用户名: 密码: 验证码:
粒子群优化算法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科学领域、工程领域和经济领域都涉及到很多复杂的、非线性的甚至非凸形式的最优化问题。在电力系统分析和控制系统设计中同样存在大量的这类难优化问题,如无功优化、机组组合、负荷预测以及电机参数辨识等。因此高效的优化技术成为科学工作者的研究目标之一。
     粒子群优化算法(Prticle Swarm Optimization,简称PSO)是一种新的群体智能优化算法。它的主要特点是原理简单、参数少、收敛速度快、所需领域知识少。该算法的出现引起了学者们极大的关注,已在函数优化、神经网络训练、组合优化等领域获得了广泛应用,并取得了较好的效果。尽管粒子群优化算法发展近十年,但无论是理论分析还是实践应用都尚未成熟,有大量的问题值得研究。
     本文就如何改进标准PSO算法性能以及该算法在电力系统领域中的应用进行了深入的研究。本文的主要研究工作和创新点可归纳如下:
     (1)为了克服PSO算法在高维复杂问题寻优时有相当可能陷入局部极小的现象,提出了一种自适应粒子群优化算法。在算法进化过程中引入群体适应度方差和群体位置方差,非线性的调整惯性权重,调节算法的探索和开发能力,达到跳出局部极小点,获得全局最优的目的。在进化的中后期,根据粒子的表现不同,分别对其采用不同的变异策略和惯性权重,使群体在进化过程中始终保持惯性权重的多样性,在算法的全局收敛性和收敛速度之间做了一个较好的折中。将自适应粒子群优化算法应用于电力系统无功优化问题中,算例仿真表明该方法用于解决无功优化问题是有效可行的。
     (2)对基于向量评价的粒子群算法进行了扩展,提出了基于向量评价的自适应粒子群优化算法(VEAPSO)来解决多目标优化问题。利用该方法解决多目标电力系统无功优化问题,确定出问题的Pareto最优解集。为帮助决策者在优化后得到的Pareto最优解集中选取较合适的最优解,本文提出了一种基于决策者偏好及投影寻踪模型的多属性决策法,该方法兼顾决策者的偏好,同时又力争减少主观随意性,使决策结果更加真实可靠。
     (3)提出了一种基于动态双种群的粒子群优化算法(DDPSO)。DDPSO算法将种群划分成两个种群规模随进化过程不断变化的子种群,两个子种群分别采用不同的学习策略进行进化,并在进化过程中相互交换信息。为了保持种群的多样性,将免疫算法的多样性保持机制引入DDPSO算法中,提高了算法的全局收敛性。将该算法应用于机组组合问题中,采用实数矩阵编码方法对发电计划进行编码,将两层优化问题转化为单层优化问题,可直接运用DDPSO算法来求解。仿真结果表明,所提出的方法用来解决机组组合问题是有效可行的,具有良好的精度和鲁棒性。
     (4)提出了一种基于物种概念的动态多种群粒子群优化算法(DMPSO)来解决多模态函数优化问题。在DMPSO中引入了物种概念,在进化过程中动态确定物种,利用种群多样性信息动态调整物种半径,通过物种对解空间的不同区域进行搜索,最终确定出各极值点。将DMPSO算法和支持向量机(SVM)相结合,形成了解决电力系统短期负荷预测问题的新方法(DMPSO-SVM)。在该方法中利用DMPSO算法来优化SVM中的参数,利用快速傅立叶变换(FFT)进行频谱分析并确定SVM的输入量。电力系统短期负荷预测的实际算例表明,与传统预测方法相比,该方法具有更高的预测精度和鲁棒性。
     (5)提出了一种基于天体系统模型的粒子群优化算法(CSPSO)。在CSPSO算法中,参照天文学中的天体系统模型,将种群划分为多个相对独立的天体系统,每个系统按照自己的运行规则在不同的空间中运行,在算法的后期引入混沌优化,最终确定出优化问题的全局最优解。将CSPSO算法应用于异步电机参数辨识问题中,仿真结果表明CSPSO算法比GA算法和PSO算法具有更精确的参数辨识能力。
Many scientific, engineering and economic areas involve the optimization of complex, nonlinear and possibly non-convex problems. There are many such problems in power system analysis and control system design as reactive power optimization problem, unit commitment problem, load forecasting problem and motor parameter identification. Therefore, effective optimization methods have become one of the main objectives for scientific researchers.
     Particle swarm optimization (PSO) algorithm is an evolutionary computation technique developed by Dr. Eberhart and Dr. Kennedy in 1995. Recently, PSO algorithm has been gradually attracted more attention over another intelligent algorithm. PSO is simple in concept, few in parameters and easy in implementation. It is proved to be an efficient method to solve optimization problems and has successfully been applied in the area of function optimization, neural network training and fuzzy control systems, etc. However, both theory and application of PSO are still far from mature.
     The dissertation focuses on the theory and application of PSO, especially, an indeep and systemic study on how to improve the conventional PSO algorithm, solving the problems such as problems of electrical system. The main achievements of this dissertation include:
     (1) A new adaptive particle swarm optimization (APSO) algorithm was proposed. The exploration and exploitation ability of the algorithm were regulated through introducing two criteria in the evolutionary process, i.e. the population-fitness-variance and the population-position-variance, to preserve population diversity. The dynamic inertia weight varied with population diversity was employed to improve the convergence speed. In intermediate stage and anaphase of iterative, the inertia weight of the particle was adjusted adaptively based on the premature convergence degree of the swarm and the fitness of the particle to preserve the diversity of inertia weight. The algorithm had been applied to reactive power optimization. The simulation results of the standard IEEE-30-bus power system had indicated that it was validity, fast convergence and computation efficiency during the reactive power optimization.
     (2) The VEAPSO algorithm was proposed to solve the multi-objective optimization problems. The algorithm had been applied to multi-objective reactive power optimization and can obtain the Pareto optimal solutions. Aimming at defect in the traditional evaluation of multi-objective solutions, a multiple attribute decision-making method based on preference information and projecting pursuit classification model was presented. This method made decision-making result more actual.
     (3) Dynamic double-population particle swarm optimization (DDPSO) algorithm was presented, where population was divided into two sub-populations varying with their own evolutionary learning strategies and exchanged between them. The reproduction strategy based on density of immune algorithm was introducd into PSO algorithm to maintain the multiplicity of particle. The algorithm has been applied to power system unit commitment (UC). The particle consists of a two-dimensional real number matrix representing generation schedule. The DDPSO algorithm can directly solve UC. Simulation results showed the proposed method performs better in term of solution's precision and convergence property.
     (4) A dynamic multi-population particle swarm optimization (DMPSO) algorithm was presented. In algorithm, the notion of species was introduced and population was divided into species according to their similarity. Species seeds were identified from the entire population and a strategy for adaptively changing the species radius based on population diversity information was proposed. Species were able to simultaneously optimize toward potentially regions containing multiple optima. A new short-term load forecasting model based on SVM with DMPSO algorithm (DMPSO-SVM) was proposed. The example of California power market revealed that the DMPSO-SVM approach outperforms the other traditional model.
     (5) A new method of celestial system particle swarm optimization (CSPSO) was presented. In CSPSO algorithm, based on the celestial system model of astronomy, the population was divided into multiple independent celestial systems varying with their own movement laws in respective space. In late iteration, chaotic optimization method was introduced and the globe optimum was decided. CSPSO algorithm was applied to induction motor parameter identification. The simulation results show CSPSO method possessed stronger capability of parameter identification than GA and PSO method.
引文
1.王凌.智能优化算法及其应用[M],北京:清华大学出版社,2001,5-9.
    2. Hopfield J J, Tank D W. Neural computation of decisions in optimization problems[J], Biological Cyberntics,1985,52:141-152.
    3. Hopfield J J, Tank D W. Computing with neural circuits:A model[J], Science,1986,233:625-633.
    4. Rovithakis G A. Adaptive control of unknown plants using dynamical neural networks[J], IEEE Trans on SMC,1994,24(3):400-411.
    5. Tan Y H. Nonlinear one-step-ahead control using neural network: control strategy and stability design[J], Automatica,1996,32(12):1701-1706.
    6. Rudolph G. Convergence analysis of canonical genetic algorithms[J], IEEE Transaction on Neural Networks,1994,5:96-101.
    7. Zdenek K. Parallel genetic algorithms:advances, computing trends, applications and perspectives[C], Proceedings of the 18th International Parallel and Distributed Processing Symposium, Santa Fe:The University of New Mexico,2004,162-169.
    8. Ondrej H, Anna K. Improvements of real coded genetic algo-rithms based on differential operators preventing premature conver-gence[J], Advances in Engineering Software,2004,35(1):237-246.
    9. Thomas S, Dorigo M. A short convergence proof for a class of ant colony optimization algorithms[J], IEEE Trans on Evolutionary Computation,2002,6(4):358-365.
    10. Teng J H, Liu Y H.A novel ACS-based optimum switch relocation method[J], IEEE Trans on Power Systems,2003,18(1):113-120.
    11. Dorigo M, Gambardella L M. Ant colony system:A cooperative learning approach to the traveling salesman problem[J], IEEE Trans on Evolutionary Computation,1997,1(1):53-66.
    12. Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing[J], Science,1983,220: 671-680.
    13. Ingber L. Very fast simulated annealing[J], Math Conput Modeling,1989,12:967-973.
    14. Glover F, Mcmilan C, Novick B. Tabu search-part 1[J], ORSAJ. Computing,1989,1(3):190-206.
    15. Glover F, Mcmilan C, Novick B. Tabu search-part Ⅱ[J], ORSAJ. Computing,1990,2(1):4-32.
    16. Kennedy J, Eberhart R C. Particle swarm optimization[C], Proceedings of IEEE International Conference on Neural Networks,1995,1942-1948.
    17. Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C], Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan,1995,39-43.
    18. Wolpert D H, Macready W G.. No free lunch theorems for search[DB/OL], http://citeseer.nj.nec.com/ wolPert95no.html.
    19. Wolpert D H, Macready W G.No free lunch theorems for optimization[J],IEEE Transactions on Evolutional Computation,1997,1(1):67-82.
    20. Christensen S, Oppacher F. What can we learn from No Free Lunch? A first attempt to characterize the concept of a searchable function[C], Proceedings of GECCO, Morgan Kaufmann,2001,1219-1226.
    21.吴启迪,王镭.智能蚁群算法及应用[M],上海:上海科技教育出版社,2004.
    22.段海滨.蚁群算法原理及其应用[M],北京:科学出版社,2005.
    23. Colomi A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies[C], Proceedings of the 1st European Conference on Artificial Life,1991,134-142.
    24. Dorigo M. Optimization, learning and natural algorlthms[D], Department of Electronics, Pol/tecnlco diMihno, Italy,1992.
    25. Bonabeau E, Dorigo M, Themulaz G. Inspiration for optimization from social insect behavior[J], Nature,2000,406(6):39-42.
    26. Dorigo M, Maniezzo V, Colomi A. Ant system: optimization by a colony of cooperating agents[J], IEEE Transaction on systems, Man, and Cybernetics—Part B,1996,26(1):29-41.
    27. Dorigo M, Bonabeau E, Theraulaz G. Ant algorithms an dstigmergy[J], Future Generation Computer Systems,2000,16(8):851-871.
    28. Gutjahr W J. A graph-based ant system and its convergence[J], Future Generation Computer Systems, 2000,16(8):873-888.
    29. Gutjahr W J. ACO algorithms with guaranteed convergence to the optimal solution[J], Information Processing Letters,2002,82(3):145-153.
    30. Sttlezle T, Dorigo M. A short convergence proof for a class of ant colony optimization algorithms[J], IEEE Transactions on Evolutionary Computation,2002,6(4):358-365.
    31. Eberhart R C, Shi Y H. Particle swarm optimization:Developments, applications and resources[C], Proceedings Congress on Evolutionary Computation 2001, Piscataway, NJ:IEEE Press,2001,81-86.
    32. Shi Y, Eberhart R C. A modified particle swarm optimizer[C], IEEE Int. Conf. on Evolutionary Computation, Piscataway, NJ, IEEE Service Center,1998,69-73.
    33. Shi Y, Eberhart R C. Empirical study of particle swarm optimization[C], Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics, Orlando, FL,2000,1945-1950.
    34. Shi Y, Eberhart R. A modified particle swarm optimizer[C], IEEE International Conference on Evolutionary Computation, Anchorage, Alaska,1998,4-9.
    35. Shi Y, Eberhart R. Parameter selection in particle swarm optimization[C], Evolutionary Programming Ⅶ:Proceedings of the Seventh Annual Conference on Evolutionary Programming, New York,1998, 591-600.
    36. Kennedy J. The particle swarm: social adaptation of knowledge[J], Proc. IEEE Int. Confon. Evolutionary Computation, Indianapolis,1997,303-308.
    37. Kennedy J. The behavior of particles[M], In Porto V W, Saravanan N, Waagen D and Eiben A E, editors, Evolutionary Programming Ⅶ, Springer,1998,581-590.
    38. Carlisle A, Dozier G. An off-the-shelf PSO[C], In Proceedings of the particle swarm optimization workshop,2001,1-6.
    39.任斌,丰镇平.改进遗传算法与粒子群优化算法及其对比分析[J],南京师范大学学报,2002,2(2):14-20.
    40. Clerc M, Kennedy J. The particle swarm:explosion, stability, and convergence in a multi-dimensional complex space[J], IEEE Transaction on Evolutionary Computation,2002,6(1):58-73.
    41. Ozcan E, Mohan C. Particle swarm optimization:Surfing the waves [C], Proc of the Congress on Evolutionary Computation, Washington DC,1999,1939-1944.
    42. Trelea I C. The particle swarm optimization algorithm:convergence analysis and parameter selection [J], Information Processing Letters,2003,85,317-325.
    43. Suganthan P N. Particle swarm optimiser with neighborhood operator [C], Proc. of the Congress on Evolutionary Computation, Washington DC,1999,1958-1962.
    44. Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [C], Proc. IEEE. Int. Conf on Evolutionary Computation, Seoul, Korea,2001,101-106.
    45. Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization[C], Proc IEEE Int Conf on Evolutionary Computation, San Diego,2000,84-88.
    46. El-Gallad A, El-Hawary M, Sallam A. Enhancing the particle swarm optimizer via proper parameters selection[C], IEEE CCECE02 Proceedings, Piscataway, NJ, Canadian,2002,2:792-797.
    47. Angeline P J. Evolutionary optimization versus particle swarm optimization:Philosophy and performance difference[C], Proc of the 7th Annual Conf on Evolutionary Programming, Germany: Springer,1998,601-610.
    48. Kennedy J. Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance[C], Proceedings of IEEE Congress on Evolutionary Computation, Piscataway, NJ:IEEE Service Center,1999,1931-1938.
    49. Kennedy J. Stereotyping: Improving particle swarm performance with cluster analysis[C], Proceedings of the Congress on Evolutionary Computing, Piscataway, NJ: IEEE Service Center,2000, 1507-1512.
    50. Kennedy J, Mendes R. Population structure and particle swarm performance[C], Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2002), Honolulu, HI USA,2002,2:1671-1676.
    51. Riget J, Vesterstrφm J S. A diversity-guided particle swarm optimization-the ARPSO[DB/OL], http://citeseer.nj.nec.com/riget02diversityguided.html.
    52. Lφvbjerg M, Krink T. Extending particle swarms with self-organized criticality[C], Proceedings of the Fourth Congress on evolutionary computation, Honolulu, HI, USA,2002.2:1588-1593.
    53. Krink T, Vesterstrφm J S, Riget J. Particle swarm optimisation with spatial particle extension[C], Proceedings of the Fourth Congress on Evolutionary Computation, Honolulu, HI, USA,2002.2: 1474-1479.
    54. Al-kazemi B, Mohan C K. Multi-phase generalization of the particle swarm optimization algorithm[C], Proceedings of the 2002 Congress on Evolutionary Computation, Honolulu, HI, USA,2002,1: 489-494.
    55. Xie X F, Zhang W J, Yang Z L. A dissipative particle swarm optimization [C], Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2002), Honolulu, HI, USA,2002,1456-1461.
    56. Angeline P J. Using Selection to Improve Particle Swarm Optimization [R], IEEE International Conference on Evolutionary Computation, Anchorage, Alaska,1998.
    57. Lφvbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimizer with breeding and subpopulations[C], Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco, California,2001,469-476.
    58. Natasuki H, Hitoshi I. Particle swarm optimization with Gaussian mutation[C], Proc of the Congress on Evolutionary Computation,2003,72-79.
    59. Eberhart R, Shi Y. Comparison between Genetic Algorithms and Particle Swarm Optimization[C], The 7th Annual Conference on Evolutionary Programming, San Diego, USA,1998,611-616.
    60.高鹰,谢胜利.基于模拟退火的粒子群优化算法[J],计算机工程与应用,2004,1:47-50.
    61.高鹰,谢胜利.免疫粒子群优化算法[J],计算机工程与应用,2004,6,4-6.
    62.李炳宇,萧蕴诗,吴启迪.一种基于粒子群算法求解约束优化问题的混合算法[J],控制与决策,2004,19(7):804-806.
    63. Eberhart R, Kennedy J. Discrete binary version of the particle swarm algorithm[C], Proc IEEE Int Conf on Systems, Man and Cybernetics, Orlando,1997,4104-4108.
    64. Kennedy J. Spears W M. Matching algorithms to problems:An experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator[C], Proc IEEE Int Conf on Evolutionary Computation, Anchorage,1998,78-83.
    65. Mohan C K, Al-kazemi B. Discrete particle swarm optimization[C], Proceedings of the workshop on Particle Swarm Optimization 2001, Indianapolis, IN,2001.
    66. Hu X, Eberhart R C, Shi Y. Swarm intelligence for permutation optimization:a case study on n-queens problem[C], Proceedings of the IEEE Swarm Intelligence Symposium 2003, Indianapolis, Indiana, USA,2003,243-246.
    67. Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C], Proc. On 6th International Symposium on Micromachine and Human Science, Piscataway NJ:IEEE Service Center,1995,39-43.
    68. Kennedy J. The Particle Swarm:Social Adaptation of Knowledge[C], IEEE International Conference on Evolutionary Computation, Piscataway NJ:IEEE Service Center,1997,303-308.
    69. Ray T, Liew K M. A swarm with an effective information sharing mechanism for unconstrained and constrained single objective optimization problems[C], Proc IEEE Int Conf on E volutionary Computation, Seoul,2001,75-80.
    70. Liu B, Wang L, Jin Y H. Directing orbits of chaotic systems by particle swarm optimization[J], Chaos, Solitons & Fractals,2006,29(2):454-461.
    71. Eberhart R C, Hu X. Human tremor analysis using particle swarm optimization[C], Proceedings of the IEEE Congress on Evolutionary Computation, Piscataway, NJ:IEEE Service Center,1999, 1927-1930.
    72. Tandon V. Closing the gap between CAD/CAM and optimized CNC end milling [D], Indianapolis: (Master's thesis) Purdue School of Engineering and Technology, Indiana University Purdue University, 2001.
    73. He Z, Wei C, Yang L. Extracting rules from fuzzy neural network by particle swarm optimization[C], Proceedings of IEEE Congress on Evolutionary Computation, Anchorage, Alaska, USA,1998,74-77.
    74. Sensarma P S, Rahmani M. A comprehensive method for optimal expansion planning using particle swarm optimization[C], Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, New York, USA,2002,1317-1322.
    75. Chin A K, Dipti S. Particle swarm optimization-based approach for generator maintenance scheduling[C], Proceedings of the IEEE Swarm Intelligence Symposium 2003, Indiana, USA,2003, 167-173.
    76. Hirotaka Y, Kenichi K. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J], IEEE Trans on Power Systems,2000,15(4):1232-1239.
    77. Valadimiro M, Nuno F. EPSO-evolutionary particle swarm optimization, a new algorithm with applications in power systems[C], Proceedings of IEEE Congress on Evolutionary Computation, Hawaii, USA,2002:745-750.
    78. Abido M A. Optimal power flow using particle swarm optimization[J], Electrical Power and Energy System,2002,24(7):563-571.
    79.程颖,鞠平,吴峰.负荷模型参数辨识的粒子群优化法及其与基因算法比较[J],电力系统自动化,2003,27(11):25-29.
    80.龙云,王建全.基于粒子群优化算法的同步发电机参数辨识[J],大电机技术,2003,(1):8-11.
    81.胡家声,郭创新,曹一家.基于扩展粒子群优化算法的同步发电机参数辨识[J],电力系统自动化,2004,28(6):32-35.
    82.赫然,王永吉,王青.一种改进的自适应逃逸微粒群算法及试验分析[J],软件学报,2005,16(12)2036-2044.
    83. Krink T, Vesterstrom J S, Riget J. Particle swarm optimization with spatial particle extension[C], In: Proc. of the IEEE Int'l Conf. on Evolutionary Computation. Honolulu: IEEE Inc.,2002,1474-1497.
    84. Kazemi B, Mohan C. Multi-Phase generalization of the particle swarm optimization algorithm[C], In: Proc. of the IEEE Int'l Conf. on Evolutionary Computation. Honolulu:IEEE Inc.,2002,489-494.
    85. Hu X H, Eberhart R C. Adaptive particle swarm optimization:Detection and response to dynamic system[C], In:Proc. of the IEEE Int'l Conf. on Evolutionary Computation. Honolulu:IEEE Inc.,2002, 1666-1670.
    86. Xie X F, Zhang W J, Yang Z L. A dissipative particle swarm optimization[C], In:Proc. of the IEEE Int'l Conf. on Evolutionary Computation. Honolulu:IEEE Inc.,2002,1456-1461.
    87. Higashi N, Iba H. Particle swarm optimization with Gaussian mutation[C], In:Proc. of the IEEE Swarm Intelligence Symp. Indianapolis:IEEE Inc.,2003,72-79.
    88. Kennedy J. Bare bones particle swarms[C], In:Proc. of the IEEE Swarm Intelligence Symp. Indianapolis:IEEE Press,2003,53-57.
    89. Zhang W J, Xie X F. DEPSO:Hybrid particle swarm with differential evolution operator[C], In:Proc. of the IEEE Int'l Int'l Conf. on Systems, Man and Cybernetics. Washington:IEEE Inc.,2003, 3816-3821.
    90. Lovbjerg M, Krink T. Extending particle swarm optimizers with self-organized critically[C], In:Proc. of the IEEE Int'l Conf. on Evolutionary Computation. Honolulu:IEEE Inc.,2002,1588-1593.
    91. Ratnaweera A, Halgamuge S K, Watson H C. Self-Organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J], IEEE Trans. on Evolutionary Computation,2004,8(3): 240-255.
    92.吕振肃,厚志荣.自适应变异的粒子群优化算法[J],电子学报,2004,32(3):416-420.
    93. Krink T, Vesterstroem J S, Riget J. Particle swarm optimization with spatisl particle extension[C], Proceedings of the IEEE Congress on Evolutionary Computating(CEC), Honolulu, Hawaii USA,2002, 1474-1479.
    94.陈珩.电力系统稳态分析[M],北京:中国电力出版社,1995,92-95.
    95. Liu M B, Tso S K, Cheng Y. An extended nonlinear primal-dual interior-point algorithm for feactive-power optimization of large-scale power systems with discrete control variables[J], IEEE Transactions on Power Systems,2002,17(4):982-991.
    96. Zhao B, Guo C X, Cao Y J. A multiagent-based particle swarm optimization approach for optimal reactive power dispatch[J], IEEE Transactions on Power Systems,2005,20(2):1070-1078.
    97. Rezania E, Shahidehpour S M. Real power loss minimization using interior point method[J], International Journal of Electrical Power and Energy Systems,2001,23(1):45-56.
    98. Liu Y T, Ma L, Zhang J J. Reactive power optimization by GA/SA/TS combined algorithms[J], International Journal of Electrical Power and Energy Systems,2002,24(9):765-769.
    99. Bhagwan D D, Patvardhan C. Reactive power dispatch with a hybrid stochastic search technique[J], International journal of Electrical Power and Energy Systems,2002,24(9):731-736.
    100. Venkatesh B, Sadasivam G, Khan M A. A new optimal reactive power scheduling method for loss minimization and voltage stability margin maximization using successive multi-objective fuzzy LP technique[J], IEEE Transactions on Power Systems,2000,15(2):844-851.
    101.张元明,王晓东,李乃湖.基于原对偶内点法的电压无功功率优化[J],电网技术,1998,22(6):42-45.
    102. Cheng S J, Malik O P, Hope G S. An expert system for voltage and reactive power control of a power system[J], IEEE Trans on Power Systems,1988,3(4):1449-1455.
    103.Salama M M A, Chikhani A Y. An expert system for reactive power control of a distribution system[J], IEEE Trans on Power Systems,1992,7(2):940-945.
    104. Yokoyama R, Niimura T, Nakanishi Y. A coordinated control of voltage and reactive power by heuristic modeling and approximate reasoning[J], IEEE Trans on Power Systems,1993,8(2): 636-645.
    105.颜伟,孙渝江,罗春雷.基于专家经验的进化规划方法及其在无功优化中的应用[J],中国电机工程学报,2003,23(7):76-80.
    106. Abdul-Rahman K H, Shahidehpour S M, Daneshdoost M. AI approach to optimal VAR control with fuzzy reactive loads[J],IEEE Trans on Power Systems,1995,10(1):88-97.
    107.高炜欣,罗先觉,汤楠.基于Hopfield神经网络的油田配电网无功优化[J],电网技术,2007,31(7):42-45.
    108.余娟,颜伟,徐国禹.基于预测-校正原对偶内点法的无功优化新模型[J],中国电机工程学报,2005,25(11):146-151.
    109.于钊,赵登福,夏经德.电力系统动态无功/电压优化控制的一种新算法[J],西安交通大学学报,2006,40(12):1441-1445.
    110. Liu M B, Tso S K, Cheng Y. An extended nonlinear primal-dual interior-point algorithm for reactive-power optimization of large-scale power systems with discrete control variables[J], IEEE Trans on Power Systems,2002,17(4):982-991.
    111.刘明波,李健,吴捷.求解无功优化的非线性同伦内点法[J],中国电机工程学报,2002,22(9):1-7.
    112.刘明波,程莹,林声宏.求解无功优化的内点线性和内点非线性规划方法比较[J],电力系统自动化,2002,26(1):22-26.
    113.赵登福,杨靖,刘昱.基于改进遗传算法的配电网无功优化[J],西安交通大学学报,2001,35(12):1219-1222.
    114.黄志刚,李林川,杨理.电力市场环境下的无功优化模型及其求解方法[J],中国电机工程学报,2003,23(12):79-83.
    115.盛兆俊,刘瀚.基于改进遗传算法的无功综合优化[J],电力自动化设备,2004,24(4):27-29.
    116.郭创新,朱承治,赵波.基于改进免疫算法的电力系统无功优化[J],电力系统自动化,2005,29(15):23-29.
    117.熊虎岗,程浩忠,李宏仲.基于免疫算法的多目标无功优化[J],中国电机工程学报,2006,26(11): 102-108.
    118.林济铿,李鸿路,罗姗姗.基于自适应免疫算法的电力系统无功优化[J],天津大学学报,2007,40(1):110-115.
    119.赵波,曹一家.电力系统无功优化的多智能体粒子群优化算法[J],中国电机工程学报,2005,25(5):1-7.
    120.赵波,郭创新,张鹏翔.基于分布式协同粒子群优化算法的电力系统无功优化[J],中国电机工程学报,2005,25(21):1-7.
    121.赵娜,张伏生,魏平.基于改进多粒子群算法的电力系统无功优化[J],西安交通大学学报,2006,40(4):463-467.
    122.毛安家,郭志忠.电力系统计算中的二维稀疏结构技术[J],继电器,2001,29(1):19-21.
    123. Kessel P, Glavitsch H. Estimating the voltage stability of a power system[J], IEEE Transactions on Power Delivery,1986,3(3):346-354.
    124.贾宏杰,李鹏,宿吉峰.天津电网电压稳定性分析[J],电网技术,2002,26(7):42-45.
    125.张文.基于粒子群优化算法的电力系统无功优化研究[D],济南:山东大学,2006.
    126. Kalyanmoy D. Multi-Objective Optimization using Evolutionary Algorithms[M], Chichester:John Wiley & Sons, Ltd,2001.
    127. Parsopoulos K E, Vrahatis M N. Recent approaches to global optimization problems through particle swarm optimization[J], Natural Computing,2002,1(2-3):235-306.
    128. Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multiobjective problems[C], Proceedings ACM Symposium on Applied Computing (SAC'02), Madrid:ACM Press,2002,603-607.
    129. Bertolini M, Braglia M, Carmignani G. Application of the AHP Methodology in Making a Proposal for a Public Work Contract[J], International Journal of Project Management,2006,24(5):422-430.
    130. Yang T, Chen M C, Hung C C. Multiple Attribute Decision-making Methods for the Dynamic Operator Allocation Problem[J], Mathematics and Computers in Simulation,2007,73(5):285-299.
    131. Gao Y L, Xue H G, Shen P P. A New Rectangle Branch-and-reduce Approach for Solving Nonconvex Quadratic Programming Problems[J], Applied Mathematics and Computation,2005,168(2): 1409-1418.
    132. Michael R, Czinkota, Ilkka A Ronkainen. A Forecast of Globalization, International Business and Trade:Report from a Delphi Study[J], Journal of World Business,2005,40(2):111-123.
    133. Rick J parente, Tiffany Noel Hiob, Rebecca A Silver. The Delphi Method, Impeachment and Terrorism: Accuracies of Short-range Forecasts for Volatile World Events[J], Technological Forecasting and Social Change,2005,72(4):401-411.
    134.李祚泳.投影寻踪的理论及应用进展[J],大自然探索,1998,17(63):47-50.
    135.黄晓荣,付强,梁川.投影寻踪分类模型在工程评标中的应用[J],哈尔滨工业大学学报,2004,36(1):69-72.
    136. Abido M A, Bakhashwain J M. Optimal VAR dispatch using a multiobjective evolutionary algorithm[J], International Journal of Electrical Power and Energy Systems,2005,27(1):3-20.
    137.黄席樾.现代智能算法理论及应用[M],北京:科学出版社,2005.
    138. Jon T, Camilla E, Johnny K. Assessing the Performance of Two Immune Inspired Aorithms and a Hybrid Genetic Algorithm for Function Optimisation[J], Congress on Evolutionary Computation, 2004,(1):1044-1051.
    139. Oprea M, Forrest S. How the immune system generates diversity:Pathogen space coverage with random and evolved antibody libraries[C], Genetic and Evolutionary Computation Conference(GECCO99),1999,1651-1656.
    140.焦李成,杜海峰.人工免疫系统进展与展望[J],电子学报,2003,91(10):1540-1548.
    141.罗印升,李人厚,张雷.人工免疫算法在函数优化中的应用[J],西安交通大学学报,2003,37(8):840-843.
    142.孙宁.人工免疫优化算法及其应用研究[D],哈尔滨:哈尔滨工业大学,2006.
    143.第一作者.基于动态双种群粒子群算法的柔性工作车间调度[J],东北大学学报(自然科学版),2007,28(9):1238-1242.
    144. Sun L Y, Zhang Y, Jiang C W. A matrix real-coded genetic algorithm to the unit commitment problem[J], Electric Power Systems Research,2006,76(9):716-728.
    145. Fan J Y, Zhang L, Mcdonald J D. Enhanced Techniques on Sequential Unit Commitment with Interchange Transactions[J], IEEE Trans on PWRS,1996,11(1):93-100.
    146. Habibollahzabddh H, BubenkoJ A. Application of Decomposition Techniques to Short-term Operation Planning of Hydrothermal Power System[J], IEEE Trans on PWRS,1988,1(1):269-277.
    147. Svoboda A J, Tseng C L, Li C. Short-Term Resource Scheduling with Ramp Constraints[J], IEEE Trans on PWRS,1997,12(1):77-83.
    148. Cheng C P, Liu C W, Liu C C. Unit Commitment by Lagrangian Relaxation and Genetic Algorithm[J], IEEE Trans on Power System,2000,15(2):707-714.
    149.陈皓勇,王锡凡.电力系统机组组合问题的系统进化算法[J],中国电机工程学报,1999,19(12):9-13.
    150. Kazarlis S A, Bakirtzis A G, Petridis V. A genetic algorithm solution to the unit commitment problem[J], IEEE Trans on PWRS,1996,11(1):83-92.
    151.Maifeld T T, ShebleG B. Genetic-based unit commitment[J], IEEE Trans on PWRS,1996,11(3): 1359-1365.
    152.汪峰,朱艺颖,白晓民.基于遗传算法的机组组合研究[J],电力系统自动化,2003,27(6):36-41.
    153.蔡杰进,马晓茜.基于模糊遗传算法的机组组合问题的求解[J],华南理工大学学报,2006,34(10):94-99.
    154. Viana A, De S J P, Matos M. Simulated annealing for the unit commitment problem[C],2001 IEEE Porto Power Tech Conference,2001,2:4-7.
    155.Rajan C A, Mohan M R, Manivannan K. Refined simulated annealing method for solving unit commitment problem[C], Proceedings of the 2002 International Joint Conference on Neural Networks, 2002,1:333-338.
    156.温步瀛,陈冲,邓嵘.火电机组启停机经济调度新算法[J],电力自动化设备,2003,23(2):1-4.
    157. Mori H, Matsuzaki O. A parallel tabu search approach to unit commitment in power systems[C], Proceedings of International Confer on Systems, Man, and Cybernetics,1999,6:509-514.
    158. Mori H, Matsuzaki O. Embedding the priority list into tabu search for unit commitment[C], Power Engineering Society Winter Meeting 2001 IEEE,2001,3:1067-1072.
    159.吴金华,吴耀武,熊信艮.机组优化组合问题的随机tabu搜索算法[J],电网技术,2003,27(10):35-38.
    160. Chung T S, Wong Y K, Wong M H. Application of Evolving Neural Network to Unit Commitment[C], Proceedings of International Confer on Energy Management and Power Delivery,1998,1:154-160.
    161. Yalcinoz T, Short M J, Cory B J. Application of Neural Networks to Unit Commitment[C], AfRICON,1999 IEEE,1999,2:649-654.
    162.吴金华,吴耀武,熊信艮.机组组合问题的扩展Hopfield神经网络算法[J],电力系统自动化,2003,27(7):41-44.
    163.关仲,陈刚,张忠静.人工神经网络与动态搜索的机组组合算法[J],重庆大学学报,2006,29(10),29-32.
    164. Siu T K, Nash G A, A practical hydro, dynamic unit commitment and loading mode[J], IEEE Trans on Power Systems,2001,16(2):301-306.
    165. Padhy N P, Paranjothi S R, Ramachandran V. A hybrid fuzzy neural network-expert system for a short-term unit commitment problem[J], Microelcetronics and Reliability,1997,37(5):733-737.
    166. Huang S J. Enhancement of thermal unit commitment using immune algorithms based optimization approaches[J], International Journal of Electrical Power & Energy Systems,1999,21(4):245-252.
    167.郝晋,石立宝,周家启.一种求解最优机组组合问题的随机扰动蚁群优化算法[J],电力系统自动化,2002,26(23):23-28.
    168. Sisworahardjo N S, El-Keib A A. Unit Commitment Using the Ant Colony Search Algorithm[C], Proceedings of the Large Engineering Systems Conference on Power Engineering,2002,2-7.
    169. El-Gallad A, El-Hawary M. Particle swarm optimizer for constrained economic dispatch with prohibited operating zones[C], Canadian Conference on Electrical and Computer Engineering, Manitoba, Canada,2002,78-81.
    170. Park J B, Lee K S. Economic load dispatch for non-smooth cost functions using particle swarm optimization[C], IEEE Power Engineering Society General Meeting, Ontario, Canada,2003,938-943.
    171. Gaing Z L. Particle swarm optimization to solving the economic dispatch considering the generator constraints[J], IEEE Trans on Power Systems,2003,18(3):1187-1195.
    172.袁晓辉,王乘,袁艳斌.一种求解机组组合问题的新型改进粒子群方法[J],电力系统自动化,2005, 29(1):34-38.
    173.刘涌,侯志俭,蒋传文.求解机组组合问题的改进离散粒子群算法[J],电力系统自动化,2006,30(4):35-39.
    174.孙力勇,张焰,蒋传文.基于矩阵实数编码遗传算法求解大规模机组组合问题[J],中国电机工程学报,2006,26(2):82-87.
    175. Ouyang Z, Shahidehpour S M. An intelligent dynamic programming for unit commitment application[J], IEEE Transactions on Power Systems,1991,6(3):1203-1209.
    176. Ongsakul W, Petcharaks N. Unit commitment by enhanced adaptive Lagrangian relaxation[J], IEEE Transactions Power Systems,2004,19(1):620-628.
    177. Gaing Z L. Discrete particle swarm optimization algorithm for unit commitment[C], Proceedings of IEEE Power Engineering Society General Meeting, Toronto, Ontario(Canada),2003,1:418-424.
    178. Swarup K S, Yamashiro S. Unit commitment solution methodology using genetic algorithm[J], IEEE Transactions on Power Systems,2002,17(1):87-91.
    179. Hsu C C, Chen C Y. Regional load forecasting in Taiwan:applications of artificial neural networks[J], Energy Convers. Manage.,2003,44(12):1941-1949.
    180.唐亮贵,程代杰.基于小波的支持向量机预测模型及应用[J],计算机科学,2006,33(3):202-204.
    181.李元诚,方廷健,于尔铿.短期负荷预测的支持向量机方法研究[J],中国电机工程学报,2003,23(6):55-59.
    182. Feng P P, Chiang H W. Support vector machines with simulated annealing algorithms in electricity load forecasting[J], Energy Conversion and Management,2005,46(3):2669-2688.
    183. Parrott D, Li X D. Locating and tracking multiple dynamic optima by a particle swarm model using speciation[J], IEEE Transactions on Evolutionary Computation,2006,10(4):440-458.
    184. Ursem R K. Multinational evolutionary algorithms[C], Proceedings of Congress of Evolutionary Computation, Washington, DC, USA,1999,3:1633-1640.
    185.邰能灵.小波分析在电力系统中的应用及相关问题研究[D],上海:上海交通大学,2002.
    186. Soliman S A, Persaud S, Nagar K E, et al. Application of least absolute value parameter estimation based on linear programming to short-term load forecasting[J], Electical Power and Energy Systems, 1997,19(3):209-216.
    187. Kiartzis S, Kehagias A, Bakirtzis A, et al. Short-term load forecasting using a Bayesian combination method[J], Electr Power Energ Syst,1997,19(3):171-177.
    188. Kodogiannis V S, Anagnostakis E M. A study of advanced learning algorithms for short-term load forecasting[J], Engineering Applications of Artificial Intelligence,1999,12(2):159-173.
    189. Chen G, Li K, Chung T, et al. Application of an innovative forecasting method in power system load forecasting[J], Electric Power Systems Research,2001,59(2):131-137.
    190.周宏,黄婷,戴韧.几种灰色模型用于电力消费中期预测研究[J],电网技术,2000,24(7):49-54.
    191.李伟,韩力.组合灰色预测模型在电力负荷预测中的应用[J],重庆大学学报,2004,27(1):36-39.
    192.张大海,毕研秋,毕研霞.基于串联灰色神经网络的电力负荷预测方法[J],系统工程理论与实践,2004,(12):128-132.
    193. Yao S, SongY, Zhang L. Wavelet transform and neural networks for short-term electrical load forecasting[J], Energy Conversion and Management,2000,41(8):1975-1988.
    194. Rocha R A, Alves S A. Multiresolution short-term forecasting for electrical load using wavelet decompositions and neural networks[J], WSEAS Transactions on Systems,2003,2(3):660-665.
    195. Zhang B L, Dong Z Y. An adaptive neural-wavelet model for short term load forecasting[J], Electric Power Systems Research,2001,59(2):121-129.
    196. Hippert H S, Pedreira C E, Souza R C. Neural Networks for Short-term Load Forecasting:A Review and Evaluation[J], IEEE Trans on power Systems,2001,16(1):44-55.
    197.林志玲.电力市场下若干问题的研究[D],沈阳:东北大学,2007.
    198.谢宏,陈志业,牛东晓等.基于小波分解与气象因素影响的电力系统日负荷预测模型研究[J],中国电机工程学报,2001,21(5),5-10.
    199. Chen G J, Li K K, Chung T S. Application of an Innovative Combined Forecasting Method in Power System Load Forecasting[J], Electric Power Systems Research,2001,59(2):131-137.
    200. Karaki S H. Weather Sensitive Short-term Load Forecasting Using Artificial Neural Networks and Time Series[J], International Journal of Power and Energy Systems,1999,19(3):251-256.
    201.王志勇,郭创新,曹一家.基于模糊粗糙集和神经网络的短期负荷预测方法[J],中国电机工程学报,2005,25(19):7-11.
    202.雷绍兰,孙才新,周湶.基于径向基神经网络和自适应神经模糊系统的电力短期负荷预测方法[J],中国电机工程学报,2005,25(22):78-82.
    203.赵登福,王蒙.基于支持向量机方法的短期负荷预测[J],中国电机工程学报,2002,22(4):26-30.
    204.李元诚,方廷建,于尔铿.短期负荷预测的支持向量机方法研究[J],中国电机工程学报,2003,23(6):55-59.
    205.鲁顺.省级电网调度在线预警系统有关问题的研究与实现[D],沈阳:东北大学,2007.
    206. Yang J F, Jurgen S. Historical load curve correction for short-term load forecasting[C], Proceedings of The 7th International Power Engineering Conference, Singapore, IEEE Press,2005:1-6.
    207.邰能灵.小波分析在电力系统中的应用及相关问题研究[D],上海:上海交通大学,2002.
    208.胡家声,郭创新,曹一家.基于扩展粒子群优化算法的同步发电机参数辨识[J],电力系统自动化,2004,28(6):35-40.
    209. Jaramillo R, Alvarez R, Urdenas V. Identification of induction motor parameter using an extended Kalman filter[C], Proceedings of 1st International Conference on Electrical and Electronics Engineering, Acapulco, Mexico,2004,584-588.
    210. Cirrincione M, Pucci M, Cirrincione G. A new experimental application of least-squares techniques for the estimation of the induction motor parameters[J], IEEE Transactions on Industry Applications,2003, 39(5):1247-1256.
    211.袁晓辉,袁艳斌,王乘.一种新型的自适应混沌遗传算法[J].电子学报,2006,34(4):708-712.
    212. Seo J H, Im C H, Heo C G. Multimodal function optimization based on particle swarm optimization[J], IEEE Transactions on Magnetics,2006,42(4):1095-1098.
    213. LI J P, Balazs M E, Parks G T. A species conserving genetic algorithm for multimodal function optimization[J], Evolutionary Computation,2002,10(3):207-234.
    214. Li H, Hu Y C. Stepped-up chaos optimization algorithm and its application[J], Journal of Systems Engineering,2002,17(1):41-44.
    215. Lu Z, Shieh L S, Chen G R. Simplex sliding mode control for nonlinear uncertain systems via chaos optimization[J], Chaos, Solitons and Fractals,2005,23 (3):747-755.
    216.汪镭,周国兴,吴启迪.神经网络辨识方案在异步电机传动系统参数辨识中的应用讨论[J],电工电能新技术,2001,20(2):58-63.
    217.汪镭,周兴国,吴启迪.基于人工神经网络在线参数跟踪的自适应交流传动系统[J],自动化学报,1997,23(4):543-546.
    218. Huang C Y, Chen T C. Robust control of induction motor with a neural-network load torque estimator and a neural-network identification[J], IEEE Trans.on Industrial Electronics,1999,46(5):990-998.
    219.孙泽昌.一种采用参数调整学习的感应电机转子参数辨识方法[J],电气自动化,1998,20(1):19-22.
    220. Kung Y S, Liaw C M. Adaptive speed control for induction motor drives using neural networks[J], IEEE Trans. on Industrial Electronics,1995,42(1):25-32.
    221. Lin F J. Control of indirect field-oriented induction motor drives considering the effects of dead-time and parameter variations[J], IEEE Trans. on Industrial Electronics,1993,40(5):486-495.
    222.刘长良,于希宁,姚万业.基于遗传算法的火电厂热工过程模型辨识[J],中国电机工程学报,2003,23(3):170-174.
    223.戴义平,邓仁纲,刘炯.基于遗传算法的汽轮机非线性调节系统的参数辨识研究[J],动力工程,2003,23(1):2215-2218.
    224.金海.三相异步电动机磁链观测器与参数辨识技术研究[D],杭州:浙江大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700