001,8:64-70
    [56]赵野,申宝剑,高金森.清洁柴油的生产技术进展[J].工业催化,2005,13:1-7
    [57]艾中秋.国外生产清洁柴油的加氢工艺及催化剂[J].石化技术与应用,2006,24:60-62
    [58]袁大辉Albemarle公司新型加氢处理催化剂[J].石化技术,2008,15:51-52
    [59]李正光.油品非加氢脱硫技术新进展[J].当代化工,2010,39:37-40
    [60]唐晓东,王豪,周建军,等.柴油非加氢脱硫技术的研究进展[J].西南石油学院学报,2003,25:58-61
    [61]张艳姝,郑经堂.轻质油品非加氢脱硫技术研究进展[J].炭素,2006,127:24-28
    [62]张景成,柳云骐,安高军,等.吸附脱硫技术生产清洁油品[J].化学进展,2008,20:1834-1845
    [63]于维钊.炭基材料的汽油吸附脱硫研究[D].北京:中国石油大学,2008
    [64]冯丽娟,高晶晶,王振永,等.柴油吸附脱硫技术研究进展[J].精细石油化工进展,2006,7:46-50
    [65]陈娜,张文林,米冠杰,等.FCC汽油萃取脱硫过程萃取剂筛选[J].化工进展,2006,25:1345-1348
    [66]张文林.FCC汽油萃取精馏深度脱硫过程研究[D].天津:河北工业大学,2009
    [67]刘磊,侯凯湖.催化裂化汽油烷基化脱噻吩硫研究进展[J].天津化工,2005,19:4-6
    [68]柯明,周爱国,赵振盛,等.FCC汽油烷基化脱硫技术进展,化工进展,2006,25:357-361
    [69]邱建辉,邸进申,李英杰.生物脱硫的研究进展[J].微生物学报,2001,41:650-653
    [70]黄彦君,浦跃武,叶代启.生物脱硫的研究新进展[J].微生物学通报,2003,30:89-92
    [71]陈兰菊,郭绍辉,赵地顺.车用燃料油氧化脱硫技术进展[J].燃料化学学报,2005,33:247-252
    [72]刘淑芝.高效脱硫体系及柴油探度氧化脱硫技术研究[D].黑龙江:大庆石油学院,2007
    [73]柴永明,安高军,柳云骐,等.过渡金属硫化物催化剂催化加氢作用机理[J].化学进展,2007,19:234-242
    [74]刘武灿,何兴娇,卢春山.金属氮化物/碳化物催化剂加氢性能研究进展[J].工业催化,2005,13:1-5
    [75]Chen G. Carbide and nitride over layers on early transition metal surfaces:preparation, characterization, and reactivities [J]. Chem. Rev. Sci. Engr.,1996,96:1477-1498
    [76]吴平易.介孔分子筛组装碳化钼和磷化镍催化剂的制备及其催化性能研究[D].北京:北京化工大学,2009
    [77]吴志强,杜德辉.金属碳化物/氮化物加氢催化剂研究进展[J].广州化工,2009,37:52-57
    [78]Aegerter P A, Quigley W W C, Simpson G J, et al. Thiophene hydrodesulfurization over alumina-supported molybdenum carbide and nitride catalysts:adsorption sites, catalytic activities, and nature of the active surface [J]. J. Catal.,1996,164:109-121
    [79]Sajkowski D J, Oyama S T. Catalytic hydrotreating by molybdenum carbide and nitride: unsupported Mo2N and Mo2C/Al2O3 [J]. Appl. Catal. A,1996,134:339-349
    [80]Oyama S T. Preparation and catalytic properties of transition metal carbides and nitrides [J].Catal.Today,1992,15:179-200
    [81]陈世中,来涛.正庚烷异构化催化剂研究进展[J].化工时刊,2009,23:61-68
    [82]Kojima R, Aika K. Molybdenum nitride and carbide catalysts for ammonia synthesis[J]. Appl. Catal. A:Gen.,2001,219:141-147
    [83]Rodriguez A, Kim J Y, Hanson J C, et al. Physical and chemical properties of MoP, Ni2P, and MoNiPhydrodesulfurization catalysts:Time-resolved X-ray diffraction, densityfunctional, and hydrodesulfurization activity studies [J]. J. Phy. Chem. B,2003,107:6276-6285.
    [84]Oyama S T. Novel catalysts for advanced hydroprocessing:Transition metal phosphides [J]. J Catal, 2003,216:343-352.
    [85]Li W, Dhandapani B, Oyama S T. Molybdenum phosphide:A novel catalyst for hydrogenitrogenation [J]. Chem Lett,1998,27:207-208
    [86]Wang X, Clark P, Oyama S T. Synthesis, characterization, and hydrotreating activity of several iron group transition metal phosphides [J]. J. Catal.,2002,208:321-331
    [87]Clark P, Li W, Oyama S T. Synthesis and activity of a new catalyst for hydroprocessing:tungsten phosphide [J]. J. Catal.,2001,200:140-147
    [88]Clark P Oyama S T. Alumina-supported molybdenum phosphide hydroprocessing catalysts [J]. J. Catal.,2003,218:78-87
    [89]Oyama S T, Clark P, Wang X, et al. Structural characterization of tungsten Phosphide (WP) hydrotreating catalysts by X-ray absorption spectroscopy and nuclear magnetic resonance spectroscopy [J]. J. Phys. Chem. B,2002,106:1913-1920
    [90]Li X, Lu M, Wang A, et al. Promoting effect of TiO2 on the hydrodenitrogenation performance of nickel phosphide [J]. J. Phys. Chem. C 2008,112,16584-16592
    [91]Yang S, Liang C, Prins R. A novel approach to synthesizing highly active Ni2P/SiO2 hydrotreating catalysts [J]. J. Catal.,2006,237,1:118-130
    [92]Song L, Li W, Wang G, et al. A new route to prepare supported nickel phosphide/silica-alumina hydrotreating catalysts from amorphous alloys [J]. Catal. Today,2007,125:137-142
    [93]Burns S, Hargreaves J S J, Hunter S M. On the use of methane as a reductant in the synthesis of transition metal phosphides [J]. Catal. Commun.,2007,8:931-935
    [94]Guan Q, Li W, Zhang M, et al. Alternative synthesis of bulk and supported nickel phosphide from the thermal decomposition of hypophosphites [J]. J. Catal.,2009,263,1:1-3
    [95]Guan J, Wang Y, Qin M, et al.Synthesis of transition-metal phosphides from oxidic precursors by reduction in hydrogen plasma [J]. Journal of Solid State Chemistry,2009,182:1550-1555
    [96]Cecilia J A, Infantes-Molina A, Rodriguez-Castellon E, et al. A novel method for preparing an active nickel phosphide catalyst for HDS of dibenzothiophene [J]. J. Catal.,2009,263:4-15
    [97]Cecilia J A, Infantes-Molina A, Rodriguez-Castellon E, et al. Dibenzothiophene hydrodesulfurization over cobalt phosphide catalysts prepared through a new synthetic approach: Effect of the support [J]. Appl. Catal. B:Environ.,2009,92:100-113
    [98]Yang S, Liang C, Prins R, Preparation and hydrotreating activity of unsupported nickel phosphide with high surface area [J]. J. Catal.,2006,241:465-469
    [99]Cheng R, ShuY, Li L, et al. Synthesis and characterization of high surface area molybdenum phosphide [J]. Appl.Catal. A:Gen.,2007,316:160-168
    [100]Ibeh B, Zhang S, Hill J M. Effect of citric acid on the synthesis of tungsten phosphide hydrotreating catalysts [J]. Appl. Catal. A:Gen.,2009,368:127-131
    [101]Qian X, Xie Y, Qian Y, et al. Organo-thermal preparation of nanocrystalline cobalt phosphides [J]. Mater. Sci. Eng. B,1997,49,135-137.
    [102]Qian X, Zhang X, Wang C, et al. A new way to prepare nanocrystalline dinickel phosphide [J]. Materials Research Bulletin,1998,33:669-672.
    [103]Su H, Xie Y, Li B, et al. A simple, convenient, mild solvothermal route to nanocrystalline Cu3P and Ni2P [J]. Solid State Ionics,1999,122:157-160.
    [104]Xie Y, Su H, Qian X, et al. A mild one-step solvothermal route to metal phosphides (metal= Co, Ni, Cu), Journal of Solid State Chemical Materials,2000,149:88-91.
    [105]Lu B, Bai Y, Feng X, et al. Solvo-thermal synthesis of crystalline dinickel phosphide [J]. Journal of Crystal Growth,2004,260:115-117
    [106]Perera S C, Fodor P S, Tsoi G, et al. Application of de-silylation strategies to the preparation of transition metal pnictide nanocrystals:The case of FeP[J]. Chem. Mater.,2003,15:4034-4038.
    [107]Perera S C, Tsoi G, Wenger L E et al. Synthesis of MnP nanocrystals by treatment of metal carbonyl complexes with phosphines:A new, versatile route to nanoscale transition metal phosphides [J]. Journal of the American Chemical Society,2003,125:13960-13961.
    [108]Lukehart M, Milne S B, Stock S R. Formation of crystalline nanoclusters of Fe2P, RuP, Co2P, Rh2P, Ni2P, Pd5P2, or PtP2 in a silica xerogel matrix from single-source molecular precursors [J]. Chem. Mater.,1998,10:903-908.
    [109]Nozaki F, Tokumi M. Hydrogenation activity of metal phosphides and promoting effect of oxygen [J]. J. Catal.1983,79:207-210.
    [110]Yang P, Jiang Z, Ying P, et al. Selective hydrogenation of acetonitrile over molybdenum phosphide catalysts [J]. Chin J Catal,2007,28(8):670-672.
    [111]舒玉瑛,郑明远,成瑞华等.类贵金属催化剂在肼分解反应中的应用.第十三届全国催化学术会议论文集,2006:387
    [112]Ding L, ShuY, Wang A, et al. Preparation and catalytic performances of ternary phosphides NiCoP for hydrazine decomposition [J].Appl. Catal. A:Gen.,2001,385:232-237
    [113]Robinson W R A M, Van Gestel J N M, Koranyi T I, et al. Phosphorus promotion of Ni(Co)-containing Mo-free catalysts in quinoline hydrodenitrogenation [J]. J. Catal.,1996,161: 539-550
    [114]Cho K, Seo H, Lee Y K. New synthesis of highly active Ni2P/Al2O3 catalyst by liquid phase phosphidation for deep hydrodesulfurization [J]. Catal. Commun.,2011,12:470-474
    [115]Kunisada N, Choia K H, Kora Y, et al. Contrast activities of four alumina and alumina-silica-supported nickel-molybdenum sulfide catalysts for deep desulfurization of gas oils[J]. Appl. Catal. A:Gen.,2005,279:235-239
    [116]Torres-Mancera P, Ramirez J, Cuevas R,et al. Hydrodesulfurization of 4,6-DMDBT on NiMo and CoMo catalysts supported on B2O3-Al2O3 [J]. Catal. Today,2005, (107-108):551-558.
    [117]Y Saih, K Segawa. Catalytic activity of CoMo catalysts supported on boron-modified alumina for the hydrodesulphurization of dibenzothiophene and 4,6-dimethyldibenzothiophene [J]. Catal. Commun.,2011,12:470-474
    [118]宋立民,李伟,张明慧,等.Ni2P/SiO2-Al2O3催化剂的制备、表征及其对4,6-二甲基二苯并噻吩加氢脱硫反应的催化性能[J].催化学报,2007,28(2):143-147
    [119]李颖,周亚松,刘全昌.TiO2-SiO2载体的酸性对催化剂加氢脱硫性能的影响[J].石油学报(石油加工),2005,21:12-17
    [120]李冬燕,余夕志,陈长林,等.Ni2P/Ti02上噻吩加氢脱硫性能研究[J].高校化学工程学报,2006,20(5):825-830
    [121]闫华甫.Ti02作为钴钼加氢转化催化剂载体的性能研究[J].无机盐工业,1997,6:9-10
    [122]胡瑞生,付贤智,杨希尧.加氢脱硫催化剂的研究V. TiO2对Co-Mo系HDS催化剂吸附性能的影响[J].分子催化,1991,5(3):263-267
    [123]张铁珍,张文成,刘文勇,等.复合氧化物载体用于加氢脱硫催化剂的研究进展[J].精细石油化工进展,2006,7(6):13-16
    [124]Flego C, Arrigoni V, FerrariM et al. Mixed oxides as a support for new CoMo catalysts [J] Catal. Today,2001,65:265-270
    [125]Lecrenay E, Sakanishi A, Mochida I, et al. Hydrodesulfurization activity of CoMo and NiMo catalysts supported on some acidic binary oxides [J]. Appl. Catal. A [J],1998,175:237-243
    [126]Lee Y K, Shu Y Y, Oyama S T. Active phase of a nickel phosphide (Ni2P) catalyst supported on KUSY zeolite for the hydrodesulfurization of 4,6-DMDBT [J]. Appl. Catal. A,2007,322: 191-204
    [127]彭明生,李迪恩.沸石为载体的新型Ni-Mo环境催化剂[J].安全与环境学报,2001,1:42-43
    [128]Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Sci.,1998,279:548-552
    [129]Zhao D, Huo Q, Feng J, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. J. Am. Chem. Soc.,1998,120(24):6024-6036
    [130]黄晓凡,季生福,吴平易,等.Ni2P/SBA-15催化剂的结构及加氢脱硫性能[J].物理化学学报, 2008,24:1773-1777
    [131]Wang A, Wang Y, Kabe T, et al. Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported catalysts:Ⅰ. sulfided Co-Mo catalysts [J]. J. Catal.,2001,199,1:19-29
    [132]Soni K, Rana B S, Sinha A K, et al.3-D ordered mesoporous KIT-6 support for effective hydrodesulfurization catalysts [J]. Appl. Catal. B:Environ.,2009,90:55-63
    [133]Eijsbouts S, Van Gestel J N M, van veen J A R, et al. The effect of phosphate on the hydrodenitrogenation activity and selectivity of alumina-supported sulfided Mo, Ni, and Ni-Mo catalysts [J]. J. Catal.,1991,131:412-432
    [134]Bouwens S M A M, Van der Kraan A M, de beer V H J, et al. The influence of phosphorus on the structure and hydrodesulfurization activity of sulfided Co and Co-Mo catalysts supported on carbon and alumina [J]. J. catal.1991,128:559-568
    [135]Cruz R J, Avalos B M, Lopez C R, et al. Influence of phosphorus on the structure and the hydrodesulfurization and hydrodenitrogenation acitivity of W/Al2O3 catalysts[J]. Appl. Catal., 1994,120:147-162
    [136]Xiao T C, York A P E, Al-Megren H, et al. Preparation and characterisation of bimetallic cobalt and molybdenum carbides [J]. J. Catal.,2001,202:100-109
    [137]Yu C C, Ramanathan S, Dhandapani B, et al. Bimetallic Nb-Mo carbide hydroprocessing catalysts: synthesis, characterization, and activity studies [J]. J. Phys. Chem. B,1997,101:512-518
    [138]Dhandapani B, Clair T S, Oyama S T. Simultaneous hydrodesulphurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide [J]. Appl. Catal. A,1998,168:219-228
    [139]Weber T, Prins R, Stinner C. Formation, structure, and HDN activity of unsupported molybdenum phosphide [J]. J. Catal.,2000,191:438-444
    [140]王广建,柳荣展,常俊石.新型催化剂碳化钼和碳化钨的现状及展望[J].青岛大学学报2001,16:51-53
    [141]魏昭彬,张耀军.催化新材料氮化钼和碳化钼的新进展[J].化学通报,1996,2:17-19
    [142]孙桂大,李翠清,周志军,等.助剂对WP/γ-Al2O3催化剂性能的影响石油学报(石油加工)2006,24:46-51
    [143]Teixeira S V, Sousa L A, Amorim R M, et al. Lowering the synthesis temperature of Ni2P/SiO2 by palladium addition [J]. J Catal.,2011, online
    [144]赵鹏飞,季生福,魏妮,等.Al-Ni2P/SBA-15催化剂的制备、表征及其加氢脱硫性能[J].无机化学学报,2010,26:2273-2279
    [145]Wang R, Smith K J. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over high surface area metal phosphides [J].Appl. Catal. A:Gen.,2009,361:18-25
    [146]Cybulski A, Moulijn J A. Structure catalysts and reactors, New York:MarcelDekker,1998
    [147]Groppi G, Enrico T. Simulation of structure catalytic reactor with enhanced thermal conductivity for selective oxidation reaction [J].Catal. Today,2001,69:63-73
    [148]Grezee E, Barendregt A, Kapteijn F, et al. Carbon coated monolithic catalysts in selective oxidation of cyclohexanone [J].Catal.Today,2001,69:283-290
    [149]Holler V, Yuranow I, Kiwi-Minsker L, et al. Structured multiphase reactors based on fibrous catalysts:nitrite hydrogenation as a case study [J]. Catal. Today,2001,69:175-181
    [150]闵恩泽.21世纪石油化工催化材料的发展与对策[J].石油与天然气化工,2000,29:215-220
    [151]Yuranov I, Kiwi-Minsker L, Renken A. Structured combustion catalysts based on sintered metal fibres[J].Appl.Catal.,2003,43:217-227
    [152]Victor J M, Campos D, Rosa M, et al. Structured catalysts for partial oxidations [J]. Catal. Today, 2001,169:121-129
    [153]Roy S, Heibel A K, Liu W, et al. Design of monolithic catalysts for multiphase reactions [J].Chem.Eng.Sci.,2004,59:957-966
    [154]Groppi G, Ibashi W, Tronconi E, et al. Structured reators for kinetic measurements in catalytic combustion [J]. Chem. Eng. J.,2001,82:57-81
    [155]Kapteijn F, Nijhuis T A. Heiszwolf J J, et al. new non-traditional multiphase catalytic reactors based on monolithic structures [J].Catal. Today,2001,66:133-144
    [156]Cybulski A, Moulijn J A. Monoliths in heterogeneous catalysis [J]. Catal. Rev.-Sci. Eng.,1994, 36:179-270
    [157]Kapteijn F, Heiszwolf J J, Nijhuis T A, et al. monoliths in multiphase catalytic processes-aspects and prospects [J]. Cattech,1999,3:24-41
    [158]Groppi G, Tronconi E. Design of novel monolith catalyst supports for gas/solid reactions with heat exchange[J]. Chemical Engineering Science,2000,55:2161-2165
    [159]Dautzenberg F M, Mukherjee M. Process intensification using multifunctional reactors [J]. Chemical Engineering Science,2001,56:251-267
    [160]曹荣,陈燕馨,李峥嵘,等.甲烷部分氧化制甲醛催化剂MoO3/SiO2及MoO3·MxOy/SiO2的程序升温还原研究[J].分子催化,1996,10(5):368-374
    [161]Nijhuis T A, Kreutzer M T, Romijn A CJ, et al. Monolithic catalysts as efficient three-phase reactors [J]. Chem. Eng. Sci.,2001,56:823-829
    [162]Victor J M, Quinta F. Structured catalysts for partial oxidations [J]. Catal.Today,2001,69: 121-129
    [163]Hilmen A H, Bergene E, Lindvag O A, et al. Fischer-Tropsch synthesis on monolithic catalysts of different materials[J]. Catal. Today,2001,69:227-232
    [164]Cimino S, Lisi L, Pirone R, et al. Methane combustion on perovskites-based structured catalysts[J]. Catalysis Today,2000,59:19-31
    [165]Ferrandon M, Berg M, Bjornbom E. Thermal stability of metal-supported catalysts for reduction of cold-start emissions in a wood-fired domestic boiler[J]. Catal. Today,1999,53:647-659
    [166]Berglin C T, Hermann W. Method in the production of hydrogen peroxide [P]. US Patent,4552748, 1985
    [167]Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel [J]. Catal. Today,2003,86:211-263
    [168]Fujikawa T, Kimura H, Kiriyama K. Development of ultra-deep HDS catalyst for production of clean diesel fuels[J]. Catal. Today,2006,111:188-193
    [169]Babich I V, Moulijn J A, Science and technology of novel processes for deep desulfurization of oil refinery streams:a review [J]. Fuel,2003,82:607-631
    [170]Oyama S T, Gott T, ZhaoH, et al. Transition metal phosphide hydroprocessing catalysts:A review [J]. Catal. Today,2009,14:94-107
    [171]Zuzaniuk V, Prins R. Synthesis and characterization of silica-supported transition-metal phosphides as HDN catalysts [J]. J. Catal.,2003,219,1:85-96
    [172]Song S, Liang C H, Prins R. A novel approach to synthesizing highly active Ni2P/SiO2 hydrotreating catalysts [J].J Catal.,2006,237:118-120
    [173]Trong D, Desplantier G D, Danumah C, et al. Perspectives in catalytic applications of mesostructured materials [J]. Appl. Catal. A:Gen.,2003,253:545-602.
    [174]徐俊明,蒋剑春,王专.金属及其化合物固载的介孔分子筛研究进展[J].现代化工,2007, 27:43-47
    [175]Koranyi T I, Vit Z, Nagy J B. Support and pretreatment effects on the hydrotreating activity of SBA-15 and CMK-5 supported nickel phosphide catalysts [J]. Catal. Today,2008,130:80-85
    [176]Oyama S T, Lee Y K. The active site of nickel phosphide catalysts for the hydrodesulfurization of 4,6-DMDBT [J]. J. Catal.,2008,258:393-400
    [177]Shi G, Shen J. Mesoporous carbon supported nickel phosphide catalysts prepared by solid phase reaction [J]. Catal. Commun.,2009,10:1693-1696
    [178]Avila P, Montes M, Miro E E. Monolithic reactors for environmental applications:A review on preparation technologies [J]. J. Chem. Eng.,2005,109:11-36
    [179]Zamaro J M, Ulla M A, Miro E E. Zeolite washcoating onto cordierite honeycomb reactors for environmental applications [J]. Chem. Eng. J.,2005,106:25-33.
    [180]Clayton R D, Harold M P, Balakotaiah V. NOx storage and reduction with H2 on Pt/BaO/Al2O3 monolith:Spatio-temporal resolution of product distribution[J]. Appl. Catal. B:Environ.,2008, 84:616-630
    [181]Barbero B P, Costa-Almeida L, Sanz O, Washcoating of metallic monoliths with a MnCu catalyst for catalytic combustion of volatile organic compounds [J]. Chem. Eng. J.,2008,139:430-435
    [182]Sanz O, Almeida L C, Zamaro J M. Washcoating of Pt-ZSM5 onto aluminium foams [J]. Appl. Catal.B,2008,78:166-175
    [183]Edvinsson R, Irandoust S. Hydrodesulfurization of dibenzothiophene in a monolithic catalyst reactor [J]. Ind. Eng. Chem. Res.,1993,32:391-395
    [184]李凯,余夕志,任晓乾,等.NiW/Al2O3上喹啉对二苯并噻吩加氢脱硫的抑制作用及反应动力学[J].石油学报(石油加工),2006,22:44-50
    [185]Koranyi T I, Vit Z, Poduval D G et al. SBA-15-supported nickel phosphide hydrotreating catalysts [J].J. Catal,2008,253:119-131
    [186]Sawhill S J, Phillips D C, Bussell M E. Thiophene hydrodesulfurization over supported nickel phosphide catalysts[J].J. Catal.,2003,215:208-219
    [187]徐永强,赵瑞玉,商红岩,等.二苯并噻吩和4-甲基二苯并噻吩在Mo和CoMo/y-Al2O3催化剂上加氢脱硫的反应机理[J].石油学报(石油加工),2003,19:14-21
    [188]靳广洲,樊秀菊,孙桂大,等.钴掺杂对碳化钼催化噻吩加氢脱硫性能的影响[J].高等学校化学学报,2007,28:1169-1174
    [189]Abu I I, Smith K J.The effect of cobalt addition to bulk MoP and Ni2P catalysts for the hydrodesulfurization of 4,6-dimethyldibenzothiophene [J]. J.Catal.,2006,241:356-366
    [190]Ding L, Shu Y, Wang A, et al. Preparation and catalytic performances of ternary phosphides NiCoP for hydrazine decomposition[J]. Appl. Catal.A:Gen.,2010,385:232-237
    [191]郭亚男,曾鹏晖,季生福,等.Mo助剂含量对Mo-Ni2P/SBA-15/堇青石整体式催化剂加氢脱硫性能的影响[J].催化学报,2010,30:329-334
    [192]Burns A W, Gaudette A F, Bussell M E. Hydrodesulfurization properties of cobalt-nickel phosphide catalysts:Ni-rich materials are highly active[J]. J. Catal.,2008,260:262-269
    [193]Gutierrez O Y, Fuentes G A, Salcedo C, et al. SBA-15 supports modified by Ti and Zr grafting for NiMo hydrodesulfurization catalysts [J]. Catal. Today,2006,116,485-497
    [194]孙桂大,李翠清,周志军,等.助剂对WP/γ-Al2O3催化剂性能的影响[J]石油学报(石油加工),2008,24:46-51
    [195]Sun F, Wu W, Wu Z, et al. Dibenzothiophene hydrodesulfurization activity and surface sites of silica-supported MoP,Ni2P, and Ni-Mo-P catalysts [J]. J.Catal.,2004,228:298-310
    [196]Li X, Zhang Y, Wang A, et al. Influence of TiO2 and CeO2 on the hydrogenation activity of bulk Ni2P [J].Catal. Commun.,2010,11:1129-1132
    [197]Sawhill S J, K A Layman, Van Wyk D R, et al. Thiophene hydrodesulfurization over nickel phosphide catalysts:effect of the precursor composition and support[J]. J. Catal.,2005,231: 300-313
    [198]Huirache-Acuna R, Aibiter M A, Omelas C, et al. Ni(Co)-Mo-W sulphide unsupported HDS catalysts by ex situ decomposition of alkylthiomolybdotungstates[J]. Appl. Catal. A:Gen.,2006, 308:134-142
    [199]胡林华,季生福,刘倩倩,等.含钨SBA-15介孔分子筛催化剂的表面酸性和羟基分布[J].催化学报,2007,28:980-986
    [200]Duan X P, Teng Y, Wang A J, et al. Role of sulfur in hydrotreating catalysis over nickel phosphide[J]. J. Catal.,2009,261:232-240
    [201]Siokou A, Leftheriotis G, Papaefthimiou S, et al. The effect of the tungsten and molybdenum oxidation states on the thermal coloration of amorphous WO3 and MoO3 films [J]. Surface Science, 482-485:294-299
    [202]Oyama S T, Lee Y K. The active site of nickel phosphide catalysts for the hydrodesulfurization of 4,6-DMDBT [J]. J.Catal.,2008,258:393-400
    [203]余夕志,任晓乾,董振国,等.工业NiW/A12O3催化剂上二苯并噻吩的加氢脱硫动力学[J].燃料化学学报,2005,33:483-486
    [204]吴春雷,李翔,王安杰.Ti02对Ni-Mo/MCM-41催化剂加氢脱硫性能的影响[J].石油学报(石油加工),2010,26:171-176
    [205]魏昭彬,赵秀阁,辛勤.双组分过渡金属氮化物催化剂催化性能[J].催化学报,2000,21:305-308
    [206]林明桂,杨成,吴贵升,等.锰和镧改性Cu/ZrO2合成甲醇催化剂的结构及催化性能[J].催化学报,25,2004:591-595
    [207]郎宝,李秀金,季生福,等,镧助剂对模拟生物沼气重整制备合成气中Ni/SBA-15催化剂结构和性能的影响[J].物理化学学报2009,25:1611-1617
    [208]胡金燕,储伟,瞿芬芬.La助剂添加方式对甲烷催化燃烧用Mn/Al2O3催化剂的影响[J].合成化学,2008,16:162-165
    [209]熊建民,丁云杰,王涛,等.La203助剂对Co/AC催化剂上费-托合成反应性能的影响[J].催化学报,2005,26:874-878
    [210]王金淑,周美玲,张久兴,等.碳化La2O3-Mo阴极材料的高温XPS研究[J].稀有金属材料与工程,2000,29:225-227
    [211]Reddya B M, Chowdhury B, Smirniotis P G. An XPS study of La2O3 and In2O3 influence on the physicochemical properties of MoO3/TiO2 catalysts[J]. Appl. Catal. A,2001,219:53-60
    [212]代小平,余长春,沈师孔.助剂Ce02对Co/Al2O3催化剂上F-T反应性能影响[J].催化学报,2001,22:104-108
    [213]士丽敏,储伟,徐慧远,等.稀土Ce对CuCo氧化物催化剂结构与性能的影响[J]。稀有金属材料与工程,2009,38:1382-1385
    [214]杨咏来,徐恒泳,李文钊.Ce02和Pd在Ni/γ-Al2O3催化剂中助剂的作用[J].物理化学学报,2002,18:321-325
    [215]Cai X, Dong X, Lin W, et al. Effect of CeO2 on the catalytic performance of Ni/Al2O3 for autothermal reforming of methane [J]. J. Nat. Gas Chem.,2008,17:98-102
    [216]Gutierrez O Y, Fuentes G A, Salcedo C, et al. SBA-15 supports modified by Ti and Zr grafting for NiMo hydrodesulfurization catalysts [J].Catal. Today,2006,116:485-497
    [217]Kalita P, Gupta N M, Kumar R. Synergistic role of acid sites in the Ce-enhanced activity of mesoporous Ce-Al-MCM-41 catalysts in alkylation reactions:FTIR and TPD-ammonia studies [J]. J. Catal.,2007,245:338-347
    [218]Yu C, Ge Q, Xu H, et al. Effects of Ce addition on the Pt-Sn/γ-Al2O3 catalyst for propane dehydrogenation to propylene [J] Appl. Catal. A:Gen.,2006,315:58-67
    [219]Padilla J M, Angel G D, Navarrete J. Improved Pd/γ-Al2O3-Ce catalysts for benzene combustion [J]. Catal. Today,2008,133-135:541-547
    [220]Holgado J P, Munuera G, Espinos, J P et al. XPS study of oxidation processes of CeOx defective layers [J]. Appl. Surf. Sci.2000,158:164-171

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700