用户名: 密码: 验证码:
基于EETP指标的夏热冬冷地区居住建筑围护结构热工性能及经济性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,建筑能耗占全国社会总能耗的27%以上。随着社会经济的不断发展以及人们对居住环境要求的日益提高,建筑能耗的比例正不断增加,预计到2020年,建筑能耗将增长到社会总能耗的35%,建筑节能成为中国节能战略的重点。按照我国节能标准设计的建筑,与发达国家相比相差很大,外墙的导热为发达国家的3~4倍,屋顶是2.5~3.5倍,外窗1.5~2.2倍,门窗透气性为3~6倍,因此围护结构保温隔热水平是建筑节能的重要环节。
     本文首先针对夏热冬冷地区特殊的气候条件,提出了居住建筑围护结构整体热工性能评价指标EETP(Evaluation on Energy and Thermal Performance)。EETP是用来衡量建筑单位体积和温差所耗能量的指标,该指标将建筑围护结构整体的热工性能看作一个系统,评价围护结构总体热工性能是否满足标准而不是对局部热工性能技能型规定。为衡量围护结构在不同季节的热工性能,EETP指标划分为空调期指标EETPC、采暖期指标EETPH和全年指标EETPY。EETP指标计算公式的参数包括围护结构几何参数、热工参数以及计算用气象参数。围护结构几何参数包括墙体、屋顶、玻璃窗的面积以及建筑体积等可体现出建筑窗墙比和体形系数的参数;热工参数包括建筑外墙、屋面及外窗的传热系数,外墙、屋面的太阳辐射吸收系数及玻璃的遮阳系数;气象用计算参数是建立在在空调期和采暖期基础上,包括室内外平均温差、屋顶和各朝向墙体等效温差以及标准窗的太阳得热因子,室内外平均温差为空调期或采暖期室外平均温度与室内设计温度的差值,等效温差、标准窗太阳得热因子以及外遮阳系数均采用空调期或采暖期内eQUEST模拟软件反算的方法得到。
     选取上海、长沙、韶关和成都四个典型城市作为夏热冬冷地区A、B、C和D四个子区的代表,建立了四个城市EETP指标与建筑负荷和能耗的线性回归方程,包括EETPC与峰值冷负荷、累计耗冷量及空调能耗的回归方程,EETPH与峰值热负荷、累计耗热量及采暖能耗的回归方程,以及EETPY指标与全年能耗的关系。为了验证EETP评价指标的准确性,将计算结果分别与eQUEST和DeST软件模拟结果进行对比分析,结果表明应用EETP法进行能耗及负荷计算是合理的,计算结果是可信的。
     为使EETP指标更有效的指导居住建筑围护结构优化设计,将其与《夏热冬冷地区居住建筑节能设计标准》(JGJ134-2001)中的规定性指标进行拟合,得到满足该地区标准时上海、长沙、韶关和成都四个城市围护结构EETP指标的极限值,当建筑EET指标值低于该地区EETP指标极限值,则认为达到国脚标准的要求。同时在国家标准的基础上,对不同节能程度时的EETPC、EETPH、EETPY指标极限值进行了计算,其结果可为居住建筑围护结构综合优化提供参考依据。
     为了得到不同因素对EETP指标及建筑年能耗的影响,本文重点分析了建筑体型系数、外墙/屋面/外窗的传热系数,外墙/屋面的太阳辐射吸收系数、玻璃的遮阳系数和窗墙比等因素,将各个因素对EETP指标及年能耗的影响进行敏感度系数分析,得到了各因素对四个典型城市空调期、采暖期及全年能耗影响的权重,该结果对围护结构节能改造具有指导意义。
     围护结构经济性分析是本文的主要研究目的,论文利用得到的EETP计算方法对建筑围护结构进行了全寿命周期围护结构经济性分析,建立了建筑节能技术经济评价模型。该模型是一个开放的模型,对所有节能方案都可以进行描述,同时还可以将不确定性因素增加到模型中,对基础建筑模型的墙体/屋顶、玻璃窗及多种节能方案进行经济性分析,利用评价结果对方案的优化作为直接指导。
     本文最后本章介绍了夏热冬冷地区居住建筑节能工作存在的问题,并从完善现有的建筑节能标准、建立基于EETP指标的能效标识体系及建立建筑能耗统计制度三个方面对我国节能政策提出了建议。
At present, it is estimated that the building sector consume 27% of total national energy, with the increasing of economic and requirement on living standards, the proportion for building energy consumption in China is increasing. It is estimated that the building sector consumption will be 35% of total in the year of 2020, building energy conservation becomes the key objective of energy conservation. Buildings constructed according to Chinese energy efficiency design standard have a large disparity with developed countries, the heat conduction coefficients of external wall, roof and windows are 3~4 times, 2.5~3.5 times and 1.5~2.2 times higher than those of developed countries, and air permeability through window and door is 3~6 times higher, so reducing the energy consumption of building envelop is the key link of building energy conservation.
     This paper puts forward evaluation of energy and thermal performance (EETP) index for the residential envelopes according to the climate of hot summer and cold winter zone. EETP index is used to judge the energy consumption per building volume and temperature difference between indoor and outdoor,and EETP index regards the whole envelope as a system by judging whether the whole thermal performance meet the standard or not instead of standing on points of each component of building envelope. In order to show the thermal performance of envelopes in different seasons, EETP index is classified into EETPC which is the cooling season index, EETPH which is the heating season index, and EETPY which is the whole year index. Geometrical parameters, thermal parameters and meteorologic parameters are included within EETP expressions. Geometrical parameters of envelope include building volume and areas of wall, roof and window, which can reflect the window to wall ration (WWR), building’s shape coefficient; thermal parameters include heat-transfer coefficients of external wall, roof and window, solar radiation absorptance of external wall and roof, shading coefficient of external window; the meteorologic parameters which is gained based on cooling season and heating season include the mean temperature difference between outdoor and indoor, standard solar factor and the equivalent temperature difference of opaque envelope; the meteorologic parameters are on the basis of cooling and heating season, and have been calculated from the results of energy simulation tool eQUEST.
     The four cities of Shanghai, Changsha, Shaoguan, and Chengdu are selected to represent, A, B, C and D subzone of hot summer and cold winter zone in China, respectively. The regression equations of EETP index with cooling/heating load and energy consumption were built up, including the formulae of EETPC with peak cooling load, accumulative cooling load and energy consumption for cooling, respectively, the formulae of EETPH with peak heating load, accumulative heating load, and energy consumption for heating respectively, and the correlation ship of EETPY with energy consumption both for cooling and heating. In order to validate the veracity of the EETP methodology, peak load, accumulative cooling/heating load, and energy consumptions of two cases selected at random have been calculated in the four cities using EETP method, and DeST and eQUEST simulation software, respectively, Results indicate that the algorithm is reasonable, the results are effective and exact.
     With the key objective to make EETP an indicator of the impact of the envelop on the energy use in residential buildings, the maximum allowable values of EETP were determined in the four cities when meeting the compulsory indices of“Design standard for energy efficiency of residential buildings in hot summer and cold winter zone”(JGJ134-2001), if the EETP value of some building is lower than maximum allowable value, the building meets the Standard. The corresponding allowable EETPC, EETPH, EETPY when achieving different energy-saving degrees on basis of it were also analyzed, these can be the reverences of residential envelope optimization designs.
     In order to analyze the effects of influence factors on EETP index and energy consumption, this paper focused on the factors of building’s shape coefficient, heat transfer coefficient of wall/roof/window, solar radiation absorptance of wall/roof, shading coefficient of window and WWR, the sensitivity coefficient of each parameter on EETP index and energy consumption were also calculated, the weight coefficients of each parameter of cooling season, heating season and the whole year were gained in the four cities, it has important meanings to carry out energy conservation on building envelope.
     The economic analysis of envelope is the object of this study, the life cycle economic evaluation of building envelop was proposed based on EETP theory, an economic evaluation model for building energy conservation technology was established. The model is exoteric, all energy conservation design can be described, and uncertain factors are contained. The model can optimize the design of basic building components, including walls/roof, windows and insulation layers. Economic evaluation results can be the guidance for the optimization of projects.
     Finally, this paper discussed the shortages of energy conservation work in hot summer and cold winter zone, and gave some suggestions from revising energy efficiency standard for residential buildings, improving energy efficiency label and establishing energy consumption statistical system for residential building.
引文
[1]胡文斌.建筑复合能量系统集成建模的策略研究及在设计层面的实现:[华南理工大学博士学位论文].广州:华南理工大学,2002,16–30
    [2] Adalberth K . Energyuse during the life cycle of single-unit dwellings :examples.Building and Environment,1997,32(4):321–329
    [3]江亿.我国建筑耗能状况及有效的节能途径.暖通空调,2005,35(5):30–40
    [4]李曙光.浅谈我国建筑节能现状与对策.应用能源技术,2003,1(1):1–3
    [5] Yang L,Lam J C,Liu J P,et al.Building energy simulation using multi-years and typical meteorological years in different climates. Energy conservation and Management,2008,49(1):113–124
    [6]郎四维.我国建筑节能设计标准编制思路与进展.暖通空调,2004,34(5):30–36
    [7] Lam J C,Wan K K W,Tsang C L,et al.Building energy efficiency in different climates.Energy Conversion and Management,2008,49(8):2354–2366
    [8]清华大学建筑技术科学系.中国建筑节能年度发展研究报告2008.北京:中国建筑工业出版社,2009,214–215
    [9]涂逢祥.建筑节能势在必行.建筑装饰材料世界,2004,25(4):16-17
    [10]中华人民共和国统计局.中国统计年鉴2002.北京:中国统计出版社,2002,15-47
    [11]中华人民共和国建设部.《民用建筑热工设计规范》(GB 50176-93).北京:中国建筑工业出版社,1993
    [12]中华人民共和国建设部.《民用建筑节能设计标准(采暖居住部分)》(JGJ 26-95).北京:中国建筑工业出版社,1995
    [13]中华人民共和国建设部.《既有采暖和居住建筑节能改造技术规程》(JGJ 129-2000).北京:中国建筑工业出版社,2000
    [14]中华人民共和国建设部.《采暖居住建筑节能检验标准》(JGJ 132-2001).北京:中国建筑工业出版社,2001
    [15]中华人民共和国建设部.《夏热冬冷地区居住建筑节能设计标准》(JGJ 134-2001).北京:中国建筑工业出版社,2001
    [16]中华人民共和国建设部.《夏热冬暖地区居住建筑节能设计标准》(JGJ 75-2003).北京:中国建筑工业出版社,2003
    [17]涂逢祥.跨越式发展建筑节能.城市开发,2005,24(2):16–17
    [18]涂逢祥.建筑节能38.北京:中国建筑工业出版社,2002,22-27
    [19]李蕾,付祥钊,刘俊跃.居住建筑节能评价体系的探讨,中国住宅设施,2006,4(7):50–56
    [20] Yao R M,Li B Z,Steemers K.Energy policy and standard for built environment in China.Renewable Energy,2005,30(13):1973–1988
    [21]彭波.围护结构与空调建筑节能.建筑节能,2008,36(7):3–5
    [22]罗忆,刘忠伟.建筑节能技术与应用.北京:化学工业出版社, 2008,193–194
    [23]林海燕.可持续发展中的建筑节能.建筑科学,2006,22(4):12–15
    [24] Lang S W.Progress in energy-efficiency standards for residential buildings in China.Energy and Buildings,2004,36(12):1191–1196
    [25]付祥钊.中国夏热冬冷地区建筑节能技术.新型建筑材料,2000,27(6):13–17
    [26]韩爱兴.夏热冬冷地区居住环境质量有望得到改善和提高.新型建筑材料, 2002,29(3):25–27
    [27]余晓平.夏热冬冷地区民用建筑除湿方式的研究.建筑热能通风空调,2006, 25(2):65–69
    [28]王昭俊.夏热冬冷地区的节能住宅研究.暖通空调,2002,32(3):24–26
    [29] Wen Y G,Lian Z W.Influence of air conditioners utilization on urban thermal environment.Applied Thermal Engineering,2009,29(4):670–675
    [30]周铁军,王雪松.中国过渡地区住宅建筑节能现状与发展趋势研究.重庆建筑大学学报(社科版),2000,1(4):39-42
    [31]李曙光.浅谈我国建筑节能现状与对策.应用能源技术,2003,21(1):1-3
    [32] ASHRAE.Energy conservation in new building design.ASHRAE Standard 90–1975.Atlanta,1975
    [33] ASHRAE.Energy conservation in new building design.ASHRAE Standard 90A-1980.Atlanta,1980
    [34] Turiel I, Curtis R, Levine M D.Analysis of energy conservation standards for Singapore office buildings.Energy,1985,10(2):95–107
    [35] Chou S K, Lee Y K.Commercial building energy analysis in support of Singapore standards revision.In:Proceedings of the ASEAN Special Issues of the ASHRAE.Malaysia,1989,77–106
    [36] Busch J F, Deringer J J.A building envelope energy standard for Malaysia.In:Proceedings of the ASHRAE Far East conference on air conditioning in hot climates.Singapore,1987,302–320
    [37] Deringer J J,Busch J F,Kannan K S,et al.Energy and economicanalyses of commercial building standards in Malaysia.In:Proceedings of the ASHRAE FarEast conference on air conditioning in hot climates.Singapore,1987,265–292
    [38] Ang C A, Soriano M L, Tablante C B.Building energy use assessment:analysis and policy development in the Philippines.In:Proceedings of the ASEAN special sessions of the ASHRAE Far East conference on air conditioningin hot climates.Malaysia,1989,63–76
    [39] Chirarattananon S,Rakwamsuk P,Kaewkiew J.A proposed building performance standard for Thailand : an introduction and preliminary assessment of the potential for energy management.In:Proceedings of the ASEAN special sessions of the ASHRAE far east conference on air conditioning in hot climates.Kuala Lumpur,1989,1–24
    [40] Vechaphutti V.Overall thermal transfer values (OTTV) for Thailand.In:Proceedings of the ASEAN special sessions of the ASHRAE far east conference on air conditioning in hot climates.Kuala Lumpur,1989,129–133
    [41] Janda K B , Busch J F . World wide status of energy standards for buildings.Energy,1994,19(1):27–44
    [42]龙惟定.建筑节能与建筑能效管理.北京:中国建筑工业出版社,2005,105
    [43] Lam J C, Tsang C L, Li D H W, et al.Residential building envelope heat gain and cooling energy requirements.Energy,2005,30(7):933–951
    [44] Yang L,Lam J C,Tsang C L.Energy performance of building envelopes in different climate zones in China.Applied energy,2008,85(9):800–817
    [45] Lam J C . Energy analysis of commercial buildings in subtropical climates.Building and Environment,2000,35 (1):19–26
    [46] Yik F W H,Wan K S Y.An evaluation of the appropriateness of using overall thermal transfer value (OTTV) to regulate envelope energy performance of air-conditioned buildings.Energy,2005,30 (1) 41–71
    [47] Chow W K,Chan K T.Analysis on the OTTV for building envelopes in Hong Kong.Applied Energy,1992,42(3):289–312
    [48] Chow W K,Chan K T.Parameterization study of the overall thermal transfer value equations for buildings.Applied Energy,1995,50(2):247–268
    [49] Chow W K, Fong S K.Simulation of energy use in a building with three weather files of Hong Kong.Energy Engineering,1996,93(2):30–54
    [50] Chow W K, Yu P C H.Studies on building energy use in Hong Kong by TRACE 600.In:Proceedings of IASTED International Conference on Applied Modelling and Simulation.Banff,Canada,1997,177–182
    [51] Chow W K, Yu P C H.Comment on the Overall Thermal Transfer Value (OTTV)for building energy control.ASCE Journal of Architectural Engineering,1998, 4(4):149–154
    [52] Hong Kong Government.Code of Practice for Overall Thermal Transfer Values in buildings.Buildings Department,1995
    [53] Chow W K,Yu P C H.Controlling building energy use by overall thermal transfer value (OTTV).Energy,2000,25(5):463–478
    [54] Ministry of Housing and Works.The Code Compliance Handbook for Building Energy Code of Pakistan.Islamabad,Pakistan,1990
    [55] Hui S C M.Overal Thermal Transfer Value (OTTV):How to Improve Its Control in Hong Kong.In Proceedings of the One-day Symposiumon Building.Energy and Environment,Kowloon,Hong Kong,1997,12:1–11
    [56]陈超,渡边俊行,谢光亚等.日本的建筑节能概念与政策.暖通空调,2002, 32(6):40–43
    [57]谭洪卫.建筑节能体制的中日对比和思考.上海节能,2005,24(4):90–95
    [58]傅秀章.夏热冬冷地区住宅节能设计与能耗评价研究:[东南大学博士学位论文].南京:东南大学,2004,78–79
    [59]薛梅,董华.住宅热损失系数的确定与应用.煤气与热力,2004,24(4):203–205
    [60] Yang K H,Hwang R L.An improved assessment model of variable frequency- driven direct expansion air-conditioning system in commercial buildings for Taiwan green building rating system.Building and Environment,2007,42(10): 3582-3588
    [61]王仁俊,林宪德.办公类建筑enload简算法之研究.中华民国建筑学会建筑学报,2005,53(9):141–154
    [62]任俊.居住建筑节能设计计算与评价方法研究:[西安建筑科技大学博士学位论文].西安:西安建筑科技大学,2004,19–20,24–30
    [63]叶凌,姚杨,王清勤.节能建筑评价指标体系初探.建筑科学,2006,22(6A):1–4
    [64] Hien W N,Poh L K,Feriadi H.The use of performance-based simulation tools for building design and evaluation-a Singapore perspective . Building and Environment,2000,35(8):709–736
    [65] Peterson S R.Retrofitting existing housing for energy conservation:an economic analysis.National Bureau of Standards,Building Science Series,1974,70–72
    [66] Armuth A,Szoke K.Economic evaluations concerned with energy conserving improvements of the building envelope: Some Hungarian examples. In: Proceedings of the 8th CIB Triennial Congress,Oslo,1980,1A:256–260
    [67] Buffington D E.Economic of energy conservation in cooling/heating residential buildings.American Society of Agricultural Engineers,1977,17–18
    [68] Hirst E, Carney J. Federal residential energy conservation progress: an analysis.Energy,1977,2(3):24–28
    [69] Marshall H E , Ruegg R T . Energy conservation through life-cycle costing.Journal of Architectural Education,1976,30(3):42–51
    [70] Ahmed S F.EEDO:Energy economics of design options- a residential energy and economic optimization microcomputer program.American Solar Energy Soc Inc,1984,25-30
    [71]Giffin T M . Life-cycle costing application for building energy code compliance.ASHRAE Transactions,1985,91(1B):603–608
    [72] Rabl A.Optimizing investment levels for energy conservation:Individual versus social perspective and the role of uncertainty.Energy Economics,1985,7 (4):259–264
    [73] EI-Sharif W, Horowitz M J.Why financial promotions work:Leveraging energy efficiency value to promote superior products.In:Proceedings of ACEEE Summer Study on Energy Efficiency in Buildings.California,2000,5:557–567
    [74] Chaitkin S,McMahon J E,Whitehead C D, et al.Estimating marginal residential energy prices in the analysis of proposed appliance energy efficiency standards.In:Proceedings of ACEEE Summer Study on Energy Efficiency in Buildings.California,2000,925–936
    [75] Amstalden R W,Kost M,Nathani C,et al.Economic potential of energy-efficient retrofitting in the Swiss residential building sector: The effects of policy instruments and energy price expectations.Energy Policy,2007,35(3):1819–1829
    [76] Sekhar S C, Toon K L C.On the study of energy performance and life cycle cost of smart window.Energy and Buildings,1998,28(3):307–316
    [77] Florides G A,Tassou S A,Kalogirou S A,et al.Measures used to lower building energy consumption and their cost effectiveness.Applied Energy,2002,73(3–4):299–328
    [78] Wong N H,Tay S,Wong R,et al.Life cycle cost analysis of rooftop gardens in Singapore.Building and Environment,2003,38(3):499–509
    [79] Kumar R,Kaushik S.Performance evaluation of green roof and shading for thermal protection of buildings.Building and Environment,2005,40(11):1505–1511
    [80] Carter T, Keeler A.Life-cycle cost–benefit analysis of extensive vegetated roof systems.Journal of Environmental Management,2008,87(3):350–363
    [81] Papaefthimiou S, Syrrakou E,Yianoulis P.Energy performance assessment of an electrochromic window.Thin Solid Films,2006,502(1-2):257–264
    [82] Papaefthimiou S,Syrrakou E,Yianoulis P.An alternative approach for the energy and environmental rating of advanced glazing:An electrochromic window case study.Energy and Buildings,2009,41 (1):17–26
    [83] Collet F,Serres L,Miriel J,et al.Study of thermal behaviour of clay wall facing south.Building and Environment,2006,41 (3):307–315
    [84] Lollini,Barozzi,Fasano,etal.Optimisation of opaque components of the building envelope-Energy,economic and environmental issues.Building and Environment,2006,41(8):1001-1013
    [85] Utama A, Gheewala S H.Life cycle energy of single landed houses in Indonesia.Energy and Buildings,2008,40(10):1911–1916
    [86] Bagatin M,Caldon R,Gotthardi G.Economic optimization and sensitivity analysis of energy requirements in residential space heating. International Journal of Energy Research,1984,8 (3):127–138
    [87] Gustafsson S I,Karlsson B G.Why is life-cycle costing important when retrofitting buildings? International Journal of Energy Research,1988,12 (2):233–242
    [88] Hasan A . Optimizing insulation thickness for buildings using life cycle cost.Applied Energy,1999,63(2):115–124
    [89] Al-Sanea S A,Zedan M F.optimum insulation thickness for building walls in hot-dry climate.Intenrational Journal of Ambient Energy,2002,23(3):115–126
    [90] Al-Khawaja M J . Determination and selecting the optimum thickness of insulation for buildings in hot countries by accounting for solar radiation.Applied Thermal Engineering,2004,24(17–18):2601–2610
    [91] Comakli K,Yuksel B.Optimum insulation thickness of external walls for energy saving.Applied Thermal Engineering,2003,23(4):473–479
    [92] Sisman N,Kahya E,Aras N,et al.Determination of optimum insulation thicknesses of the external walls and roof (ceiling) for Turkey’s different degree-day regions.Energy Policy,2007,35(10):5151–5155
    [93] Dombayci O A,Golcu M,Pancar Y.Optimization of insulation thickness for external walls using different energy-sources.Applied Energy,2006,83(9):921–928
    [94] Kaynakli O.A study on residential heating energy requirement and optimum insulation thickness.Renew Energy,2008,33(6):1164–1172
    [95] Bolatturk A.Determination of optimum insulation thickness for building walls with respect to various fuels and climate zones in Turkey.Applied Thermal Engineering,2006,26(11–12):1301–1309
    [96] Bolatturk A.Optimum insulation thicknesses for building walls with respect to cooling and heating degree-hours in the warmest zone of Turkey.Building and Environment,2008,43(6):1055–1064
    [97] Hasan A,Vuolle M,Sire′n K.Minimisation of life cycle cost of a detached house using combined simulation and optimization.Building and Environment,2008, 43(12):2022–2034
    [98] Ucar A,Balo F.Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey.Applied Energy,2009,86(5):730–736
    [99] Mahlia T.M.I.,Taufiq B.N., Ismail, H.H.Masjuki.Correlation between thermal conductivity and the thickness of selected insulation materials for building wall.Energy and Buildings,2007,39 (2):182–187
    [100]韩爱兴.中国建筑节能政策.中国能源,1999,22(2):23–25
    [101]万锋.连云港市节能住宅建筑综合经济效益分析.新型建筑材料,1999, 26(8):42–44
    [102]盖广清,杨艳敏.EPS和混凝土小型空心砌块复合外保温.墙材革新与建筑节能,1999,4(1):9–10
    [103]石晶,付宁,袁玉群.外墙节能住宅与非节能住宅经济分析.辽宁建材,2000, 21(3):30-31
    [104]怀方林,方桂英.复合节能砌块墙体技术经济分析.建筑砌块与砌块建筑, 2002,20(3):25–27
    [105]郁文红,杨昭.采暖居住建筑节能改造收益分析.节能,2004,24(12):21–24
    [106]张小玲.节能措施成本效益分析—世行课题“中国北方建筑节能措施的经济分析研究”报告概要.建筑节能,2005,4(16):24–25
    [107]刘学来,李永安.居住建筑外墙保温作法及经济分析.建筑技术,2005, 36(10):731–733
    [108]曹毅然,范宏武,刘明明等.住宅建筑节能设计的经济性方案分析.住宅科技,2006,27(7):12–15
    [109]杨志明.居住建筑节能技术经评价研究:[上海交通大学硕士毕业论文].上海:上海交通大学,2006,13-15,40–50
    [110]钟春,潘阳.南昌地区几种外墙的能耗比较及经济性分析.华东交通大学学报,2008,25(3):56–58
    [111]宋晓新,鞠硕华,王随林.北方既有居住围护结构节能潜力分析.低温建筑技术,2008,125(5):133–135
    [112]孟长再.住宅经济保温厚度的计算与分析.煤气与热力,1997,17(3):39-44
    [113]房琳,曲德林,刘福祯.空调建筑外墙和屋顶经济绝热厚度的计算.太阳能学报,2002,123(16):711–715
    [114]赵华,金虹.采暖建筑节能复合围护结构与保温材料经济性的研究.哈尔滨建筑大学学报,2001,34(2):83–86
    [115]阎丽萍,王路威,王琼等.空心墙体建筑的节能及经济性分析.南京工业大学学报,2004,26(3):20–23
    [116]赵海南,卓光明,赵海宏,金恒刚.聚苯板外保温综合经济效益分析.辽宁建材,2003,24(2):6–7
    [117]徐梦萱,韩毅.外墙外保温技术的技术与经济性分析.煤气与热力,2005, 25(10):44–46
    [118]黄春华,叶勇军.节能建筑外墙保温层厚度的经济性优化.建筑热能通风空调,2005,24(6):73–76
    [119]荆有印,柴保双,宋燕等.寒冷地区外墙保温对建筑负荷的影响及经济保温层厚度的确定.建筑科学,2007,23(12):39–41
    [120]王厚华,吴伟伟.居住建筑外墙外保温厚度的优化分析.重庆大学学报,2008, 31(8):937–941
    [121]许建柳,何嘉鹏,孙伟民.南京建筑围护结构保温层经济厚度计算研究.暖通空调,2008,38(1):49–51
    [122]沈国民,张俊梅.高层住宅单、双层玻璃窗经济性比较.暖通空调,2001, 31(2):74–76
    [123]谭良才,杨洪兴,顾国维.夏热冬冷地区窗户动态节能和经济性研究.暖通空调,2004,24(8):1–6
    [124]华高英,王伟,赵耀华.北京写字楼采用Low-E玻璃窗的能耗与经济性分析.建筑科学,2008,24(6):61–65
    [125]中华人民共和国建设部.重庆市《夏热冬冷地区居住建筑节能设计标准》实施细则.北京:中国建筑工业出版社, 2002
    [126]付祥钊.夏热冬冷地区建筑节能技术.北京:中国建筑工业出版社,2002,65
    [127]裴芳,刘小兵.两种冷负荷计算方法的比较.低温与特气,2008,26(4):15–18
    [128]赵荣义,范存养,薛殿华等.空气调节(第三版).北京:北京中国工业出版社,2000,35–36
    [129]黄俊鹏,李峥嵘.建筑节能技术计算机评估体系研究.暖通空调,2004,34(11):30–35
    [130]吕政.建筑围护能耗的计算机方针设计介绍.制冷空调与电力机械,2006,27 (6):37–40
    [131]Crawleya D B,Handb J W,Kummertc M,et al.Contrasting the capabilities of building energy performance simulation programs.Building and Environment,2008,43(4):661–73
    [132]中国气象局气象信息中心气象资料室,清华大学建筑基数科学系.中国建筑热环境分析专用气象数据集.北京:中国工业出版社,2005,10-19
    [133]Yang L,Lam J C,Liu J P,et al.Building energy simulation using multi-years and typical meteorological years in different climates.Energy Conversion and Management,2008,49(1):113–124
    [134]中华人民共和国建设部.《居住建筑节能设计标准》(DBJ 11-602-2006).北京:中国建筑工业出版社,2006
    [135]黄光德.夏热冬冷地区居住建筑能耗分析:[重庆大学硕士学位论文].重庆:重庆大学,2006,64–67
    [136]朱颖新,彦启森.建筑环境学(第二版).北京:中国建筑工业出版社,2005,61-63
    [137]中华人民共和国建设部.《公共建筑节能设计标准》(GB50189-2005).北京:中国建筑工业出版社,2005
    [138]丁力行,包劲松,陈宁等.铁路客车空调负荷的非稳态计算方法研究.中国铁道科学,2003,24(2):19–23
    [139]Hui S C M.Overal Thermal Transfer Value (OTTV):How to Improve Its Contorl in Hong Kong.In Proceedings of the one-day symposium on building energy and enviornment,HongKong,1997,12:1–11
    [140]闫成文,姚健,林云.夏热冬冷地区基础住宅围护结构能耗比例研究.建筑技术,2006,37(10):773–774
    [141]王乾坤,刘琨.节能建筑全寿命周期技术经济评价方法.武汉理工大学学报,2008,30(6):159–161
    [142]邓南圣,王小兵.生命周期评价.北京:化学工业出版社,2003,30-31
    [143]杨建新,徐成,王如松.产品生命周期评价方法及应用.北京:气象出版社,2002,24-27
    [144] Peuportier B L P.Life cycle assessment applied to the comparative evaluation of single family houses in French context.Energy and Building,2001,33 (5):443-450
    [145]堵琼琦.住宅寿命周期费用分析系统.住宅科技,1999,20(6):39-41
    [146]朱燕萍,胡昊.生态建筑的项目经济评价研究.建筑施工,2006,28(3):203-204
    [147]封国强.从全寿命角度对建设项目投资控制的思考.西部探矿工程,2004,16(2):198–200
    [148]黄有亮,徐向阳,谭飞等.工程经济学(第一版).地点:东南大学出版社, 2002,5–10
    [149] Duffie J A,Bechman W A.Solar energy and thermal process.New York:wiley, 1991,475–748
    [150]于立.能源价格理论研究.大连:东北财经大学出版社,1994,144–147
    [151]国家发展改革委、建设部发布.建设项目经济评价方法与参数(第三版).北京:中国计划出版社,2006,226
    [152]任志涛,孙白爽,张睿.基于建筑产品寿命周期的建筑节能评价体系研究.建筑节能,2008,36(10):57-60
    [153]刘学来,李永安,李昌和.住宅建筑构造柱热桥采暖能耗的分析.低温建筑技术,2004,26(5):87–89
    [154]赵海南,光明,赵海宏等.聚苯板外保温综合经济效益分析.辽宁建材,2003,24(2):6–7
    [155]李永华,田安国,万锋等.胶粉聚苯颗粒保温砂浆在既有建筑节能改造方面的经济效果分析.淮海工学院学报(自然科学版),2006,15(3):70–73
    [156]钟春,潘阳.南昌地区几种外墙的能耗比较及经济性分析.华东交通大学学报,2008,25(3):56–58
    [157]Erbs D G,Klein S A,Beckman W A.Sol-air heating and cooling degree -days.Solar Energy,1984,33(6):605–612
    [158]中华人民共和国建设部.《建筑结构可靠度设计统一标准》(GB 50068-2001).北京:中国建筑工业出版社,2001
    [159]中华人民共和国建设部.《住宅性能评价标准》(GB/T 50362-2005).北京:中国建筑工业出版社,2005
    [160]上海装潢网.玻璃价格行情.http://www.shzh.net/Zixun/newsShow.asp?newsCode=5954#top.2007-11-27
    [161]土木在线.玻璃价格. http://b.co188.com/content/1952_420192_1.html.2006-7-29
    [162]HKBD.Joint Practice Note No.1–Incentives for Green Buildings.Buildings Department,Hong Kong Government,2001,7–11
    [163]张晓亮,朱光俊,江亿.建筑环境设计模拟分析软件DeST第13讲:住宅模拟优化实例.暖通空调,2005,35(8):65–73
    [164]Yu J H,Yang C Z,Tian L W.Low-energy envelope design of residential building in hot summer and cold winter zone in China.Energy and Buildings,2008, 40(8):1536–1546
    [165]周辉,郝斌.美国“能源之星”住宅性能标识.中华建设,2006,13(8):46–48
    [166]欧阳生春.美国绿色建筑评价标准LEED简介.建筑科学,2008,24(8):1–3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700