用户名: 密码: 验证码:
分布式双基地波雷达射频干扰与杂波等问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高频地波雷达具有超视距探测能力,不仅能够覆盖常规微波雷达和天波雷达的探测盲区,而且在反隐身、反低空突防、抗反辐射导弹和远程预警等方面具有突出的优势。但由于发射信号的波长较长,现役高频地波雷达普遍存在“阵地大、选址难、角度分辨率低、机动性差”等问题,干扰和杂波也是影响高频地波雷达目标检测的主要因素,特别是短波通信和广播电台等射频干扰以及电离层杂波等问题最为突出,亟待进一步解决。
     因此,结合“岸舰双基地波超视距雷达”课题,论文围绕分布式双基地波雷达展开相关研究,包括岸基收发阵列分布式阵列结构设计、分布式阵列下的DOA估计方法研究、岸基收发阵列校准、射频干扰抑制方法研究、双基地体制下电离层杂波建模以及杂波抑制方法研究,具体工作概括如下:
     1.分布式双基地波雷达方案设计及其DOA估计方法研究。首先针对现役高频地波雷达存在的“阵地大、选址难、角度分辨率低、机动性差”等四大问题,提出分布式双基地波雷达的设计思想:分布式双基地波雷达保留岸舰双基地波超视距雷达的综合脉冲孔径技术以及海上接收平台机动灵活的优点,同时引入分布式阵列技术,改进岸基发射阵列结构为分布式收发阵列,使分布式双基地波雷达具有单基地MIMO和双基地MISO两种工作模式;其次给出了分布式双基地波雷达的发射波形,并通过对信号处理流程的分析,得到两种工作模式下的等效接收阵列模型;然后对分布式双基地波雷达DOA估计进行着重研究,通过对信号处理流程和等效阵列模型的分析,指出雷达在单基地工作模式下用CBF、Capon和MUSIC等常规方法作DOA估计会导致雷达的接收数据处理量过大,在双基地工作模式下,因其等效接收阵列具有分布式结构,阵列方向图存在栅瓣,运用上述常规的DOA估计方法会出现角度模糊问题。针对这两个问题,论文提出一种基于压缩感知的DOA估计方法,利用压缩感知通过少量观测数据即可高概率获取目标准确信息的优势,在保证DOA估计精度的同时,降低单基地工作模式下接收数据的处理量和DOA估计的运算量,避免了双基地工作模式下等效阵列方向图栅瓣引起的角度模糊问题。仿真实验分析说明了分布式双基地波雷达的优点及其在DOA估计方面应用常规方法时出现的问题,验证了论文提出的基于压缩感知的DOA估计方法的有效性及正确性。
     2.分布式双基地波雷达岸基收发阵列校准。对两种工作模式下的阵列误差进行分析,在此基础上探讨利用这两种工作模式对岸基收发阵列的发射阵元和接收阵元分别进行误差校准的方案:首先在双基地工作模式下对发射阵元进行校准,采用岸舰双基地波超视距雷达的校准方式,利用海上接收平台接收到的直达波信号,并通过数据协方差矩阵拟合(CMF)方法或子空间拟合(SF)方法校准发射阵元的幅相误差;然后在单基地工作模式下对接收阵元进行校准,由于该模式下的等效阵列的阵元数较多,导致幅相误差校准的运算量大,因此采用对等效阵列中部分阵元进行校准的策略,利用大型舰船目标回波、有方向性的强射频干扰和强电离层杂波,并通过基于MUSIC的阵列自校准方法校准接收阵元的幅相误差。论文还给出了阵列幅相误差校准的克拉美罗界。最后通过仿真实验验证了岸基收发阵列误差校准方案的可行性以及所用到的校准方法的有效性。
     3.高频地波雷达射频干扰抑制研究。论文以分布式双基地波雷达为研究对象,首先分析了射频干扰在该雷达下表现出的时域、距离域、多普勒域以及空域特性;其次介绍了射频干扰时域剔除法,并指出该方法检测阈值的设定会直接影响干扰抑制效果,且方法只能用于射频干扰较少的白天,在干扰密集的夜间该方法失效,针对上述缺陷,论文提出一种基于压缩感知的射频干扰抑制方法,同样利用射频干扰的时域特性,方法通过对每个调频周期选取少量“干净”的时域采样数据,利用压缩感知重构算法分别获得目标准确的距离信息和速度信息。此外,论文还探讨运用盲信号处理的方法来分离射频干扰的构想,根据单载频射频干扰在各调频周期间具有很强的相关性且与目标回波不相关的特点,在单接收通道对多个调频周期采用独立分量分析算法将射频干扰与目标回波分离开。最后通过仿真实验分别验证了基于压缩感知和基于独立分量分析的射频干扰抑制方法的有效性。
     4.双基地体制下的电离层杂波研究。首先介绍了高频地波雷达电离层杂波的成因,并针对双基地体制下电离层杂波的空域特性和多普勒特性进行分析,给出了杂波在双基地体制下方位、俯仰和锥角之间的关系,分析了海上移动接收平台接收的回波信号中电离层杂波多普勒频率的组成,综述了国内外已经研究的电离层杂波特性;其次,论文根据电离层杂波特性,采用随机信号建模法分别建立了电离层镜像折射杂波和电离层散射杂波模型;然后利用特征值分解方法,提出“时域信号”抑制方法,对电离层镜像折射杂波这类强杂波进行抑制。论文给出了电离层杂波仿真结果以及“时域信号”抑制方法对电离层镜像折射杂波的抑制结果,仿真结果表明了“时域信号”抑制方法的有效性。
Much attention has been paid to HF surface wave radar for its ability to detect theover the horizon targets. The low altitude and near ranges are blind spots ofconventional microwave and Sky Wave Over the Horizon Radar respectively, HFSWRcan compensate these spots completely. The long distance and early radar surveillance,anti stealth, anti altitude penetration, and anti radiation missiles were the decidedadvantages of HFSWR. However, long wavelength of transmit leads to the problems oflarge position, difficulty of location chosen, low of the angle resolution, and badflexibility. The detection capability of HF surface wave radar is also influenced byinterferences and clutters especially the radio interference and the ionospheric clutter.
     Based on the discussion of coast ship bistatic surface wave over the horizon radar,this dissertation focuses on the design of distributed subarrays, the DOA estimation fordistributed subarrays, calibration of arrays which are on the coast, the methods of radiointerference suppression, the ionospheric clutter modeling and the study of suppressionmethod for ionospheric clutter in bistatic HFSWR with distributed subarrays.Themain content of our studies are summarized as follows:
     1. Distributed bistatic surface wave radar is designed and the DOA estimation inthis new radar is studied. Firstly, the concept of distributed bistatic surface wave radar isproposed for the problem of large position, difficulty of location chosen, low of theangle resolution, and bad flexibility. The new radar reserves the Synthetic Impulse andAperture Radar mechanism (SIAR) and the moving receive plat over ocean, the transmitarray using the distributed subarrays mechanism which makes the new radar havemonostatic MIMO system and bistatic MISO system. Secondly, the waveform oftransmit is proposed. Based on the analysis of signal processing, we can obtain theequivalent receive array models in two systems. Lastly, this dissertation focuses on theDOA estimation methods in the new radar. After the analysis of the DOA estimationproblem in two systems, the new DOA estimation method based on compressed sensingis proposed. The new method can estimate the target's information with a few of sampledata, reduce the processing complication, and avoid the angle ambiguity. Simulationshows the advantages of distributed subarrays bistatic surface wave radar, the problemsusing the conventional DOA estimation methods and the validity of the new DOAestimation method based on compressed sensing.
     2. Transmit receive array of distributed bistatic surface wave radar is calibrated. Based on the analysis of array error in two systems, a strategy of transmit array andreceive array error calibration in these systems is proposed. Firstly, transmit array erroris calibrated in monostatic MIMO system, the error calibration technique is same ascoast ship bistatic surface wave over the horizon radar, by using the direct wave, themoving receive plat can calibrate the transmit array error with Covariance MatrixFitting(CMF) method and Subspace Fitting(SF) method respectively; Receive arrayerror is calibrated in bistatic MISO system, by using the echo from large ship, the strongradio interference and the ionospheric clutter, the receive array on the coast can achievearray error calibration with auto calibration method based on Multiple SingalClassification (MUSIC) method. Because of the large number of equivalent receiveantennas, this dissertation adopts the strategy that only a part of the equivalent receiveantennas are calibrated. This dissertation also presents the Cramer Rao Bound(CRB) ofarray error calibration. Simulation shows validity of the transmit array and receive arrayerror calibration strategy.
     3. Radio interference suppression of high frequency radar is studied. Thisdissertation focuses on distributed subarrays bistatic surface wave radar. After theanalysis of radio interference's characteristics in time domain, range domain, dopplerdomain and space domain, we introduce the excising method in time domain, indicatethe several disadvantages of this method. Then, the radio interference suppressionmethod based on compressed sensing is proposed. Also, by using the interference'scharacteristics in time domain, this new method can obtain target's range informationand doppler information accurately with a few of "cleanly" data. This dissertation alsoproposes a new radio interference suppression concept by using Blind Signal Processing(BSP).Because of the independence between single frequency radio interference andtarget echo in a periodicity, we can separate the single frequency radio interference fromthe target echo. Simulation shows validity of the radio interference suppression methodbased on compressed sensing and the radio interference separation method.
     4. Ionospheric clutter in bistatic system and suppression method is studied. Firstly,we analyze the cause for the form of ionospheric clutter in high frequency radar, thespace domain and doppler domain characteristics in bistatic system, and show therelation with azimuth, elevation and cone. We also analyze the components of dopplerincluded in the echo which are received by moving receive flat, and sum up theionospheric clutter transmission characteristics. Secondly, we achieve the ionosphericmirror refraction clutter model and ionospheric diffuse reflection clutter modelrespectively by using random signal modeling method. Lastly, we propose "time domain signal" clutter suppression method based on the eigenvalue decompose. This methodcan suppress ionospheric mirror refraction clutter availably. This dissertation shows thesimulation result of ionospheric clutter and validity of "time domain signal" cluttersuppression method.
引文
[1] R. H. Varian, W. W. Hansen, and J. R. Woodyard. Object Detecting and LocatingSystem[P]. U. S. Patent2,435615, Feb.10,1948.
    [2] C. W. Sherwin, J. P. Ruina, R. D. Raweliffe. Some Early Developments inSynthetic Aperture Radar System [J]. IRE Trans. On MIL,1962,6(2):111115.
    [3] P. Z. Peebles. Signal Processor and Accuracy of Three Beam Monopulse TrackingRadar [J]. IEEE Trans. on AES,1969,5257.
    [4] J. H. Richter. High Resolution Tropospheric Radar Sounding [J]. Proc. of RadioSci.,1969, Vol.4:12611268.
    [5] F. C. Williams. The Pioneer Venus Orbiter Radar[C]. WESCON Sess.4, LosAngeles,1976,9:1417
    [6] L. E. Brenna, J. D. Mallett, and I. S. Reed. Adaptive Arrays in Airborne MTIRadar [J]. IEEE Trans. on AP, vol.24,1976:607615
    [7] J. L. Walker. Range Doppler Imaging of Rotating objects [J]. IEEE Trans. on AES,1980, vol.16:2352
    [8] C. R. Seashore. MM Wave Sensors for Missile Guidance[J]. MicrowaveJournal,1983, vol.26:133144
    [9] J. Clarke, D. N. Davies, and M. F. Radford. Review of United Kingdom Radar [J].IEEE Trans. on AES,1984,20(9):506520
    [10] L. Sevgi, H. C. Chan. An integrated maritime surveillance system based on HFsurface wave radars [J]. IEEE AP magazine,2001,8,43(4):2843
    [11] C. J. Baker, A. L. Hume. Netted Radar Sensing[J]. IEEE AES Magazine.2003,18(2):36
    [12] D. J. Rabideau and P. Parker. Ubiquitous MIMO Multifunction Digital ArrayRadar[C]. Proc.37th IEEE Asil. Conf. on Signals, Systems, and Computers,2003,10571064
    [13] F. C. Robey, S. Coutts, D. Weikle et al. MIMO Radar Theory and ExperimentalResults[C]. Proc.38th IEEE Asil. Conf. on Signals, Systems, and Computers.2004,300304
    [14] E. Fishler, A. Haimovich, R. Blum, et al. Mimo radar: An idea whose time hascome[C]. Proc. of the IEEE Radar Conference. Philadelphia,2004,7178
    [15] Duofang Chen, Baixiao Chen, Shouhong Zhang. Multiple input Multiple outputRadar and Sparse Array Synthetic Impulse and Aperture Radar[C]. Proc. of CIE2006International Conf. on Radar,2006,14
    [16] T. Derham, S. Doughty, K.Woodbridge et al. Realisation and Evaluation of a LowCost Netted Radar System[C]. Proc. of CIE2006International Conf. on Radar,2006,14.
    [17] S. J. Anderson. Remote sensing with the JINDALEE skywave radar [J]. IEEE J.Ocean. Eng.,1986,11(2):158163.
    [18] J. Parent, A. Bourdillon. A method to correct HF skywave backscattered signalsfor ionospheric frequency modulation [J]. IEEE Trans. on AP,1988,36(1):127135.
    [19] S. J. Anderson. Adaptive remote sensing with HF skywave radar [J]. IEE Proc.Radar, Sonar and Navig,1992,139(2):182192.
    [20] Martin W. Y. Poon, Rafaat H. Khan, and Son Le Ngoc. A singular valuedecomposition based method for suppressing ocean clutter in high frequency radar[J]. IEEE Trans. on Signal Processing,1993,41(3):14211425
    [21] C. W. Anderson, S. D. Green, S. P. Kingsley. HF skywave radar: Estimatingaircraft Heights using super resolution in range [J]. IEE Proc. Radar, Sonar andNavig.,1996,143(4):966976.
    [22] D. M. Fernandez, J. F. Vesecky, C. C. Teague, et al. Ship detection with highfrequency phased array and direction finding radar system [C]. IGARSS’98,1998,204206.
    [23] T. M. Georges, J. A. Harlan, et al. A test of ocean surface current mapping withover the horizon radar [J]. IEEE Trans. on GRS,1998,36(1):101110.
    [24] Y. T. Liu. Target detection and tracking with a high frequency ground waveover the horizon radar [C]. IEEE Int. Conf. on Radar,2003,593598.
    [25] Junhao Xie, Yeshu Yuan, and Yongtan Liu. Super Resolution Processing for HFSurface Wave Radar Based on Pre Whitening MUSIC [J]. IEEE Journal ofOceanic Engineering,2003,23(4):313321.
    [26] Xianrong Wan, Zifeng Zong, Hengyu Ke et al. Target detection with highfrequency surface wave radar in co channel interference [J]. IEE Proc. RadarSonar Navig.,2005,152(2):97103.
    [27] J. M. Headrick,M. I. Skolnik. Over the Horizon Radar in the HF Band [J].Proceedings of the IEEE,1974,62(6):665673.
    [28] T. M. Georges, J. A. Harlan. New Horizons for Over the Horizon Radar [J]. IEEEAP Magazine,1994,36(4):1424.
    [29]李金梁,李永祯,王雪松.米波极化雷达的反隐身研究[J].雷达科学与技术,2005,3(6):321326.
    [30]刘剑,王丰华,黄知涛.阵列扩展用于反辐射导弹抗诱偏的研究[J].系统工程与电子技术,2007,29(3):365367.
    [31] J. R. Barnum, E. E. Simpson. Over the horizon Radar Sensitivity Enhancement byImpulsive Noise Excision [C]. IEEE National Radar Conference,1997:252256.
    [32] M. D. Turley. Impulsive Noise Rejection in HF Radar Using a Linear PredictionTechnique [C]. IEEE International Radar Conference,2003:358362.
    [33] T.Thayaparan. Numerical Analysis of the Response of HF Radar to MeteorBackscatter Detection [J]. IEE Proc. Radar Sonar Navig.,2002,149(3):125135.
    [34] Y. I. Abramovich, N. K. Spencer, S. J. Anderson, et al. Stochastic ConstraintsMethod in Nonstationary Hot Clutter Cancellation—Part I: Fundamentals andSupervised Training Applications [J]. IEEE Trans. On Aerospace and ElectronicSystems,1998,34(4):12711292.
    [35] Y. I. Abramovich, N. K. Spencer, S. J. Anderson. Stochastic Constraints Methodin Nonstationary Hot Clutter Cancellation—Part II: Unsupervised TrainingApplications [J]. IEEE Trans. On Aerospace and Electronic Systems,2000,36(1):132150.
    [36]唐晓东,周文瑜.短波雷达干扰与抗干扰技术[J].现代雷达,2003(2):2125.
    [37] J. David. High frequency atmospheric noise mitigation[C].1994IEEE NationalRadar Conference:10401043.
    [38] James. R. Barnum and Erik. E. Simpson. Over the horizon radar sensitivityenhancement by impulsive noise excision[C].1997IEEE National RadarConference:252256.
    [39]宁百齐,李钧.电离层不规则体结构的多普勒谱特性[J].空间科学学报,1996,16(1):3642.
    [40] L.Sevgi, A. Ponsford, and H. C. Chan. An intergrated maritime surveillancesystem based on high frequency surface wave radars, part1: Theoreticalbackground and numerical simulations[J]. IEEE Ant. Prop. Mag., vol.43, no.4,pp.2842,2001.
    [41] L.Sevgi, A. Ponsford, and H. C. Chan. An intergrated maritime surveillancesystem based on high frequency surface wave radars, part2: Operational statusand system performance[J]. IEEE Ant. Prop. Mag., vol.43, no.4, pp.5263,2001.
    [42] R. H. Anderson and J. L. Krolik. Track Association for Over the Horizon RadarWith a Statistical Ionospheric Model[J]. IEEE Trans. Signal Proc., vol.50, no.11,pp.26322643,2002.
    [43] I. A. Yuri, K. S. Nicholas, and J. A. Stuart. Stochastic constraints method innonstationary hot clutter cancellation Part I: Fundamentals and supervisedtraining applications[J]. IEEE Trans. Aerospace Electron. Syst., vol.34, no.4, pp.12711291,1998.
    [44] Long Zhao. A Model for the Ionospheric Clutter in HFSWR Radar[C]. in Proc.IEEE ICIII’08. Conf., vol.1, pp.179182,2008.
    [45] Maryam Ravan and Raviraj. S. Adve. Ionospheric Clutter Model for HighFrequency Surface Wave Radar[C]. Proc. IEEE Radar Conf.,03770382, May2012.
    [46] Haiyan Shang. Maneuvering Target Detection in Coast ship Bistatic/MultistaticSurface Wave Over the Horizon Radar[D]. Xidian University.2008.
    [47] H. C. CHAN. Characterization of Ionospheric Clutter in HF Surface WaveRadar[C]. Canada: Defense Research Development Canada.2003.
    [48]李雷.高频地波雷达自适应抗干扰技术研究[D].哈尔滨:哈尔滨工业大学,2007.
    [49] Nianlu Xiong, Cunchen Tang, and Xingjian Li. Ionosphere PhysicalIntroduction[C]. Wuhan. CHINA:Wuhan University Press.1999.
    [50] Liang Huang, Biyang Wen, and Liming Wu. Ionospheric Interference Mitigationin HFSWR[J]. Chinese Journal of Radio Science, vol.22, no.4, pp.626630,2007.
    [51] Y. W. Kiang C. H. and Liu. Multiple phase screen simulation of HF wavespropagation in the turbulent stratified ionosphere[J]. Radio Science, vol.20, pp.652668,1985.
    [52] Shang Shang, Ning Zhang, and Yang Li,“Ionospheric Clutter Statistical Propertiesin HFSWR,”Chinese Journal of Radio Science, vol.26, no.3, pp.521527,2011.
    [53] D. D. Crombie, Doppler Spectrum of Sea Echo at13.56Mc/s [J]. Nature,175,pp.681682,1955.
    [54] J. R. Wait, Theory of HF Ground Wave Backscatter from Sea Waves [J]. GeophysRes.1966(71):48424839.
    [55] D. E. Barrick, First order Theory and Analysis of MFC IFNHF Scatter from theSea [J]. IEEE Trans. on AP.,1972, AP20(1):210.
    [56] D. E. Barrick, Remote Sensing of Sea State by Radar. Ch.12of Remote Sensing ofthe Troposphere [J]. NOAA/Environmental Research laboratories,1972:12(1)12(46).
    [57] J. Walsh, R. Howell and B. Dawe, Model Development for Evaluation Studies ofGround Wave Radar [J]. Centre Cold Ocean Resources, Eng., Contract Rep.90C14,1990.
    [58] E.W. Gill, J. Walsh, On the Second Order High Frequency Bistatic Ground WaveRadar Cross Section of the Ocean Surface [J]. Canadian Conference on Electricaland Computer Engineering.1997,2:516519.
    [59] J. R. Walsh, E. W. Gill, An analysis of the scattering of high frequencyelectromagnetic radiation from rough surface with application to pulse radaroperating in backscatter mode [J]. Radio Science,2000,35(6):13231336.
    [60] E. W. Gill, J. R. Walsh, High frequency bistatic cross sections of the ocean surface[J]. Radio Science,2001,36(6): pp14591475.
    [61]梁宏宇,吴世才,侯杰昌等,窄波束高频雷达一阶及二阶海面回波谱的数值模拟[J].武汉大学学报(自然科学版),1994,40(7):134139.
    [62]吴庆麟,管琛帜,邱昌熔等,高频雷达海面回波截面方程改进[J].武汉大学学报(自然科学版),1996,42(3):375380.
    [63]周志鑫,HF地波超视距雷达海态遥感机理及信息提取[M].哈尔滨工业大学博士论文,1997.
    [64]冀振元,舰载超视距雷达目标与海杂波特性分析与模拟[M].哈尔滨工业大学博士论文,2001.
    [65]谢俊好,许荣庆等高频地波舰载超视距雷达中的空时处理[J].系统工程与电子技术,1998, No.2:3036.
    [66]高兴斌,宗成阁,袁业术,高频地波舰载超视距雷达的海杂波对消[J].电子学报,2000,28(3):58.
    [67] J. Xie, Y. Liu. Experimental analysis of sea clutter in shipborne HFSWR [J]. IEEProc. Radar, Sonar and Navig.,2001,148(2):6771.
    [68] M. K. McDonald, V. Varadon and H. Leung. Chaotic behavior and non linearprediction of airborne radar sea clutter data[C]. Proceedings of the IEE RadarConference,2002,4:331337.
    [69] Simon Haykin and Sadasivan Puthusserypady, Chaos, sea Clutter, and NeuralNetworks [J]. Proc. of the IEEE Radar Conf.,1998:12241227.
    [70] G. Zhou, H. Dong, and T. Quan, HF Ground wave radar sea clutter cancellationbased on chaotic prediction [J]. Proceedings of ICSP,2004:21362139.
    [71] Ji Chen, Titus K. Lo, Hebry Leung. The Use of Fractals for Modeling EM WavesScattering from Rough Sea Surface[J]. IEEE Trans. on GRS,1996,7.
    [72] Macro Martorella, Fabrizio Berizzi, and Enzo Dalle Mese. On the FractalDimension of Sea Surface[J]. IEEE Trans. On AP,2004,52(5).
    [73] G. L. Tyler, W. E. Faulkerson, A. M. Peterson and C. C. Teague. Second OrderScattering from the Sea: Ten Meter Radar Observations of the Doppler Continuum[J]. Science,1972,177:349351
    [74] Dennis Trizna, James Gordon, Results of a Bistatic HF Radar Surface Wave SeaScatter Experiment [J]. IEEE Radar’2002:19021904.
    [75] D. E. Banick and J. B. Snider, The Statistics of HF Sea echo Doppler Spectra [J].IEEE Trans. on AP,1977,25(1):1928.
    [76] Lipa, D. E. Barrick, Least squares methods for the extraction of surface currentsfrom CODAR crossed loop data: Application at ARSLOE [J]. IEEE Journal ofOceanic Engineering,1983, OE8:226253.
    [77] http://www.codar.com/SeaSonde.shtml
    [78] http://www.smast.umast.umassd.edu/modeling/RTF/MARCOOS
    [79] J. T. Kohut, S. M. Glenn, H. J. Roarty. Recent Results from a Nested MultistaticHF Radar Network for the NorthEast Observing System(NEOS)[C]. TeamingToward the Furture, San Diego,2002,23~35.
    [80] D. Trizna, J. Gordon, H. Graber, et al. Results of a Bistatic HF Radar SurfaceWave Sea Scatter Experiment [C]. IGARSS'02, Toronto, Australia,2002,3:1902~1904.
    [81]朱宝明.超视距雷达的新发展[J].微波与雷达,1998,3:14.
    [82] D. E. Barrick. History, present status, and future direction of HF surface waveradars in the USA [J]. Int. Conf. on Radar, Australia,2003,9, pp.652655.
    [83]万显荣.高频地波雷达数字接收机设计与抗干扰研究[D].武汉大学博士论文,2005.
    [84]苏洪涛.超视距雷达目标检测与干扰抑制方法研究[D].西安电子科技大学博士论文,2004.
    [85] H. Leong. The potential of bistatic HF surface radar system for the surveillance ofwater entry area along costline [C]. IEEE Radar Conference, New York,2006,35~38
    [86] Rafaat Khan, Brian Gamberg, Desmond Power, et al. Target Detection andTracking with High Frequency Ground Wave Radar [J]. IEEE Journal of oceanengineering,1994,19(4):540548
    [87] Raython System Canada Ltd., SWR503High Frequency Surface Wave RadarComprehensive Surveillance of the EEZ[J]. www.rps.com/products/swr503
    [88] K. W. Gurgel, G. Antonischki and H. H. Essen et al. Wellen Radar (WERA), anew ground wave based HF radar for ocean remote sensing[J]. CoastalEngineering,1999,8,37:219234
    [89] http://www.linkocean.cn/Helzel/WERA%20HF%20Radar.htm
    [90] Lipa, D. E. Barrick, Least squares methods for the extraction of surface currentsfrom CODAR crossed loop data: Application at ARSLOE [J]. IEEE Journal ofOceanic Engineering,1983, OE8:226253.
    [91] http://web1.see.assofr/ocoss2010/session_5/20100521155638_ANTHEOP_Article_Final_Goutelard.pdf
    [92]文必洋,黄为民等. OSMAR2000探测海面风浪场原理与实现[J].武汉大学学报(理学版),2001,47(5):64264
    [93] http://www.acca21.net.cn/ocean/ly/news070820_2.html
    [94] http://hbznpl.com/products/gpld/mou/
    [95] http://hbznpl.com/products/gpld/osmar/
    [96]乔晓林,高频地波超视距雷达的目标检测问题[D].哈尔滨工业大学博士论文,1991
    [97]王威,高频地波超视距雷达目标检测与估值的研究[D].哈尔滨工业大学博士论文,1997
    [98]谢俊好,舰载高频地波雷达的目标检测与估值的研究[D].哈尔滨工业大学博士论文,2001
    [99]张国毅,高频地波雷达极化抗干扰技术的研究[D].哈尔滨工业大学博士论文,2002
    [100]李博,分布式多载舰地波超视距雷达阵列与信号重构技术研究[D].哈尔滨工业大学博士论文,2009
    [101]宗华,双基地高频雷达数据处理NFE技术研究[D].哈尔滨工业大学博士论文,2009
    [102] Baixiao Chen, Duofang Chen. Experimental System and Results for coast shipBi/multistatic Ground wave Over the horizon Radar[C] Proc. of CIE InternationalConf. on Radar,2006, pp.3639
    [103]尚海燕,岸舰双/多基地地波超视距雷达机动目标的检测[D],西安电子科技大学博士论文,2008
    [104]刘春波,岸舰双基地高频地波雷达SIAR相关技术研究[D],西安电子科技大学博士论文,2008
    [105]陈多芳,岸舰双基地波超视距雷达若干问题研究[D],西安电子科技大学博士论文,2008
    [106]张雅斌,高频地波雷达干扰与海杂波信号处理研究[D],西安电子科技大学博士论文,2010
    [107]苏洪涛,保铮,张守宏.自适应地波超视距雷达高频通信干扰抑制[J].电波科学学报,2003,18(3):270274.
    [108]苏洪涛,保铮,张守宏.地波超视距雷达高频通信干扰抑制[J].西安电子科技大学学报(自然科学版),2003,30(4):441445.
    [109] G. A. Fabrizio, Y. I. Abramovich, S. J. Anderson, et al., Adaptive cancellation ofnonstationary interference in HF antenna array[J]. IEE Proc. Radar, Sonar Navig.,1998,145(1):1924.
    [110] Xianrong Wan, Hengyu Ke, and Biyang Wen, Adaptive Cochannel InterferenceSuppression Based on Subarrays for HFSWR [J]. IEEE Signal Processing letters,2005,12(2):162165.
    [111] Xianrong Wan, Zifeng Zong, Hengyu Ke, et al, Target detection with highfrequency surface wave radar in co channel interference [J]. IEE proc. RadarSonar Navig.,2005,152(2):97103.
    [112] H. Leong. Adaptive Nulling of Skywave Interference using Horizontal DipoleAntennas in a Coastal Surveillance Surface Wave Radar System[C]. Proc. of IEEERadar Conference’1997:2630.
    [113]杨俊,文必洋,吴世才等.用水平天线消除天波干扰的算法研究[J].电波科学学报,2004,19(2):176181.
    [114]张国毅,刘永坦.高频地波雷达多干扰的极化抑制[J].电子学报,2001,29(9):12061209.
    [115] Y. Jun, W. Biyang, and W. Shicai. Method to suppress radio frequencyinterference in HF radar[J]. IEEE Proc. of Electronics Letters,2004, Vol.40, No.2.
    [116] H. Zhou, B. Wen, and S. Wu. Dense radio frequency interference suppression inHF radar[J]. IEEE Signal Processing letters,2005,12,(5), pp.361364.
    [117]张雅斌,陈伯孝,张守宏.舰载无源综合脉冲孔径雷达射频干扰抑制[J].西安电子科技大学学报,2007,34(4):514517.
    [118] Z. Hao, W. Biyang, W. Shicai et al., Radio frequency interference suppression inHF radar[J]. IEE Proc. of Electronics Letters,2003,39(12):925927.
    [119]周浩,文必洋,吴世才等.应用时频分析进行射频干扰抑制[J].电子学报,2004,32(9):15461548.
    [120]邢孟道,保铮,强勇.天波超视距雷达瞬态干扰抑制[J].电子学报,2002,30(6):823826.
    [121]陈希信,黄银河.基于矩阵奇异值分解的高频雷达瞬态干扰抑制[J].电子与信息学报,2005,27(12):18801882.
    [122]权太范,李健巍,于长军等.高频雷达抑制冲击干扰的研究与实验[J].电子学报,1999,27(12):2325.
    [123]强勇,侯彪,焦李成等.天波超视距雷达抑制流星余迹干扰方法的研究[J].电波科学学报,2003,18(1):2327.
    [124]黄亮,文必洋,邓巍.高频地波雷达抑制瞬态干扰研究[J].电波科学学报,2004,19(2):760765.
    [125] Rafaat H. Khan, Ocean Clutter Model For High Frequency Radar [J]. IEEEJournal of Oceanic Engineering,1991,16(2):181188
    [126] Martin W. Poon, R. H. Khan, and Son Le Ngoc, A Singular Value Decomposition(SVD) Based Method for Suppressing Oceanic Clutter in High Frequency Radar[J]. IEEE Trans. on SP,1993,41(3):14211425
    [127] Rafaat Khan, Desmond Power, and John Walsh, Ocean Clutter Suppression for anHF Ground Wave Radar [J]. IEEE CCECE’97,1997:512515
    [128] J. Xie, Y. Yuan and Y. Liu, Suppression of sea clutter with orthogonal weightingfor target detection in shipborne HFSWR [J]. IEE Proc. Radar Sonar and Navig.,2002,149(1):3944
    [129]谢俊好,许荣庆等.高频地波舰载超视距雷达中的空时处理[J].系统工程与电子技术,1998,20(2):3036
    [130]谢俊好,袁业术,段凤增,基于时域插值的舰载高频地波雷达空时处理[J].哈尔滨工业大学学报,1998,30(6):8993
    [131] J. Xie, Y. Liu, Experimental analysis of sea clutter in shipborne HFSWR [J]. IEEProc. Radar, Sonar and Navig.,2001,148(2):6771
    [132] J. Xie, Y. Yuan and Y. Liu, Optimum weights of DPCA processing for shipborneHFSWR [J]. Proceeding of ICSP’98,1998:15441547
    [133]韩思奇,王蕾.图像分割的阈值法综述[J].系统工程与电子技术,2002,24(6),9194
    [134] S. Lee, S. Chung, A Comparative Performance Study of Several GlobalThresholding Techniques for Segmentation[J].Computer Vision, Graphics, andImage Processing,1990,52,171190
    [135] N. R. Pal, S. K. Pal, A Review on Image Segmentation Techniques[J]. PatternRecognition,1993,26(9):1277–1294
    [136] P. Bhattacharya, W. Zhu, K. Qian, Shape recognition method using morphologicalhit or miss transform[J]. Journal of Optical Engineering,1995,34(6):17181725
    [137] H. Leung, Chaotic radar signal processing over the sea [J]. IEEE Journal ofOceanic Engineering,1993,18(3):287295
    [138] G. Zhou, H. Dong, and T. Quan, HF Ground wave radar sea clutter cancellationbased on chaotic prediction [J]. Proceedings of ICSP,2004:21362139
    [139] T. Thayaparan, S. Kennedy, Detection of a Maneuvering Air Target in Sea Clutterusing Joint Time Frequency Analysis Techniques[J]. IEE Proc. Radar Sonar andNavig.,2004,151(1):1930
    [140]陈伯孝,张守宏.稀布阵综合脉冲孔径雷达低距离旁瓣与距离高分辨技术[J].电子学报.1998,26(9):2933.
    [141] Baixiao Chen, Hongliang Liu and Shouhong Zhang. Long time CoherentIntegration Based on Sparse array Synthetic Impulse and Aperture Radar [C].2001CIE International Conference on Radar, Beijing,10621066
    [142] Baixiao Chen, Shouhong Zhang and Yajun Wang. Analysis and ExperimentalResults on Sparse array Synthetic Impulse and Aperture Radar.2001CIEInternational Conference on Radar [C], Beijing,7680.
    [143]吴剑旗,贺瑞龙,江凯等.稀布阵综合脉冲孔径雷达的研究与实验[J].现代电子,1998,64(3):15.
    [144]陈伯孝,张守宏.稀布阵综合脉冲孔径雷达的四维模糊函数及其分辨率[J].信号处理,1998,14:3337.
    [145]杨明磊.微波稀布阵SIAR相关技术研究[D].西安:西安电子科技大学博士学位论文,2009.博士论文
    [146] H. A. Khan, D. J. Edwards, W. Q. Malik, et al. Ultra wideband multiple inputmultiple output radars [C]. Proceedings of the IEEE Radar Conference,2005,900904.
    [147] E. Fishler, A. Haimovich, R. S. Blum, et al. Spatial diversity in radars models anddetection performance [J]. IEEE Trans. On Signal Processing,2006,54(3):823838.
    [148] A. S. Fletcher and F. C. Robey. Performance bounds for adaptive coherence ofsparse radar [C]. The11th Conf. Adaptive Sensors Array Processing, Lexington,MA, Mar,2003.
    [149] D. J. Rabideau and P. Parker. Ubiquitous MIMO multifunction digital array radar[C]. Proceedings of the37th Asilomar Conf. Signals, Systems and Computers,2006, Vol.1:10571064.
    [150] K. W. Forsythe, D. W. Bliss and G. S. Fawcett. Multiple Input Multiple Output(MIMO) radar: performance issues [C]. Proceedings of IEEE Radar Conference,2004, Vol.1:310315.
    [151] F. C. Robey, Coutts S, D. Weikle, et al. MIMO radar theory and experimentalresults [C]. Rec. of the38th Asilomar Conf. Signals, Systems and Computers,2004, Vol.1:300304.
    [152] K. W. Forsythe, D. W. Bliss, Waveform correlation and optimization issues forMIMO radar [C]. Rec. of the39th Asilomar Conf. Signals, Systems andComputers,2005:13061310.
    [153] R. C. Heimiller, J. E. Belyea, P. G. Tomlinson. Distributed arry radar[J]. IEEETrans. On AES,1983,19(6):231240.
    [154] B. D. Steinberg, E. Yadin. Distributed airborne array concepts[J].IEEE Trans. OnAES,1982,18(2):219227.
    [155] M. Skolnik. Radar handbook[M]. Second Edition. NY:McGraw–Hill;1990.
    [156] M. Skolnik. Radar handbook[M]. Third Edition. New York:McGraw–Hill;2008.
    [157] E. J. Candès. Compressive sampling[C]. Proceedings of the InternationalCongress of Mathematicians: Madrid, August2230,2006: invited lectures.2006:14331452.
    [158] C. Emmanuel, J. Romberg, T. Tao. Robust uncertainty principles: Exact signalreconstruction from highly incomplete frequency information[J]. IEEE Trans.onInformation Theory,2006,52(2):489509.
    [159] E. J. Candès, T. Tao. Near optimal signal recovery from random projections:Universal encoding strategies?[J]. Information Theory, IEEE Transactions on,2006,52(12):54065425.
    [160] D. L. Donoho. Compressed sensing[J]. Information Theory, IEEE Transactions on,2006,52(4):12891306.
    [161] F. Sebert, Y. M. Zou, L. Ying. ToePlitz block matrices in compressed sensing andtheir applications in imaging[C]. Proeeedings of International Conference onTechnology and applieations in Biomedicine, WashingtonD.C., USA:IEEE,2008,4750
    [162] HolgerRauhut. Circulant and ToePlitz matrices in compressed sensing, InProeessing SPARS'09, Saint Malo,2009
    [163] Radu Berinde, Piotr Indyk. Sparse recovery using sparse random matrices,2008,preprint.[online], Available:http://dsP.riee.edu/cs
    [164] M. Cetin, D. M. Malioutov, A. S. Willsky. A variational technique for sourcelocalization based on a sparse signal reconstruction perspective[C]. Acoustics,Speech, and Signal Processing (ICASSP),2002IEEE International Conference on.IEEE,2002,3: III2965III2968.
    [165] D. Maliouto, M. etin, A. S. Willsky. A sparse signal reconstruction perspectivefor source localization with sensor arrays[J]. Signal Processing, IEEE Transactionson,2005,53(8):30103022.
    [166]贺亚鹏,李洪涛,王克让,等.基干压缩感知的高分辩DOA估计[J].2011.
    [167] S. Cotter. Multiple snapshot matching pursuit for direction of arrival (DOA)estimation[C]. Proceedings of European Signal Processing Conference.2007:247251.
    [168]李小波,基于压缩感知的测量矩阵研究[D].北京交通大学硕士论文,2010
    [169] V. Cevher, A. C. Gurbuz, J. H. McClellan, et al. Compressive wireless arrays forbearing estimation[C]. Acoustics, Speech and Signal Processing,2008. ICASSP2008. IEEE International Conference on. IEEE,2008:24972500.
    [170] Y. Wang, G. Leus, A. Pandharipande. Direction estimation using compressivesampling array processing[C]. Statistical Signal Processing,2009. SSP'09.IEEE/SP15th Workshop on. IEEE,2009:626629.
    [171]薛会祥,赵拥军.基于CS阵列的DOA估计[J].电子测量与仪器学报,2012,26(3):208214.
    [172] A. C. Gurbuz, J. H. McClellan, V. A. Cevher. compressive beamformingmethod[C]. Acoustics, Speech and Signal Processing,2008. ICASSP2008. IEEEInternational Conference on. IEEE,2008:26172620.
    [173]杨璋,程旺宗.基于CS理论的LFM信号DOA估计倡[J].计算机应用研究,2009,26(12):46424644
    [174] Y. Yu, A. P. Petropulu, H. V. Poor. MIMO radar using compressive sampling[J].Selected Topics in Signal Processing, IEEE Journal of,2010,4(1):146163.
    [175]孙磊,王华力,熊林林,等.基于贝叶斯压缩感知的子空间拟合DOA估计方法[J].信号处理,2012,28(6):827833.
    [176] Chih Heng Lin. Distributed subarray antennas for multifunction phased arrayradar[D]. Master thesis, Naval Postgraduate School, California,USA,2003.
    [177] J. S. G. Noris.Wirelessly networks for beamforming in distributed phased arrayradar[D]. Master thesis, Naval Postgraduate School, California,USA,2007.
    [178] I. Tornazakis. Development of a distributed digital array radar[D]. Master thesis,Naval Postgraduate School, California,USA,2008.
    [179]赵飞.美军下一代雷达系统及其分布式孔径相干处理技术发展[C].空天防御雷达探测技术文集,中国航天科工集团第二研究院二十三所,2010,112114.
    [180]史仁杰.新一代弹道导弹防御雷达-分布式相参合成孔径相控阵雷达[C].空天防御雷达探测技术文集,中国航天科工集团第二研究院二十三所,2010,16.
    [181]曹哲,柴振海,高红卫.分布式阵列相参合成雷达技术研究与试验[J].现代防御技术,2012,40(4):111.
    [182] J. Dorey, Y. Blanchard, F. Christophe. Le projet ‘RIAS’: une approche nouvelle duradar des surveillance aerienne[C]. Colloque International sur le Radar, Paris, april,1984:505~510.
    [183] A. S. Luse, et al. Experimental results on RIAS digital beamforming radar[C].Int.Conf. on Radar, London,1992:505510.
    [184] J. P. Burg.Maximum entropy spectral analysis[C]. Proc. of the37th meeting of theAnnual Int. SEG Meeting,1967.
    [185] J. Capon. High resolution frequency wavenumber spectrum analysis[J].Proceedings of the IEEE,1969,57(8):14081418.
    [186] J. A. Cadzow, Y. S. Kim and D. C. Shiue. General direction of arrival estimation:a signal subspace approach[J]. IEEE Trans. on AES,1989,25(1):3146.
    [187] R. O. Schmidt. Multiple emitter location and signal parameter estimation[J]. IEEETrans. on AP,1986,34(3):276280.
    [188] B. D. Rao and K. V. S. Hari. Performance analysis of root MUSIC[J]. IEEE Trans.on Acoustics, Speech, and Signal Processing,1989,37(12):19391949.
    [189] M. Pesavento, A. B. Gershman, M. Haardt, Unitary root MUSIC with areal valued eigendecomposition: a theoretical and experimental performancestudy[J]. IEEE Trans. on SP,2000,48(5):13061314.
    [190] M. D. Zoltowski, G. M. Kautz and S. D. Silverstein. Beamspace root MUSIC[J].IEEE Trans. on SP,1993,41(1):344364.
    [191] D.Kundu. Modified MUSIC algorithm for estimating DOA of signals[J]. SignalProcessing,1996,48:8589.
    [192] R. Kumaresan and D. W. Tufts. Estimating the angle of arrival of multiple planewaves[J]. IEEE Trans. on AES,1983,19(1):134139.
    [193] K. M. Buckley and X. L. Xu. Spatial spectrum estimation in a location sector[J]IEEE Trans. on Acoustics, Speech, and Signal Processing,1990,38(11):18421852.
    [194] F. Li, R. J. Vaccaro, D. W. Tufts, Performance analysis of the state spacerealization(TAM)and ESPRIT algorithms for DOA estimation[J]. IEEE Trans. onAP,1993,39(3):418423.
    [195] R. Roy, A. Paulraj, T. Kailath. ESPRIT a subspace rotation approach to estimationof parameters of cisoids in noise[J]. IEEE Trans. on Acoustics, Speech, and SignalProcessing,1986,34(5):13401342.
    [196] R. Roy and T. Kailath. ESPRIT Estimation of signal parameters via rotationalinvariance techniques[J] IEEE Trans. on Acoustics, Speech, and Signal Processing,1989,37(7):984995.
    [197] A. N. Lemma, A. J. Veen, E. F. Deprettere. Multiresolution ESPRIT algorithm[J].IEEE Trans. on SP,1999,47(6):17221726.
    [198] P. Stoica, A. Nehorai, MUSIC, Maximum likelihood, and Cramer Rao bound[J]IEEE Trans. on Acoustics, Speech, and Signal Processing,1989,37(5):720741.
    [199] B. Ottersten, M. Viberg, P. Stoica, et al. Exact and large sample ML techniques forparameter estimation and detection in array processing[J] Radar array processing,1993:99151.
    [200] M. Viberg and B. Ottersten. Sensor array processing based on subspace fitting[J]IEEE Trans. on SP,39(5):11101121.
    [201] M. Viberg, B. Ottersten, T. Kailath. Detection and estimation in sensor arraysusing weighted subspace fitting[J] IEEE Trans. on SP,1991,39(11):24362449.
    [202] J. A. Cadzow. A high resolution direction of arrival algorithm for narrow bandcoherent and incoherent sources[J] IEEE Trans. on Acoustics, Speech, and SignalProcessing,1988,36(7):965979.
    [203] I. Ziskind, M. Wax. Maximum likelihood localization of multiple sources byalternation projection[J]. IEEE Trans. on Acoustics, Speech, and Signal Processing,1988,36(5):15531560.
    [204] P. Stoica, K. C. Sharman. Novel eigen analysis method for direction estimation[J]IEE Proceedings F,1990,137(1):1926.
    [205] P. Stoica, K. C. Sharman. Maximum likelihood methods for direction of arrivalestimation[J] IEEE Trans. on Acoustics, Speech, and Signal Processing,1990,38(7):11321143.
    [206] M. I. Miller, D. R. Fuhrmann. Maximum likelihood narrow band direction findingand the EM algorithm[J] IEEE Trans. on Acoustics, Speech, and Signal Processing,1990,38(5):15601577.
    [207] J. A. Fessler, A. O. Hero. Space alternating generalized expectation maximizationalgorithm[J] IEEE Trans. on SP,1994,42(10):26642677.
    [208] P. J. Chung, J. F. Bohme. Comparative convergence analysis of EM and SAGEalgorithm in DOA estimation[J] IEEE Trans. on SP,2001,49(12):29402949.
    [209] Y. Bresler, A. Macovski. Exact maximum likelihood parameter estimation ofsuperimposed exponential signals in noise[J] IEEE Trans. on Acoustics, Speech,and Signal Processing,1986,34(5):10811089.
    [210] W. A. Gardner. Exploitation of spectral redundancy on cyclostationary signals[J].IEEE Trans. on SP Magazine,1991,8(4):1437.
    [211] S. V. Schell. Asymptotic moments of estimated cyclic correlation matrices[J].IEEE Trans. on SP,1995,43(1):173180.
    [212]张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628633.
    [213] E. J. Candès. The restricted isometry property and its implications for compressedsensing[J]. Comptes Rendus Mathematique,2008,346(9):589592.
    [214]薛会祥,赵拥军,郭磊.基于交替下降求解的稀疏信号重建算法[J].信息工程大学学报,2012,13(2):211217.
    [215] S. S. Chen, D. L. Donoho, M. A. Saunders. Atomic decomposition by basispursuit[J]. SIAM journal on scientific computing,1998,20(1):3361.
    [216] S. J. Kim, K. Koh, M. Lustig, et al. A method for large scale regularizedleast squares[J]. IEEE Journal of Selected Topics in Signal Processing,2007,4(1):606617
    [217] M. A. T. Figueiredo, R. D. Nowak, S. J. Wright. Gradient projection for sparsereconstruction: Application to compressed sensing and other inverse problems[J].Selected Topics in Signal Processing, IEEE Journal of,2007,1(4):586597.
    [218] I. Daubechies, M. Defrise, C. De Mol. An iterative thresholding algorithm forlinear invers Algorithmic linear dimension e problems with a sparsity constraint[J].Communications on pure and applied mathematics,2004,57(11):14131457.
    [219] S. Mallat and Z. Zhang. Matching pursuit with time frequency dictionaries[J].IEEE Trans. on Signal Processing,1993,41(12):33973415.
    [220] J. Tropp, A. C. Gilbert. Signal recovery from partial information via orthogonalmatching pursuit[J].2005:46554666.
    [221] P. Schniter, L. C. Potter, J. Ziniel. Fast Bayesian matching pursuit: Modeluncertainty and parameter estimation for sparse linear models[J]. IEEE Trans.Signal Process,2009.
    [222] D. L. Donoho, I. Drori, Y. Tsaig, et al. Sparse solution of underdetermined linearequations by stagewise orthogonal matching pursuit[M]. Department of Statistics,Stanford University,2006.
    [223] D. Needell and J. A. Tropp. CoSaMP:Iterative signal recovery from incompleteand inaccurate samples[J].Applied and Computational Harmonic Analysis,2009,26:301321.
    [224] M. W. Seeger. Bayesian inference and optimal design for the sparse linearmodel[J]. Journal of Machine Learning Reserch,2008,9:759813.
    [225] H. Mohimani. B. abaie Zadeh C. A. M. Jutten. Fast Approach fo r OvercompleteSparse Decomposition Based on Smoothedl0Norm[J]. IEEE Trans.on SignalProcessing,2009,57(1):289301.
    [226]陈根华,陈伯孝,杨明磊.分布式相参阵列及其二维高精度方向估计[J].电子与信息学报,2012,34(11):26212627.
    [227] E. Nilsson. Radar with separated subarray antennas[C]. In Proc. The2008RadarConference,194199.
    [228] S. Coutts, et al. Distributed Coherent Aperture Measurements for Next GenerationBMD Radar[J].2006,390393.
    [229] Bo Li, Bin Xu, Yeshu Yuan. Preestimation Based Array Interpolation Approach toConherent Source Localization Using Multiple Sparse Subarrays[J]. IEEE SingalProcessing Letters.16(2):81~84.
    [230] Bo Li, Bin Xu, Yeshu Yuan.Enhanced DOA Visibility of Correlated Sources forMultistatic Shipborne Surface Wave Radar[C]. Proceedings of2009IEEE RadarConference. Pasadena,USA,2009:1087~1091.
    [231]李博.分布式多载舰地波超视距雷达阵列信号重构技术研究[D].哈尔滨:哈尔滨工业大学,2009.
    [232] E. Fishler, A. Haimovicht, R. Blumt, et al. MIMO radar: an idea whose time hascome[C]. Proceedings of the IEEE Radar Conference. Philadelphia: IEEE,2004:7178.
    [233] N. H. Lehmann, A. M. Haimovich,R. S. Blum, and Cimini L.J. High resolutioncapabilities of MIMO radar[C]. in Proc.40th Asilomar Conf. Signals, Systemsand Computers, Nov.2006:2530.
    [234] A. M. Haimovich, R. S. Blum, L. J. Cimini. MIMO radar with widely separatedantennas[J]. IEEE Signal Processing Magazine,2008,25(1):116129.
    [235] M. A. Herman, T. Strohmer. High Resolution Radar via Compressed Sensing[J].IEEE Trans.Signal Processing,2009,57(6):22752284.
    [236] R. Baraniuk, P. Steeghs. Compressive Radar Imaging[C]. Proc. of RadarConference. Boston: IEEE Press,2007:128133.
    [237] Jun Li, Mengdao Xing, Shunjun Wu. Application of Compressed Sensing inSparse Aperture Imaging of Radar[C].2nd International Asia Pacific Conferenceon Synthetic Aperture Radar. Xi’an: IEEE Press,2009:651655.
    [238] Yabo Liu, Yinghui Quan, Jun Li, et al. SAR Imaging of Multiple Ships Based onCompressed Sensing[C].2nd International Asia Pacific Conference on SyntheticAperture Radar. Xi’an: IEEE Press,2009:112115.
    [239] Yao Yu, A. P. Petropulu, H. V. Poor. Compressive sensing for MIMO Radar[C].Acoustics, Speech and Signal Processing. Taipei: IEEE Press,2009:30173020.
    [240] Yao Yu, A. P. Petropulu, H. V. Poor. Range estimation for MIMO step frequencyradar with compressive sensing[C]. International Symposium on Communications,Control and Signal Processing. Limassol: IEEE Press,20104th:15.
    [241] Yao Yu, A. P. Petropulu, H. V. Poor. Reduced complexity angle Doppler rangeestimation for MIMO radar that employs compressive sensing[C]. ConferenceRecord of the43th Asilomar Conference on Signals, Systems and Computers.Pacific Grove: IEEE Press,2009:11961200.
    [242] E. Candes, T. Tao. Decoding by linear programming[J]. IEEE Transactions onInformation Theory,2004(51):42034215.
    [243]李学仕,孙光才,邢孟道.基于压缩感知的下视三维SAR成像新方法[J]电子与信息学报,2012,34(5):10171023.
    [244] Ying Wang, Geert Leus, Ashish Pandharipande. Direction estimation usingcompressive sampling array processing[J]. IEEE/SP15th Workshop on StatisticalSignal Processing,2009:8184.
    [245]傅迎华.可压缩传感重建算法与QR分解[J]计算机应用,2008,28(9),23002302.
    [246] G. Golub, C. Loan. Matrix computations[M].1996.
    [247] S. Szarek. Condition numbers of random matrices[J]. Journal of Complexity,1991,7(2):131149.
    [248] R. Rubinstein, M. Zibulevsky, M. Elad. Efficient implementation of theK SVD algorithm using batch orthogonal matching pursuit[J/OL].http://www.cs.technionac.il/~ronrubin/Publications/KSVD OMP–v2.pdf,20089315.
    [249] R. O. Schmidt. Multilinear array manifold interpolation[J]. IEEE Trans. on SP,1992,40(4):857866
    [250] A. J. Weiss, B. Friedlander. Manifold interpolation for diversely polarizedarrays[J]. IEE Proceedings Radar, Sonar Navig,1994,141(1):1924
    [251] M Zhang, Z. D. Zhu. DOA estimation with sensor gain, phase and positionperturbations[C]. Proceedings of the IEEE National Aerospace and ElectronicsConference, NAECO1993,6769
    [252] B. C. Ng, W. Ser. Array shape calibration using sources in known locations[C].Proceedings of Singapore ICCS/ISITA’92,1882,836840
    [253] N. Fistas, A. Manikas. A new general global array calibration method[C].Proceeding of ICASSP94. Adelaide, Australia: IEEE Press,1994.7376.
    [254] B. C. Ng, C. M. Samson. Sensor array calibration using a maximum likelihoodapproach[J]. IEEE Trans. on AP,1996,44(6):827835.
    [255] K. Stavropoulos, A. Manikas. Array calibration in the presence of unknown sensorcharacteristics and mutual coupling[C]. Proceedings of the EUSIPCO2000.Finland: IEEE Press,2000.14171420.
    [256] B. Friedlander, A. J. Weiss. Direction finding in the presence of mutualcoupling[J]. IEEE Trans. on AP,1991,39(3):273284.
    [257] C. M. See, B. K. Poh. Parametric sensor array calibration using measured steeringvectors of uncertain locations[J]. IEEE Trans. on SP,1999,47(4):11331137.
    [258] A. J. Weiss, B. Friedlander. Eigenstructure methods for direction finding withsensor gain and phase uncertainties[J]. Circuits, System Signal processing,1990,9(3):271300
    [259] B. P. Flanagan, K. L. Bell. Improved array self calibration with large sensorposition errors for closed space sources[J]. Proceeding of IEEE Sensor Array andMultichannel Workshop2000,484488
    [260]王布宏,王永良,陈辉,郭英.方位依赖阵元幅相误差校正的辅助阵元法[J].中国科学E辑信息科学,2004,34(8):906918.
    [261]王永良,陈辉,彭应宁等.空间谱估计理论与算法[M].清华大学出版社,2005.
    [262]苏洪涛,张守宏,保铮.发射阵列互耦及幅相误差校正[J].电子与信息学报,2006,28(5):941944.
    [263]刘春波,陈伯孝,陈多芳,等.双基地高频地波SIAR通道幅相误差的自校准方法[J].电子与信息学报,2009,31(3):614618.
    [264]陈多芳,秦国栋,陈伯孝,等.基于参数转移的岸舰双基地波超视距雷达发射阵幅相扰动估计[J].电子学报,2011,39(9):21842189.
    [265]陈多芳,陈伯孝,刘春波等.岸舰双基地综合脉冲孔径雷达的初始相位校准及误差分析[J].电子与信息学报,2008,30(2):302305
    [266]陈多芳,陈伯孝,刘春波等.基于FFT的双基地综合脉冲孔径雷达发射阵校准[J].电子学报,2008,36(3):551555
    [267] P. Comon. Independent component analysis—a new concept?[J] Signal Process.36(1994)287314
    [268] Andrzej CICHOCKI, Shun ichi AMARI.自适应盲信号与图像处理[M].电子工业出版社,2005.
    [269] C. Hao, T. Bin, D. Jing jing. Single channel pulse train radar signal separationusing algebraic method[C]. Proc. of IEEE Radar Conference,2009.8:382385
    [270]彭耿,王丰华,黄知涛,姜文利.单通道混合信号中周期信号的盲分离[J].湖南大学学报,2010,37(4):4245.
    [271]倪晋平,马远良,孙超.用独立分量分析算法实现水声信号盲分离[J].声学学报,2002,27(4):321326.
    [272] S. Amari, T. P. Chen, A. Cichocki. Stability analysis of adaptive blind sourceseparation [J]. Neural Networks,1997,10(8):13451351.
    [273]熊年禄,唐存琛,李行健.电离层物理概论[M].武汉:武汉大学出版社,1999.
    [274] Xianrong Wan, Hengyu Ke, Biyang Wen. Adaptive ionospheric clutter suppressionbased on subarrays in monostatic HF surface wave radar[J]. IEE ProceedingsRadar, Sonar and Navgation,2005,152(2), pp:8996
    [275] R. J. Riddolls, R. S. Adve. Two Dimensional Adaptive Processing For IonosphericClutter Mitigation in High Frequency Surface Wave Radar[C]. IEEE RadarConference,2009, pp:14
    [276] Yanhui Liu, Zaiping Nie, Zhiqin Zhao, Qing Huo Liu. A Cascaded CorrectionMethod to Reduce the Contamination of Ionospheric Frequency Modulation forHF Skywave Radars[C]. APSURSI'09.IEEE,2009, pp:14
    [277] Xianrong Wan, Feng Cheng, Hengyu Ke. Sporadic E Ionospheric ClutterSuppression in HF Surface Wave Radar[C]. IEEE Radar Conference,2005, pp:742746
    [278] Xianrong Wan, Xiong Xinlong, Hengyu Ke. Ionospheric Clutter Suppression inHF Surface Wave Radar OSMAR[C]. ISAPE'06.7th International Symposium on,2006, pp:13
    [279] Xianrong Wan, Feng Cheng, Hengyu Ke. Experimental trials on ionosphericclutter suppression for high frequency surface wave radar[J]. IEE ProceedingsRadar, Sonar and Navgation,2006,153(1), pp:2329
    [280] K. Harmanci, J. Krolik. Adaptive Temporal Processing For Equatorial SpreadDoppler Clutter Suppression[C]. ICASSP'00. Proceedings.2000IEEEInternational Conference on,2000, pp:30413044
    [281]熊新农,万显荣,柯亨玉等.基于小波分析的高频地波雷达电离层杂波抑制[J].华中科技大学学报(自然科学版),2008,36(6):7780
    [282]熊新农,柯亨玉,万显荣.基于特征值分解的高频地波雷达电离层杂波抑制[J].电波科学学报,2007,22(6):937940
    [283]熊新农,万显荣,柯亨玉等.基于时频分析的高频地波雷达电离层杂波抑制[J].系统工程与电子技术,2008,30(8):13991402
    [284]黄坚,钟志峰.高频地波雷达电离层杂波抑制研究[J].武汉大学学报(信息科学版),2011,36(2):248251
    [285] G. A. Fabrizio, Y. I. Abramovich, et al. Adaptive cancellation of nonstationaryinterference in HF antenna arrays[J].IEE Proc. Radar Sonar Navig,1998,145(1):1924.
    [286]张国毅,刘永坦.高频地波超视距雷达的极化滤波技术研究[J].系统工程与电子技术,2000,22(3):5557.
    [287]杨俊,文必洋,等.用水平天线消除天波干扰的算法研究[J].电波科学学报,2004,19(2):176181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700