用户名: 密码: 验证码:
MCT1、CD147在人肝癌中的表达及其反义RNA表达载体对肝癌细胞的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Study of the Experession of MCT1 and CD147 in Human Hepatocellar Carcinoma and the Influence of the Anti-sense Reconstructed Vector of CD147 and MCT1 to HEPG2
  • 作者:李劲东
  • 论文级别:博士
  • 学科专业名称:外科学
  • 中文关键词:CD147 ; 单羧酸转运蛋白-1(MeT1) ; 肝癌
  • 学位年度:2010
  • 导师:李宜雄
  • 学科代码:100210
  • 学位授予单位:中南大学
  • 论文提交日期:2010-03-01
摘要
目的:在体外试验中使用CD147及MCT1反义RNA表达载体影响肝癌细胞表面MCT1的表达,观察它对肿瘤细胞内环境的干扰、对糖酵解代谢影响和抑制肿瘤细胞生长的作用。通过免疫组化方法检测人肝癌中MCT1和CD147的表达,探讨其表达与肿瘤临床及病理学的关系。
     方法:体外实验采用HEPG2人肝癌细胞株进行实验。同时构建MCT1及CD147的反义RNA表达载体,用于转染HEPG2细胞株,HEPG2细胞分为未转染组,转染空质粒组和转染组,用western-blot方法检测MCT1及CD147质粒转染后对MCT1蛋白表达的影响,并用检测各组细胞内pHi及乳酸含量,绘制三组细胞的生长曲线并记录各组生长数据,以上资料均作统计学分析。收集湘雅医院2002年-2008年间60例肝癌手术切除标本,对照组50例为正常肝组织。将肝癌标本和对照正常肝组织标本制成石蜡切片并进行免疫组化染色,检测不同病理级别及临床分级肝癌组织标本和对照标本MCT1和CD147的表达水平。
     结果:在细胞水平研究中,MCT1反义表达载体可抑制MCT1在细胞膜的表达,而CD147反义表达载体则可抑制MCT1在肿瘤细胞的功能,两种载体转染肝癌细胞后,均可引起肿瘤细胞pHi下降,细胞内乳酸堆积,细胞的生长受到抑制。肝癌标本中均有MCT1和CD147高表达,且临床病理级别高的肝癌组中二者表达水平低于于临床病理级别低的肝癌组,差异有统计学意义。
     结论:运用MCT1及CD147反义RNA表达载体转染肝癌细胞,可影响MCT1的正常表达或功能,使得肿瘤细胞pHi降低、细胞内乳酸堆积、生长受到抑制。肝癌中存在MCT1和CD147的高表达,且MCT1及CD147表达水平与病理分级程度密切相关。MCT1及CD147与肝癌患者临床预后相关,两者表达水平高,更易复发,且生存期较短。
Objective:The study was to explore the expression level of MCT1 and CD 147 in human hepatocellular carcinoma,espacially the changes of expression level in different clinical phases and pathological grades by using immunohistochemical localization.MCTl and CD 147 gene anti-sense reconstructed vector were used to influence the experession of MCT1 on HEPG2,so that the lactic acid metabolism will be disturbed and cell growth will be delayed.
     Methods:60 sections were obtained from patients with hepatocellular carcinoma. 50 cases with normal liver tissues were included into the control group.All sections were immunohistochemcally stained to observe the difference of CD147,MCT1 expression level between different pathological grade.Two kinds of anti-sense reconstructed vector (CD147 and MCT1)were transfected into the HEPG2.The cells were divided into three groups:HEPG2、HEPG2-PCIneo and HEPG2-PCI-MCT1(CD147).After transfection, the western-blot was used to detected the change of MCT1 expression. The pHi, intracellular lactic acid content and the tumor proliferation were recorded for comparison.
     Results:The expression rates of CD147 and MCT1 in hepatocellular carcinoma tissues were 76.67% and 81.67%, respectively, which were significantly higher than those in normal liver tissue (P< 0.01). The expressions of CD147 and MCT1 were closely correlated with degree of differentiation and metastasis, but no association was observed with Child grades. There was a significant correlation between the expressions of CD147 and MCT1 in hepatocellular carcinoma (P< 0.01).
     In cell culture trial,the expression of MCT1 were significantly changed after transfection of MCT1 gene anti-sense reconstructed vector.And after the transfection of CD147 gene anti-sense reconstructed vector,the MCT1 expression was invalid. After transfection, the pHi of HEPG2 was decreased.The lactic acid content increased,grow belocity retarted,doubling time increased(P<0.05).
     Conclusion:The overexpressions of CD147 and MCT1 may be used as one of the objective marks to estimate the behaviors of hepatocellular carcinoma.The CD147,MCT1 anti-sense reconstructed vector could downregulated the expresion of the MCT1.And the hepatocellular carcinoma cell's lactic acid metabolim could be disturbed and cell growth could be delayed. We have found a new possible path for hepatocellular carcinoma therapy,but the detailed mechanism between MCT1 and CD 147 is remain uncertain and in vivo trial is necessary to research.
引文
[1]Suzuki S, SatoM, SenooH, etal. Direct cell cell interaction enhances proMMP2 production and activatation in coculture of laryngeal cancer cells and fibroblasts:involvement of EMMPRIN andMT1MMP[J]. Exp CellRes,2004,293:259-266.
    [2]:LiHG, XieDR, ShenXM, etal. Clinicopathological significanceof expression ofpaxillin, syndecan 1 and EMMPRIN in hepatocellular carcinoma[J]. World J Gastroentero,1 2005,11:1445-1451.
    [3]VanderJ, MichelFP, Sweep FC, etal. Correlation ofreversion inducing cysteine richproteinwith kazalmotifs (RECK) and extracelularma trix metalloproteinase inducer (EMMPRIN), withMMP22, MMP29, and survival in colorectal cancer [J]. Cance Letters,2006,237: 289-297.
    [4]ReimersN, ZafrakasK, Assmann V, et al. Expression ofcellularmatrixmetalloproteases induceronmicrometastatic anmarymammary carcinoma cells [J]. Clin CancerRes,2004, (10): 3422-3428.
    [5]Kanekura T, Chen X, KanzakiT. Basigin (CD147) is expronmelanoma ceils and induces tumor cell invasion by stimuproduction ofmatrix metalloproteinases by fibroblasts [J]. Cancer,2002,99(4):520-525.
    [6]Davidson B, Givant-horwitzV, LazaroviciP. Matrixmetallteinase, EMMPRIN and mitogen-activated protein(MAPK):co-expression in metastatic serous ovarian carci[J]. Clin ExpMetastasis,2003,20(7): 621-631.
    [7]ThronsC, FellerAC, MerzH. EMMPRIN (CD147) is exprinHodgkin's lymphoma anaplastic large cell lymphoma. An inohistochemical study of60 cases [J]. AnticancerRes,2002(4):1983-198.6.
    [8]李浩,游潮;CD147/EMMPRIN与脑胶质瘤关系的研究[J];华西医学;2005年02期:178-179
    [9]Roy CC et al. Short-chain fatty acids:ready for-prime time[J]?Nutr Clin Pract,2006,21 (4):351-366o
    [10]曾军英,韩雪峰,谭支良.单羧酸转运蛋白家族及其生物学功能[J].生命的化学,2008,28(4):404-407.
    [11]Halestrap AP et al. The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond[J]. Pflugers Arch,2004,447 (5):619-628
    [12]Halestrap AP et al. The proton-linked monocarboxylate transporter (MCT) family:structure, function and regulation [J]. Biochem J,1999, 343 Pt 2:281-299
    [13]Enerson BE et al. Molecular features, regulation, and function of monocarboxylate transporters:implications for drug delivery[J]. J Pharm Sci,2003,92(8):1531-1544
    [14]Visser WE et al. Thyroid hormone transport by monocarboxylate transporters [J].Best Pract Res Clin Endocrinol Metab,2007,21(2): 223-236
    [15]Kirk P, Wilson MC, Heddle C, et al. CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression[J]. EMBO Journal,2000,19 (15):3896-3904.
    [16]Philp NJ, Wang D, Yoon H, et al. Polarized expression of monocarboxylate transporters in human retinal pigment epithelium and ARPE-19 cells[J]. Investigative Ophthalmology and Visual Science,2003b,44(4):1716-1721.
    [17]Ochrietor JD, Linser PJ.5A11/Basigin gene products are necessary for proper maturation and function of theretina[J]. Developmental Neuroscience,2004,26(5-6):380-387.
    [18]Wilson MC, Meredith D, Fox JE, et al. Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4:The ancillary protein for the insensitive MCT2 is EMBIGIN (gp70)[J]. Journal of Biological Chemistry,2005,280(29):27213-27221.
    [19]Eladari D, Chambrey R, Irinopoulou T, et al. Polarized expression of different monocarboxylate transporters in rat medullary thick limbs of Henle[J]. J Biol Chem,1999;274(40):28420-6.
    [20]Bonen. A, Mcullagh KJ, Putman CT, et al. Short-term training Increases Human musele MCT1 and femoral venous lactate in relation to muscle laetate[J].Am J Physiol,1998,274(1):E102-7.
    [21]Poole RC, Halestrap AP. Interaction of the erythrocyte lactate transporter(monoearboxylate transporterl)with an integral 70-kDa membrane Glyeoprotein of the immunoglobulin superfamily [J]. J Biol Chem,1997,272(23):14624-8.
    [22]Ritzhaupt A, Wood IS, Ellis, e tal. Identification and characterization of; monocarboxylate transporter(MCT1) in pig and human colon:its potential to transport L-lactate as well as butyrate [J]. J Physiol(Lond),1998:513(3):719-32.
    [23].Von Grumbekow L, Elsner P, Hellsten Y, et al.Kineties of laetate and pyruvate transport in cultured rat myotubes[J]. Biochim Biophys Acta,1999; 1417(2):267·75
    [24]Madiorn RP, Cragoe EJJ, Tannock IF. Therapeutic potential of analogues of amiloride:inhibition of the regulation of intracellular pH as a possible mechanism of tumor selective therapy[J]. Br J cancer,1993,67:297-303.
    [25]Li Dy,et al. Intracellular pH and sodium-proton exchange activity of lymphocytes in stroke-prone spontancously hypertensive rats[J].Clin Exp Pharm Physiol,19.91,18:589.
    [26]Rink TJ,Tisen RY, Pozzan T.Cytoplasmic pH and free Mg2+in lymphocytes[J]. J cell Biol,1982,95:189-196.
    [27]司徒镇强,吴军正.细胞培养[M].世界图书出版公司,2007:175-176.
    [28]Mercola D, et al.Antisense approaches to cancer gene therapy-[J]. Cancer Gene The,1995,2(2):47-59.
    [29]Whartenby KA, et al. The biology of cancer gene therapy [J]. Lab Invest,1995,72(2):131.
    [30]Cavenee WK et al. The genetic basis of cancer.[J]. Sci Am,1995,
    272(3):72.
    [31]Khochbin S et al. Antisense RNA and p53 regulation in induced murine cell differentiation[J]. Ann NY AcadSei,1992,660:77-88.
    [32]Moxam C M, Malbon C C. Insulin action impaired by deficiency of the G-protein subunit Gia2. Nature,1996,379 (6548):840-844.
    [33]Sidney P. Symptom-limited graded treadmill exercise testing in young adults in the CARDIA study[J]. Ann NY Acad Sci,1992,660:251-265.
    [34]Ge L, et al. Cleavage of inhibin alpha subunit mRNA by engineered ribozyme[J].Ann NY AcadSci,1992,660:70-77.
    [35]Carter G, et al. Antisense technology for cancer therapy:does it make sense[J]? Br J Cancer,1993,67:869-876.
    [36]David TD. Ann NY AcadSci,1992,660:70-77.
    [37]Bichard WW. Gene inhibition using antisense oligonucleotides. Nature,1994; 372:133.
    [38]Bennet CF, Chiang MY, Chan C, et al. Cationic lipids enhance cellar uptake and activity of phisphorothioate antisense oligoneucleotides, Mol Pharmacol,1992; 41:1223.
    [39]Andrew P. Halestrap,Nigel T. Price.The proton-linked monocarboxylate transporter(MCT).family:structure, function and regulation[J]. Biochem. J,1999,343(2):281-299.
    [40]彭黎明,王曾礼.细胞凋亡的基础与临床[M].人民卫生出版社:1-15.
    [41]Soini Y, Paakko P, Lohto VP, AM. Histopathological evaluation of apoptosis in cancer[J]. J Pathol,1998,153(4):1041-1053.
    [42]Leist M, Nicotera P. The shape of cell death[J]. Biochem Biophys Res Commum,1997,236 (1):1-9.
    [43]金伯泉.白细胞分化抗原[M].金佰泉主编.细胞和分子免疫学.第2版,北京:科学出版社,2001,4-7.
    [44]Sun J, Hemler ME.Regulation of MMP-1 and MMP-2 production through CD147/extracellular matrix metalloproteinase inducer interrelations [J]. Cancer Res,2001,61 (5):2276-2281.
    [45]Marieb EA, Zoltan-Jones A, Li R, et al.Emmprin promotes anchorage
    -independent growth in human mammary carcinoma cells by stimulating hyaluronan production[J]. Cancer Res,2004,64(4):1229-32.
    [46]Kanekura T, Chen X, Kanzaki T. Basigin(CD147) is expressed on melanoma cells and induces tumor cell invasion by stimulating production of matrix metalloproteinases by fibroblasts[J].Int J cancer, 2002,99(4):520-8.
    -[47]Suzuki S, Sato M, Senoo H, et al. Direct cell-cell interaction enhances pro-MMP-2 production and activation in co-culture of laryngeal cancer cells and fibroblasts:involvement of EMMPRIN and MT1-MMP[J]. Exp Cell Res,2004,293 (2):259-66.
    [48]Guo H, Zucker S, Godon MK, et al. Stimulation of matrix metalloproteinase production by recombinant extracellular matrix metalloproteinase inducer from transfected Chinese hamstery ovarairy cells[J].J Biol Chem,1997,272(1):24-27.
    [49]陈翔,金藏拓郎,张桂英等.皮肤鳞状细胞癌中Basigin/CD147表达与肿瘤进展的相关性[J].中华皮肤科杂志,2002,35(4):272-275.
    [50]Baba M, Itoh K, Tatsuta M. Glycine-extend gastrin induces matrix metallproteinase-1 and 3-mediated invasion of human colon cancer cells through type I collagen geland Matrigel[J]. Int J Cancer,2004,111(1):23-31.
    [51]Marieb EA, Zoltan-Jones A, Li R, et al.Emmprin promotes anchorage-independent growth in human mammary carcinoma cells by stimulating hyaluronan production[J]. Cancer Res,2004,64 (4):1229-1232.
    [52]Suzuki S, Sato M, Senno H. Direct cell-cell interaction enhances pro-MMP-2 production and activation in co-culture of laryngeal cancer cells and fibroblast:involvement of EMMPRIN and MT1-MMP[J]. Exp Cell Res,2004,293 (2):259-266.
    [53]Kanekura T, Chen X, Kahzaki T. Basigin(CD147)is expressed on melanoma and induces tumor cell invasion by stimulating production of matrix metalloproteinase by fibroblast[J]. Int J Cancer,2002,99(4):520-528.
    [54]Guo H,Li R, Zuker S, et al. EMMPRIN(CD147), an inducer of matrix
    metalloproteinase synthesis, also binds interstitial colagenase to the tumor cell surface[J]. Cancer Res,2000,60 (4):888-891.
    [55]Reimers N, Zafrakas K, Assmann V, et al. Expression of extracllular matrix metalloproteinases inducer on micrometastatic and primary mammary carcinoma cells[J].Clin Cancer Res,2004,10 (10):3422-3428.
    [56]陈翔,金藏拓郎,张桂英等.皮肤鳞状细胞癌转移灶中基质金属蛋白酶的表达[J].湖南医科大学学报,2001,26(4):297-300.
    [57]余昶,熊永炎.肝细胞性肝癌中MIF.CD147和MMP-9蛋白的表达及意义[J].武汉大学学报,2009,30(3):358-362.
    [58]王利霞,楼善坚,沈蔚.CD147和MMP-2.VEGF在原发性肝癌的表达及意义[J].实用肿瘤学杂志,2005,19(2):12-13.
    [59]王贤辉,陈志南,郭晓楠.CD147分子与MMPs在肝癌细胞系中表达的相关性[J].第四军医大学学报,2001,22(3):13-17.
    [60]Kirk P, Wilson MC, Heddle C, et al. CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression[J]. EMBO J,2000,19(15):3896-904.
    [61]Billat VL, Sirvent P, Py G, et al. The concept of maximal lactate steady state:a bridge between biochemistry, physiology and sport science[J]. Sports Med,2003,33(6):407-26.
    [62]Mac M, Nalecz KA. Expression of monocarboxylic acid transports (MCT) in brain cells. Implication for branched chain alpha-ketoacids transport in neurons[J]. Neurochem Int,2003,43(4-5):305-309.
    [63]Ishibashi Y,Matsumoto T, Niwa M, et al. CD147 and matrix metalloproteinase-2 protein expression as significant prognostic factors in esophageal squamous cell carcinoma[J]. Cancer,2004, 101(9):1994-2000.
    [64]Jocelyn E, Manning F, David M, et al. Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle[J].J Physiol,2000,529(2):285-293.
    [65]Halestrap AP, Price NT. The proton-linked monocarboxylate transporter (MCT)family:structure, fuction and regulation[J]. Biochem J,1999, 343 (P2):281-299.
    [66]Price NT, Jackson VN, Halestrap AP. Cloning and sequencing of four new mammalian monocaboxylate transporter(MCT) homologues confirms the existence of a transporter family with an ancient past[J]. Biochem J,1998,329 (p2):321-328.
    [67]Fishbein WN, Merezhiinskaya N, Foellmer JW. Relative distribution of three major lactate transporters in frozen human tissues and their localization in unfixed skeletal muscle[J]. Muscle Nerve,2002, 26(1):101-112.
    [68]Sepponen K, Koho N, Puolanne E,et al. Distribution of monocarboxylate transporter isoforms MCT1,MCT2 and MCT4 in porcine muscles[J].Acta Physiol Scand,2003,177(1):79-86.
    [69]Rafiki A, Boulland JL, Halestrap AP, et al. Highly differential expression of the nonocarboxylate transporters MCT2 and MCT4 in the devoloping rat brain[J]. Neuroscience,2003,122(3):677-688.
    [70]Baud 0, Fayol L, Gressens P, et al. Pernatal and early postnatal changes in the expression of monocarboxylate transporters MCT1 and MCT2 in the rat forebrain[J]. J Comp Neurol,2003,20,465(3):445-454.
    [71]Bergersen L, Rafiki A,Ottersen OP. Immunogold cytochemistry identifies specialized membrane domains for monocarboxylate transport in the central nervous system[J]. Neurochem Res,2002, 27(1-2):89-96.
    [72]Hajduch E, Heyes RR, Watt PW, et al. Lactate transport in rat adipocytes:identification of monocarboxylate transporter 1 and its nodulation during streptozotocin-induced diabetes[J]. FEBS Lett,2000, A18,479(3):89-92.
    [73]Gladden LB.Muscle as a consumer of lactate[J]. Med Sci Sports Exerc,2000,32 (4):764-771.
    [74]Isidoro, Antonio, Casado, et al. Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis[J]. Carcinogenesis,2005,26(12):2095-2104.
    [75]Wahl ML, Owen JA, Burd R, et al. Regulation of intracellular pH in human melanoma:potential therapeutic implications[J].Mol Cancer Ther, 2002,1(8):617-28.
    [76]Froberg MK, Gerhart DZ, Enerson BE, et al. Expression of monocarboxylate transporter MCT1 in normal and neoplastic human CNS tissues[J]. Neuroreport,2001,12(4):761-765.
    [77]Pushkarsky T, Zybarth G, Dubrovsky L. et al.CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A[J]. Proc Natl Acad SCI USA,2001,98(11):6360-6365.
    [78]Chen Z, Mi L, Xu J, et al. Function of Hab18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus[J]. J infect Dis,2005,191(5):755-760.
    [79]Guo H, Li R, Zucker S, et al. EMMPRIN(CD147), an inducer of matrix metalloproteinase synthesis, also binds interstitial collagenase to the tumor cell surf ace [J]. Cancer Res,2000,60 (4):888-891.
    [80]Coss RA, Srorck CW, Daskalakis C, et al.Intracellular acidification abrogates the heat shock responseand compromises survival of human melanoma cells[J].Mol Cancer Ther,2003,2(4):383-388.
    [81]张桂芝,黄桂君,成党校,等.抑制人肺腺癌细胞MCT1基因的表达对其增值.凋亡的影响[J].中国肿瘤生物治疗杂志,2002,2:56-60.
    [1]Roy CC et al. Short-chain fatty acids:ready for prime time[J]? Nutr Clin Pract,2006,21 (4):351-366.
    [2]曾军英,韩雪峰,谭支良.单羧酸转运蛋白家族及其生物学功能[J].生命的化学,2008,28(4):404-407.
    [3]Halestrap AP et al. The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond [J]. Pflugers Arch,2004,447 (5):619-628
    [4]Halestrap AP et al. The proton-linked monocarboxylate transporter (MCT) family:structure, function and regulation[J]. Biochem J,1999,343 Pt 2:281-299
    [5]Enerson BE et al. Molecular features, regulation, and function of monocarboxylate transporters:implications for drug delivery[J]. J Pharm Sci,2003,92(8):1531-1544
    [6]Visser WE et al. Thyroid hormone transport by monocarboxylate transporters [J].Best Pract Res Clin Endocrinol Metab,2007,21(2): 223-236
    [7]Kirk P, Wilson MC, Heddle C, et al. CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression[J]. EMBO Journal,2000,19 (15):3896-3904.
    [8]Philp NJ, Wang D, Yoon H, et al. Polarized expression of monocarboxylate transporters in human retinal pigment epithelium and ARPE-19 cells[J]. Investigative Ophthalmology and Visual Science,2003b,44(4):1716-1721.
    [9]Ochrietor JD, Linser PJ.5A11/Basigin gene products are necessary for proper maturation and function of theretina[J]. Developmental Neuroscience,2004,26(5-6):380-387.
    [10]Wilson MC, Meredith D, Fox JE, et al. Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: The ancillary protein for the insensitive MCT2 is EMBIGIN (gp70) [J]. Journal of Biological Chemistry,2005,280(29):27213-
    27221.
    [11]Deuticke B. Monocarboxylate transport in erythrocytes[J]. Journal of Membrane Biology,1982,70(2):89-103.
    [12]Broer S,.Schneider. HP, Broer A, et al. Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH[J]. BiochemicalJournal,1998,333(Pt 1):167-174.
    [13]Manning Fox JE, Meredith D, Halestrap AP. Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle[J]. Journal of Physiology,2000,529(Pt 2):285-293.
    [14]Poole RC, Halestrap AP. Transport of lactate and other monocarboxylates across mammalian plasma membranes[J]. American Journal of Physiology,1993,264(4 Pt 1):C761-C782.
    [15]Garcia CK, Brown MS, Pathak RK, et al.cDNA cloning of MCT2, a second monocarboxylatetransporter expressed in different cells than MCT1[J]. Journal of Biological Chemistry,1995,270 (4):1843-1849.
    [16]Price NT, Jackson VN, Halestrap AP. Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past[J]. BiochemicalJournal,1998,329(Pt 2):321-328.
    [17]Lin RY, Vera JC, Chaganti RS, et al. Human monocarboxylate transporter 2 (MCT2) is a high affinity pyruvate transporter[J]. Journal of Biological Chemistry,1998,273(44):28959-28965.
    [18]Broer S, Broer A, Schneider HP, et al. Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes[J]. Biochemical Journal,1999,341(Pt 3):529-535.
    [19]Yoon H, Fanelli A, Grollman EF, et al. Identification of a unique monocarboxylate transporter (MCT3) in retinal pigment epithelium[J]. Biochemical and Biophysical Research Communications,1997,234(1): 90-94.
    [20]Philp NJ, Yoon. H, Grollman EF. Monocarboxylate transporter MCT1 is located in the apical membrane and MCT3 in the basal membrane of rat RPE[J].American Journal of Physiology,1998,274(6 Pt 2):R1824-R1828.
    [21]Philp NJ, Yoon H, Lombardi L. Mouse MCT3 gene is expressed preferentially in retinal pigment and choroid plexus epithelia [J]. American Journal of Physiology,2001,280(5):C1319-C1326.
    [22]Grollman EF, Philp NJ, McPhie P, et al. Determination of transport kinetics of chick MCT3 monocarboxylate transporter from retinal pigment epithelium by expression in genetically modified yeast[J]. Biochemistry,2000,39(31):9351-9357.
    [23]Philp NJ, Ochrietor JD, Rudoy C, et al.Loss of MCT1, MCT3, and MCT4 expression in the retinal pigment epithelium and neural retina of the 5A11/basigin-null mouse [J]. Investigative Ophthalmology and Visual Science,2003,44(3):1305-1311.
    [24]Wilson MC, Jackson VN, Heddle C, et al. Lactic acid efflux from white skeletal muscle is catalyzed by the monocarboxylate transporter isoform MCT3[J].Journal of Biological Chemistry, 1998,273(26): 15920-15926.
    [25]Dimmer KS, Friedrich B, Lang F, et al. The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells[J]. Biochemical Journal,2000,350(Pt 1):219-227.
    [26]Meredith D, Bell P, McClure B, et al. Functional and molecular characterisation of lactic acid transport in bovine articular chondrocytes[J].Cell Physiology and Biochemistry,2002,12(4):227-234.
    [27]Settle P, Mynett K, Speake P, et al.Polarized lactate transporter activity and expression in the syncytiotrophoblast of the term human placenta[J].Placenta,2004,25(6):496-504.
    [28]Murakami Y, Kohyama N, Kobayashi Y, et al. Functional characterization of human monocarboxylate transporter 6 (SLC16A5) [J]. Drug Metabolism and Disposition:The Biological Fate of Chemicals,2005,33(12):
    1845-1851.
    [29]Boyd LM, Richardson WJ, Chen J, et al. Osmolarity regulates gene expression in intervertebral disc cells determined by gene array and real-time quantitative RT-PCR[J]. Annals of BiomedicalEngineering, 2005,33(8):1071-1077.
    [30]Yokel RA, Wilson M, Harris WR, et al. Aluminum citrate uptake by immortalized brain endothelial cells:Implications for its blood-brain barrier transport[J]. Brain Research,2002,930(1-2): 101-110.
    [31]Hirai. T, Fukui Y, Motojima K. PPARalpha agonists positively and negatively regulate the expression of several nutrient/drug transporters in mouse small intestine[J]. Biological and Pharmaceutical Bulletin,2007,30(11):2185-2190.
    [32]Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins:The PEST hypothesis[J]. Science (New York),1986,234 (4774):364-368.
    [33]Rechsteiner M, Rogers SW. PEST sequences and regulation by proteolysis[J]. Trends in Biochemical Sciences,1996,21 (7):267-271.
    [34]Friesema EC, Ganguly S, Abdalla A, et al. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter [J]. Journal of Biological Chemistry,2003,278(41):40128-40135.
    [35]Friesema EC, Kuiper GG, Jansen J, et al. Thyroid hormone transport by the human monocarboxylate transporter 8 and its rate-limiting role in intracellular metabolism[J]. Molecular Endocrinology (Baltimore), 2006,20(11):2761-2772.
    [36]Jansen J, Friesema EC, Milici C, et al. Thyroid hormone transporters in health and disease[J]. Thyroid,2005,15(8):757-768.
    [37]Dumitrescu AM, Liao XH, Weiss RE,et al. Tissue-specific thyroid hormone deprivation and excess in monocarboxylate transporter (met) 8-deficient mice[Jj. Endocrinology,2006,147(9):4036-4043.
    [38]Friesema EC, Jansen J, Heuer H, et al. Mechanisms of disease: Psychomotor retardation and high T3 levels caused by mutations in monocarboxylate transporter 8[J]. Nature Clinical Practice,2006, 38,2(9):512-523.
    [39]Trajkovic M, Visser TJ, Mittag J, et al.Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8[J]. Journal of Clinical Investigation,2007,117(3):627-635.
    [40]Lafreniere RG, Carrel L, Willard HF. A novel transmembrane transporter encoded by the XPCT gene in Xq13.2 [J]. Human Molecular Genetics,1994,3(7):1133-1139.
    [41]Prummel MF, Brokken LJ, Wiersinga WM. Ultra short-loop feedback control of thyrotropin secretion[J]. Thyroid,2004,14(10):825-829.
    [42]Alkemade A, Friesema EC, Kuiper GG, et al. Novel neuroanatomical pathways for thyroid hormone action in the human anterior pituitary[J]. European Journal of Endocrinology/European Federation of Endocrine Societies,2006,154(3):491-500.
    [43]Heuer H, Maier MK, Iden S,,et al.The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone-sensitive neuron populations[J]. Endocrinology, 2005,146(4):1701-1706.
    [44]Alkemade A, Friesema EC, Unmehopa UA, et al. Neuroanatomical pathways for thyroid hormone feedback in the human hypothalamus[J]. Journal of Clinical Endocrinology and Metabolism,2005,90(7):4322-4334.
    [45]Fliers E, Alkemade A, Wiersinga WM, et al. Hypothalamic thyroid hormone feedback in health and disease[J]. Progress in Brain Research,2006, 153:189-207.
    [46]Fliers E, Unmehopa UA, Alkemade A. Functional neuroanatomy of thyroid hormone feedback in the human hypothalamus and pituitary gland [J]. Molecular and Cellular Endocrinology,2006,251 (1-2):1-8.
    [47]Gruters A. Thyroid hormone transporter defects[J]. Endocrine Development,2007,10:118-a26.
    [48]Visser WE, Friesema EC, Jansen J, et al. Thyroid hormone transport by monocarboxylate transporters[J]. Best Practice and Research,2007, 21(2):223-236.
    [49]Tan SW, Zoeller RT.Integrating basic research on thyroid hormone action into screening and testing programs for thyroid disruptors [J]. Critical Reviews in Toxicology,2007,37(1-2):5-10.
    [50]Kim DK, Kanai Y, Chairoungdua A, et al. Expression cloning of a Nat-independent aromatic amino acid transporter with structural similarity to Ht/monocarboxylate transporters[J].. Journal of Biological Chemistry,2001,276(20):17221-17228.
    [51]Kim DK, Kanai Y, Matsuo H, et al.The human T-type amino acid transporter-1:Characterization, gene organization, and chromosomal location[J]. Genomics,2002,79(1):95-103.
    [52]Scanlan TS, Suchland KL, Hart ME, et al.3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone [J]. Nature Medicine,2004,10 (6):638-642.
    [53]Ramadan T, Camargo SM, Summa V, et al. Basolateral aromatic amino acid transporter TAT1 (Slc16a10) functions as an efflux pathway[J]. Journal of Cellular Physiology,2006,206(3):771-779.
    [54]Ramadan T, Camargo SM, Herzog B, et al.Recycling of aromatic amino acids via TAT1 allows efflux of neutral amino acids via LAT2-4F2hc exchanger [J].Pflugers Archives,2007,454(3):507-516.
    [55]Thwaites DT et al. H+-coupled nutrient, micronutrient and drug transporters in the mammalian small intestine [J]. Exp Physiol,2007, 92(4):603-619
    [56]Cuff MA et al. Substrate-induced regulation of the human colonic monocarboxylate transporter, MCT1[J]. J Physiol,2002,539 (Pt 2): 361-371
    [57]Kirat D et al. Expression, cellular localization, and functional role of monocarboxylate transporter 4 (MCT4) in the gastrointestinal tract of ruminants[J]. Gene,2007,391(1-2):140-149
    [58]Sepponen K et al. Expression of CD147 and monocarboxylate transporters MCT1,MCT2 and MCT4 in porcine small intestine and colon[J].Vet J,2007,174(1):122-128
    [59]Distl 0 et al. Monocarboxylate transporters and their role in glucose homeostasis in ruminants [J]. Vet J,2007,173(1):16-17
    [60]Robergs RA et al. Biochemistry of exercise-induced metabolic acidosis[J]. Am J Physiol Regul Integr Comp Physiol,2004,287(3): R502-R516
    [61]Kirat D et al. Monocarboxylate transporter 1 (MCT1) in the liver of pre-ruminant and adult bovines[J]. Vet J,2007,173(1):124-130
    [62]Pierre K et al. Enhanced expression of three monocarboxylate transporter isoforms in the brain of obese mice [J]. J Physiol,2007, 583 (Pt 2):469-486
    [63]Kirat D et al. Monocarboxylate transporter 1 (MCT1) mediates transport of short-chain fatty acids in bovine caecum[J]. Exp Physiol, 2006,91 (5):835-844
    [64]Matsuyama S et al. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis[J]. Nat Cell Biol,2000,2(6):318-325
    [65]Pinheiro C et al. Increased expression of monocarboxylate transporters 1,2, and 4 in colorectal carcinomas[J]. Virchows Arch, 2008,452(2):139-146
    [66]Skoyum R, Eide K, Berg K, et al. Energy metabolism in human melanoma cells under hypoxic and acidic conditions in vitro[J]. British Journal of Cancer,1997,76(4):421-428.
    [67]Walenta S, Salameh A, Lyng H, et al. Correlation of high lactate levels in head and neck tumors with incidence of metastasis[J]. American Journal of Pathology,1997,150(2):409-415.
    [68]Brizel DM, Schroeder T, Scher RL, et al. Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer [J]. International Journal of Radiation Oncology,
    Biology, Physics,2001,51 (2):349-353.
    [69]Wahl ML, Owen JA, Burd R, et al.. Regulation of intracellular pH in human melanoma:Potential therapeutic implications[J]. Molecular Cancer Therapeutics,2002,1(8):617-628.
    [70]Py G, Eydoux N, Lambert K, et al. Role of hypoxia-induced anorexia and right ventricular hypertrophy on lactate transport and MCT expression in rat muscle[J]. Metabolism:Clinical and Experimental,2005, 54(5):634-644.
    [71]Ord JJ, Streeter EH, Roberts IS, et al. Comparison of hypoxia transcriptome in vitro with in vivo gene expression in human bladder cancer[J]. British Journal of Cancer,2005,93(3):346-354.
    [72]Semenza GL.Hypoxia-inducible factor 1:Oxygen homeostasis and disease pathophysiology [J]. Trends in Molecular Medicine,2001, 7 (8):345-350.
    [73]Ullah MS, Davies AJ, Halestrap AP. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-lalpha-dependent mechanism[J]. Journal of Biological Chemistry, 2006,281(14):9030-9037.
    [74]Brizel DM, Schroeder T, Scher RL,et al. Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer [J]. International Journal of Radiation Oncology, Biology, Physics,2001,51 (2):349-353.
    [75]Fang J,. Quinones QJ, Holman TL. et al.The Ht-linked monocarboxylate transporter (MCT1/SLC16A1):A potential therapeutic target for high-risk neuroblastoma[J]. Molecular Pharmacology,2006,70(6): 2108-2115.
    [76]Ben-Horin H, Tassini M, Vivi A, et al.Mechanism of action of the antineoplastic drug lonidamine:31P and 13C nuclear magnetic resonance studies[J]. Cancer Research,1995,55(13):2814-2821.
    [77]Di Cosimo S, Ferretti G,Papaldo P, et al. Lonidamine:Efficacy and safety in clinical trials for the treatment of solid tumors [J]. Drugs Today (Barcelona),2003,39(3):157-174.
    [78]Brawer MK.Lonidamine:Basic science and rationale for treatment of prostatic proliferative disorders[J].Reviews in Urology,2005,7 (Suppl.7):S21-S26.
    [79]Roehrborn CG. The development of lonidamine for benign prostatic hyperplasia and other indications[J]. Reviews in Urology,2005, 7(Suppl.7):S12-S20.
    [80]Havel RJ, Rapaport E. Management of primary hyperlipidemia[J]. New England Journal of Medicine,1995,332(22):1491-1498.
    [81]Jukema JW, Bruschke AV, Van Boven AJ, et al. Effects of lipid lowering by pravastatin on progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterol levels[J].The Regression Growth Evaluation Statin Study (REGRESS). Circulation,1995,91(10):2528-2540.
    [82]Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels:Results of AFCAPS/TexCAPS[J].1998, pp 1615-1622.
    [83]Nagasawa K, Nagai K, Ishimoto A, et al.Transport mechanism for lovastatin acid in bovine kidney NBL-1 cells:Kineticevidences imply involvement of monocarboxylate transporter 4[J]. International Journal of Pharmaceutics,2003,262(1-2):63-73.
    [84]Nagasawa K, Nagai K, Sumitani Y, et al.Monocarboxylate transporter mediates uptake of lovastatin acid in rat cultured mesangial cells [J]. Journal of Pharmaceutical Sciences,2002,91 (12):2605-2613.
    [85]Kobayashi M, Otsuka Y, Itagaki S, et al. Inhibitory effects of statins on human monocarboxylate transporter 4[J]. International Journal of Pharmaceutics,2006,317(1):19-25.
    [86]Evans M, ReesA.-Effects of HMG-CoA-reductase-inhibitors on skeletal muscle:Are all statins the same[J]?Drug Safety,'2002,25(9):649-663.
    [87]Sirvent P,Bordenave S, Vermaelen M, et al. Simvastatin induces impairment in skeletal muscle while heart is protected[J].
    Biochemical and Biophysical Research Communications,2005,338(3): 1426-1434.
    [88]Nagasawa K, Nagai K, Sumitani Y, et al. Monocarboxylate transporter mediates uptake of lovastatin acid in rat cultured mesangial cells [J]. Journal of Pharmaceutical Sciences,2002,91(12):2605-2613.
    [89]Munro E, Patel M, Chan P, et al. Inhibition of human vascular smooth muscle cell proliferation by lovastatin:The role of isoprenoid intermediates of cholesterol synthesis[J]. European Journal of Clinical Investigation,1994,24(11):766-772.
    [90]Peterson GM, Naunton M. Valproate:A simple chemical with so much to offer[J]. Journal of Clinical Pharmacy and Therapeutics,2005,30(5): 417-421.
    [91]Blaheta RA, Michaelis M, Driever PH, et al. Evolving anticancer drug valproic acid:Insights into the mechanism and clinical studies[J]. Medicinal Research Reviews,2005,25(4):383-397.
    [92]Nagasawa K, Nagai K, Ishimoto A, et al. Transport mechanism for lovastatin acid in bovine kidney NBL-1 cells:Kinetic evidences imply involvement of monocarboxylate transporter 4[J]. International Journal of Pharmaceutics,2003,262(1-2):63-73.
    [93]Bhattacharya I, Boje KM. GHB (gamma-hydroxybutyrate) carrier-mediated transport across the blood-brain barrier[J]. Journal of Pharmacology and Experimental Therapeutics,2004,311 (1):92-98.
    [94]Wang Q, Darling IM, Morris ME. Transport of gamma-hydroxybutyrate in rat kidney membrane vesicles:Role of monocarboxylate transporters [J]. Journal of Pharmacology and Experimental Therapeutics,2006,318(2): 751-761.
    [95]Wang Q, Morris ME. The role of monocarboxylate transporter 2 and 4 in the transport of gammahydroxybutyric acid in mammalian cells[J]. Drug Metabolism and Disposition:The Biological Fate of Chemicals,2007,35(8):1393-1399.
    [96]Shimada A, Nakagawa Y, Morishige H, et al. Functional characteristics of Ht-dependent nicotinate transport in primary cultures of astrocytes from rat cerebral cortex[J]. Neuroscience Letters,2006, 392(3):207-212.
    [97]Heidemann AC, Schipke CG, Kettenmann H. Extracellular application of nicotinic acid adenine dinucleotide phosphate induces Ca2+ signaling in astrocytes in situ[J]. Journal of Biological Chemistry,2005, 280(42):35630-35640.
    [98]Kido Y, Tamai I, Okamoto M, et al. Functional clarification of MCT1-mediated transport of monocarboxylic acids at the blood-brain barrier using in vitro cultured cells and in vivo BUI studies[J]. Pharmaceutical Research,2000,17(1):55-62.
    [99].Bergersen L, Waerhaug 0, Helm J, et al. A novel postsynaptic density protein:The monocarboxylate transporter MCT2 is co-localized with deltaglutamate receptors in postsynaptic densities of parallel fiber-Purkinje cell synapses[J]. Experimental Brain Research. Experimentelle Hirnforschung,2001,136(4):523-534.
    [100]Deguchi Y, Yokoyama Y, Sakamoto T, et al. Brain distribution of 6-mercaptopurine is regulated by the efflux transport system in the blood-brain barrier[J]. Life. Sciences,2000,66(7):649-662.
    [101]Gladden LB. Lactate metabolism:A new paradigm for the third millennium[J]. Journal of Physiology,2004,558(Pt 1):5-30.
    [102]Dalsgaard MK, Ogoh S, Dawson EA, et al. Cerebral carbohydrate cost of physical exertion in humans[J]. American Journal of Physiology,2004,287 (3):R534-R540.
    [103]Bergersen L, Waerhaug 0, Helm J, et al.A novel postsynaptic density protein:The monocarboxylate transporter MCT2 is co-localized with deltaglutamate receptors in postsynaptic densities of parallel fiber-Purkinje cell synapses[J]. Experimental Brain Research. Experimentelle Hirnforschung,2001,136(4):523-534.
    [104]Rafiki A, Boulland JL, Halestrap AP, et al. Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain[J]. Neuroscience,2003,122(3):677-688.
    [105]Bergersen LH.Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle[J]. Neuroscience,2007,145(1):11-19.
    [106]Pierre K, Parent A, Jayet PY, et al. Enhanced expression of three monocarboxylate transporter isoforms in the brain of obese mice[J]. Journal of Physiology,2007,583(Pt 2):469-486.
    [107]Gladden LB. Lactate metabolism:A new paradigm for the third millennium[J]. Journal of Physiology,2004,558(Pt 1):5-30.
    [108]Pilegaard H, Terzis G, Halestrap A, et al. Distribution of the lactate/Ht transporter isoforms MCT1 and MCT4 in human skeletal muscle[J]. American Journal of Physiology,1999,.276(5 Pt 1):E843-E848.
    [109]Halestrap AP, Meredith D. The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond[J]. Pflugers Archives,2004,447(5):619-628.
    [110]Coles L, Litt J, HattaH, et al. Exercise rapidly increases expression of the monocarboxylate transporters MCT1 and MCT4 in rat muscle[J]. Journal of Physiology,2004,561 (Pt 1):253-261.
    [111]Thomas C, Perrey S, Lambert K, et al. Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans[J]. Journal of Applied Physiology,2005,98(3): 804-809.
    [112]Messonnier L, Denis C, Feasson L, et al. An elevated sarcolemmal lactate (and proton) transport capacity is an advantage during muscle activity in healthy humans[J]. Journal of Applied Physiology,2006, doi:10.1152/japplphysiol.00807.2008.
    [113]Bishop D, Edge J, Thomas C, Mercier J. High-intensity exercise-acutely decreases the membrane content of MCT1 and MCT4 and buffer capacity in human skeletal muscle[J]. Journal of Applied Physiology,2007,102(2):616-621.
    [114]Burgomaster KA, Cermak NM, Phillips SM, et al. Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining[J]. American Journal of Physiology Regul Integr Comp Physiology,2007,292(5):R1970-R1976.
    [115]Green HJ, Duhamel TA, Holloway GP, et al. Rapid upregulation of GLUT4 and MCT4 expression during sixteen hours of heavy intermittent cycle exercise[J]. American Journal ofPhysiology,2007, doi:10.1152/ ajpregu.00699.2007.
    [116]Messonnier L, Kristensen M, Juel C, et al. Importance of pH regulation and lactate/Ht transport capacity for work production during supramaximal exercise in humans[J]. Journal of Applied Physiology, 2207,102(5):1936-1944.
    [117]Mohr M, Krustrup P, Nielsen JJ, et al. Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development[J]. American Journal of Physiology,2007, 292(4):R1594-R1602.
    [118]Py G, Eydoux N, Lambert K, et al. Role of hypoxia-induced anorexia and right ventricular hypertrophy on lactate transport and MCT expression in. rat muscle[J]. Metabolism:Clinical and Experimental,2005, 54(5):634-644.
    [119]Enoki T, Yoshida Y, Lally J, et al. Testosterone increases lactate transport, monocarboxylate transporter (MCT) 1 and MCT4 in rat skeletal muscle[J]. Journal of Physiology,2006,577(Pt 1):433-443.
    [120]Bonen A, Heynen M, Hatta H. Distribution of monocarboxylate transporters MCT1-MCT8 in rat tissues and human skeletal muscle[J]. Applied Physiology, Nutrition, and Metabolism [Physiologie Appliquee, Nutrition et Metabolisme],2006,31 (1):31-39.
    [121]Bonen A. The expression of lactate transporters (MCT1 and MCT4) in heart and muscle[J]. European Journal of Applied Physiology,2001, 86(1):6-11.
    [122]Enoki T, Yoshida Y, Lally J, et al. Testosterone increases lactate transport, monocarboxylate transporter (MCT) 1. and MCT4 in rat skeletal muscle[J]. Journal of Physiology,2006,577(Pt 1):433-443.
    [123]Tamai I, Sai Y, Ono A, et al. Immunohistochemical and functional characterization of pH-dependent intestinal absorption of weak organic acids by the monocarboxylic acid transporter MCT1 [J]. Journal of Pharmacy and Pharmacology,1999,51(10):1113-1121.
    [124]Iwanaga T, Takebe K, Kato I, et al. Cellular expression of monocarboxylate transporters (MCT) in the digestive tract of the mouse, rat, and humans, with special reference to slc5a8[J]. Biomedical Research (Tokyo),2006,27(5):243-254.
    [125]Kirat D, Inoue H, Iwano H, et al. Expression and distribution of monocarboxylate transporter 1 (MCT1) in the gastrointestinal tract of calves[J]. Research in Veterinary Science,2005,79(1):45-50.
    [126]Inan MS, Rasoulpour RJ, Yin L, et al.The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line[J]. Gastroenterology,2000,118(4):724-734.
    [127]Cuff MA, Shirazi-Beechey SP. The importance of butyrate transport to the regulation of gene expression in the colonic epithelium[J]. Biochemical Society Transactions,2004,32(Pt 6):1100-1102.
    [128]Gill RK, Saksena S, Alrefai WA, et al. Expression and membrane localization of MCT isoforms along the length of the human intestine. American[J]Journal of Physiology,2005,289(4):C846-C852.
    [129]Thibault R, De Coppet P, Daly K, et al. Down-regulation of the monocarboxylate transporter 1 is involved in butyrate deficiency during intestinal inflammation [J]. Gastroenterology,2007,133(6): 1916-1927.
    [130]Borthakur A et al. Regulation of monocarboxylate transporter 1 (MCT1) promoter by butyrate in human intestinal epithelial cells: involvement of NF-kappaB pathway[J]. J Cell Biochem,2008,103(5): 1452-1463
    [131]Jiang JL et al. CD147 and its interacting proteins in cellular functions[J]. Sheng Li Xue Bao,2007,59(4):517-523
    [132]PhiLp NJ et al. Loss of MCT1, MCT3, and MCT4 expression in the retinal pigment epithelium and neural retina of the 5A11/basigin-null mouse[J]. Invest Ophthalmol Vis Sci,2003,44(3):1305-1311
    [133]Wilson MC et al. Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4:the ancillary protein for the insensitive MCT2 is EMBIGIN (gp70)[J]. J Biol Chem,2005,280(29):27213-27221

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700