用户名: 密码: 验证码:
基于Hopf分岔理论的电力系统动态电压稳定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型互联电力系统电压稳定问题的研究对于我国电力系统的安全稳定运行具有十分重要的意义。电力系统动态电压稳定可行域的边界通常由鞍节、Hopf和奇异诱导三个分岔空间组成的,而Hopf分岔是一种典型的动态分岔,是连接确定解和周期解的桥梁。本文围绕Hopf分岔理论,探讨了Hopf分岔对电力系统动态电压稳定性的影响,主要研究内容有:
     (1)提出了一种求解电力系统动态电压稳定Hopf分岔点的简化直接法。该方法对以往的Hopf分岔点直接解法进行了拓展和简化,对于一个n维系统,仅需构造n+2维的拓展系统,该拓展系统由描述电力系统动态特性的微分代数方程组和两个标量方程组成。
     (2)提出了一种基于重启动精化Arnoldi算法的动态电压稳定分析方法。该算法基于精化投影思想,对确定的Ritz值λ~i ,在Krylov子空间用达到最小残量的向量(即精化Ritz向量)代替传统的Ritz向量做为待求矩阵的近似特征向量,以达到提高计算效率的目的。将这一算法与追踪电力系统平衡解流形问题的连续法结合,在得到一个平衡点后求出对应的系统雅可比矩阵的关键特征值,再以此来判断是否出现了Hopf分岔点。
     (3)提出了一种计及特征值实部关于负荷增长的二阶灵敏度系数的自适应步长调整连续法。该方法利用特征值实部关于负荷增长的一阶和二阶灵敏度系数来自动调整预测步长的大小,在初始点附近利用较大步长来追踪平衡解流形,当运行点靠近Hopf分岔点时,则自动减小预测步长,以避免由于预测步长过大而发生“跳过”Hopf分岔点的情况。
     (4)提出了一种通过追踪关键特征值来确定Hopf分岔点的混合方法。该方法从初始状态开始,利用连续性方法追踪平衡解流形,同时计算特征值对负荷增长的灵敏度系数,结合特征值分析选取关键特征值;当关键特征值比较靠近虚轴时,再转入对关键特征值的连续追踪,直至Hopf分岔点。
     (5)利用动态电压稳定裕度对控制参数的灵敏度系数,挑选出控制效果较好的控制参数做为主要的控制方式,重点刻画出与此类控制参数所对应的由Hopf分岔所决定的动态电压稳定可行域边界。
     全文从Hopf分岔点的求解方法出发,首先研究了求解多机电力系统Hopf分岔点的直接法;然后结合特征值分析方法分别提出了求解Hopf分岔点的连续性方法和对关键特征值的追踪算法;在此基础上,进一步结合动态电压稳定裕度对控制参数的灵敏度分析技术,利用连续性方法刻画出了由Hopf分岔所决定的动态电压稳定可行域边界。
The intensive research on voltage stability of bulk connected power system plays a significant role in the safe, reliable and efficient operation of the power system. Generally, the feasibility boundar of dynamic voltage stability is constructed by three bifurcation space: Saddle, Hopf and singularity induced bifurcation. Hopf bifurcation is a kind of typical dynamic bifurcation which can server as a bridge between the determinate solutions and the periodic ones. The dynamic voltage stability based on Hopf bifurcation theory is studied in this thesis, the main content was shown as below.
     The direct method was an effective way to determine the Hopf bifurcation points in power system dynamic voltage stability. However, for an n-dimensional power system a (2n+2)-dimensional augmented system was required in classic direct methods and the computation to solve the augmented system was expensive. A novel approach to calculate the Hopf bifurcation points is presented. In this method, a simple (n+2)-dimensional augmented system is founded which includes the differential-algebraic equations set to describe the dynamic characteristics of the power system and 2 scalar equations. The Hopf bifurcation points can be ascertained by solving the new augmented system.
     A restarted-refined Arnoldi method is introduced into the dynamic voltage stability analysis to calculate the critical eigenvalues of bulk power system. The refined Ritz vectors are used as the approximations based on the refined projection theory in order to enrich the information of the eigenvectors in the projective subspace. The method can be combined with the continuous arithmetic which was used to trace the equilibrium manifold. The key eigenvalue can be ascertained by the application of restarted-refined Arnoldi method at each equilibrium point of the power system DAE models. The Hopf bifurcation appears if there is a pair of conjugate eigenvalues with zero real-part.
     A step adaptive-adjustion continuous method with consideration of second-order sensitivity of eigenvalue real-part to load increase is put forward. The forecast step is adjusted adaptive by the application of the first and second sensitivity of eigenvalue real-part to load increase. The biggish step is applied to trace the equilibrium manifold at initial point, the step will be decreased automatically when the operation point is close to the Hopf bifurcation in order to avoid jumping over the Hopf bifurcation.
     A hybrid method to calculate Hopf bifurcation by the tracing of the key eigenvalue is presented. The equilibrium manifold is traced by the continuous method at beginning. The key eigenvalue is ascertained based on the sensitivity of eigenvalue real-part to load increase. The key eigenvalue is traced when it is closed to the imaginary coordinate-axis until the Hopf bifurcation appeares.
     The feasibility boundary based on the selected control parameters is depicted by the application of the continuous method presented. The efficiently control parameters are selected according to the sensitivity of load margin to control parameter.
     To sum up the above arguments, the direct method to determine the Hopf bifurcation points of power system is studied at first. Then the step adaptive-adjustion continuous method and the hybrid method to trace the key eigenvalue are presented respectively which are integrated with eigenvalues-analysis. Lastly, the feasibility boundary based on the selected control parameters is depicted by the application of the continuous method presented and the sensitivity of load margin to control parameter.
引文
[1]余贻鑫.电压稳定研究述评[J].电力系统自动化, 1999, 23(21): 1-8.
    [2]余贻鑫,王成山.电力系统稳定性理论与方法[M].北京:科学出版社,1999.
    [3]周双喜,朱凌志,郭锡久,等.电力系统电压稳定性及其控制[M].北京:中国电力出版社,2004.
    [4]彭志炜.基于分岔理论的电力系统电压稳定性的研究[D].杭州:浙江大学,1998.
    [5]安宁.电压稳定的时域仿真研究[D].北京:清华大学,2006.
    [6] Charles Concordia. Voltage Instability: Definition and Concepts[M]. Venice. Florida, 1987.
    [7] P. Kundur. Power System Stability andControl[M]. New York: McGraw-Hill Inc., 1994.
    [8] Y. Mansour, ed. Voltage stability of power systems: Concepts, analytical tools and industry experience, IEEE Publication 90TH0358-2-PWR, 1990.
    [9] CIGRE Task Force 38.02.10. Modeling of Voltage Collapse Including Dynamic Phenomena. Electra, 1993(147): 71-77.
    [10] Carson W. Taylor. Power System Voltage Stability[M]. New York: McGraw-Hill Inc.
    [11] Kundur P, Paserba J, Ajjarapu V., et al. Definition and classitication of power system stability IEEE/CIGRE joint task force on stability terms and definitions[J]. IEEE Trans. on Powr Systems, 2004, 19(3): 1387-1401.
    [12]倪以信,陈寿孙,张宝霖著.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.
    [13]赵金利.电压稳定域的可视化及其应用[D].天津:天津大学,
    [14] S. Green, I. Dobson, F.L. Alvarado. Sensitivity of the Loading Margin to Voltage Collapse with respect to Arbitray Parameters. IEEE Trans. on Power Systems, 1997, 12(1): 260-272.
    [15]李国庆,王威,贾伟,等.基于负荷裕度灵敏度的电压稳定控制方法[J].电机与控制学报, 2002, 6(2): 173-179.
    [16] Y.Tamura, H.Mori & S.Iwamoto. Relationship between Voltage Instability and Multiple Load Flow Solutions in Electric Power Systems. IEEE Trans. PAS, 1983, 102: 1115-1123.
    [17] Canizares C.A., Alvarado F.L. Point of Collapse and Continuation Methods for Large AC/DC System[J]. IEEE Trans. on Power Systems, 1993, 8(1): 1-8.
    [18] Iba K., Suzuki H., Egava M., et al. Calculation of Critical Loading Condition with Nose Curve Using Homotopy Continuation Method[J]. IEEE Trans. on Power Systems, 1991, 6(2): 584-593
    [19] Ajjarapn V., Christy C. The Continuation Power Flow: A Tool for Steady State Voltage Stability Analysis[J]. IEEE Trans. on Power Systems, 1992, 7(1): 416-423
    [20]王成山,江伟,江晓东.一种新的电力系统鞍型分叉点计算方法[J].中国电机工程学报, 1999,19(8): 20-24.
    [21] Irisarri G. D., Wang X., Tong J., et al. Maximum Load Ability of Power System using Interior Point Nonlinear Optimization Method[J]. IEEE Trans. on Power System, 1997, 12(1):162-169.
    [22]薛禹胜,周海强,顾晓荣.电力系统分岔与混沌研究述评[J].电力系统自动化, 2002, 26(16): 9-15.
    [23]刘益青,陈超英,梁磊,等.电力系统电压稳定性的动态分析方法综述[J].电力系统及其自动化学报, 2003, 15(1): 105-108
    [24] Z El-Razaz, A.A, El-Sulaiman, M. Sebbaah. Modelling and Simulation of Rapid Developing Power System for Steady-State Stability Studies[J]. Journal of Engineering Sciences, 1987, 13(1): 155-170.
    [25] P.L Dandeno. Current Usage and Suggested Practices in Power System Stability Simulations for Synchronous Machines[J]. IEEE Trans. on Energy Conversion, 1986, EC-1(1): 77-93.
    [26] E I- Sadek, M. Z. Voltage Instability Subsequent to Short- circuit Recoveries[J]. Electric Power System Research, 1991, 21 (1): 9-16
    [27] Yao-nan Yu, Wen-jie Zhang. Simulation of Power System Voltage Stability Including Load and System Dynamics[J]. Power System Techno logy, 1995, 19 (11): 6-11
    [28] Kurita A., Okubo H., Oki K. Multiple Time-scale Power System Dynamic Simulation[J]. IEEE Transactions on Power Systems, 1993, 8 (1): 216-223
    [29]徐泰山,鲍颜红,薛禹胜,等.中期电压稳定的快速仿真算法研究[J].电力系统自动化, 2000, 24(24): 9-11
    [30] Qin Wang, Ajjarapu V. Quasi-steady-state Analysis by Using Continuation Method[C]. Power Engineering Society Winter Meeting, 2001, 3:1300-1304
    [31]顾群,徐泰山,陈怡,等.中期电压稳定的建模和快速仿真[J].电力系统自动化, 1999, 23 (21): 25-28
    [32] Ota H., Kitayama Y. Development of Transient Stability Control System Based on Online Stability Calculation[J]. IEEE Transactions on Power System, 1996, 11(3): 1463-1472
    [33] L. Loud, P. Rousseaux, D. L efebvre, T. Van Cutsem. A Time- Scale Decomposition- Based Simulation Tool for Voltage Stability Analysis[C]. IEEE Porto Power Tech Conference, September, 2001.
    [34]李慧玲,余贻鑫,韩琪,等.割集功率空间上静态电压稳定域的实用边界[J].电力系统自动化, 2005, 29(4): 18-23.
    [35]余贻鑫,李鹏,孙强,等.电力系统潮流可行域边界拓扑性质及边界算法[J].电力系统自动化, 2006, 30(10): 6-11.
    [36]贾宏杰.电力系统小扰动稳定域的研究[D].天津:天津大学,2001.
    [37] Ian Dobson, Hsiao-Dong Chiang. Towards A Theory Of Voltage Collapse in Electric Power Systems[J]. System & Control Letters 1989, 13: 253-262.
    [38] I. Dobson. Observations on the Geometry of Saddle Node Bifurcation and Voltage Collapse in Electrical Power Systems[J]. IEEE Trans Circuit and Systems-I, 1992, 39(3): 240-243.
    [39] I.Dobson, L.Lu. New Methods for Computing A Closest Saddle Node Bifurcation And Worst Case Load Power Margin for Voltage Collapse[J]. IEEE Trans PWRS, 1993, 8(3): 905-913.
    [40] Ian Dobson, Liming Lu. Computing An Optimum Direction in Control Space To Avoid Saddle Node bifurcation And Voltage Collapse In Electric Power Systems [J]. IEEE Transactions on Automatic Control, 1992, 37(10): 1616-1620.
    [41] Chin-Woo Tan, Matthew Varghese, Pravin Varaiya, Felix F. Wu. Bifurcation, Chaos, and Voltage Collapse in Power Systems[J]. Proceedings of the IEEE, 1995, 83(11): 1484-1496.
    [42] Kwantny H G. Static Bifurcation in Electric Power Networks: Loss of Steady-State Stability and Voltage Collapse[J]. IEEE Trans on CAS, 1986, 33(10).
    [43] Harry G. Kwatny, Robert F. Fischl, Chika O. Nwankpa. Local Bifurcation in Power Systems: Theory, Compution, and Application[J]. Proceedings of the IEEE, 1995, 83(11): 1456-1483.
    [44] Harry G. Kwatny, Xiao-Ming Yu, Chika Nwankpa. Local Bifurcation Analysis Of Power Systems Using MATLAB[A]. Proc. 4th IEEE Conf. on Control Applications[C]. Albany, IEEE, 1995, 57-62.
    [45] Ajjarapu V. Application of Bifurcation And Continuation Methods for The Analysis Of Power System Dynamics[A]. Proc. 4th IEEE Conf. on Control Applications[C]. Albany, IEEE, 1995, 52-56
    [46]贾宏杰,余贻鑫,李鹏.电力系统环面分岔与混沌现象[J].中国电机工程学报,2002, 22(8): 6-10.
    [47]王庆红,周双喜.电力系统奇异摄动模型霍普夫分岔分析[J].中国电机工程学报,2003, 23(8): 1-6.
    [48]王庆红,周双喜,胡国根.电力系统微分代数模型奇异诱导分岔点的搜索及其理论分析[J].电网技术, 2003, 27(11): 14-17.
    [49]薛禹胜,周海强,顾晓荣.电力系统分岔与混沌研究述评[J].电力系统自动化, 2002, 26(16): 9-15.
    [50] Yuri V. Makarov, Zhao Yang Dong, David J. Hill. A General Method for Small Signal Stability Analysis[J]. IEEE Trans. on Power System, 1998, 13(3): 979-985.
    [51] S. Gomes Jr., N. Martins, C. Portela. Computing Small-signal Stability Boundaries for Large-scale Power Systems[J]. IEEE Trans. on Power Systems, 2003, 18(2): 747–752.
    [52] R. T. H. Alden, F. A. Qureshy. Eigenvalue Tracking due to Parameter variation[J]. IEEE Trans. Autom. Contr., 1985, AC-30(9):923-925.
    [53] Roose D, Hlavacek L. A Direct Method for the Computation of Hopf Bifurcation Points[J]. SIAM J. Applied Mathematics, 1985, 45: 879-894.
    [54] Mees A. I., Chua L. The Hopf Bifurcation Theorem and Its Application to Nonlilnear Oscillations in Circuits and System[J]. IEEE Trans. CAS, 1979, 26: 235-254.
    [55] Moiola J, Chen G. Computations of Limit Cycles via Higher Order Harmonic Balance Approximations[J]. IEEE Trans Autom. Contr., 1993, 38: 782-790.
    [56] Z. Feng, Ajjarapu V., D. J. Maratukulam. Identification of Voltage Collapse through Direct Equilibrium Tracing[J]. IEEE Trans. Power Syst., 2000, 15(1): 342–349.
    [57] C. A. Canizares, A. C. Z. de Souza, V. H. Quintana. Comparison of Performance Indexes for Detection of Proximity to Voltage Collapse[J]. IEEE Trans. on Power System, 1996, 11(3): 1441–1450.
    [58] E.E. Nino, C.A. Castro, L.C.P. da Silva and D.A. Alves. Continuation Load Flow using Automatically Determined Branch Megawatt Losses as Parameters [J]. IEE Proc.-Gener. Transm. Distrib., 2006, 153(3): 300–308.
    [59] A. C. Z. de Souza, C. A. Canizares, V. H. Quintana. New Techniques to Speed up Voltage Collapse Computations using Tangent Vectors[J]. IEEE Trans. Power Syst., 1997, 12(3): 1380–1387.
    [60] A.C. Zambroni de Souza, B.I. Lima Lopes, R.B.L. Guedes, et al. Saddle-node index as Bounding value for Hopf bifurcations detection[J]. IEE Proc.-Gener. Transm. Distrib., 2005, 152(5): 737-742.
    [61] Xiaoyu Wen, Ajjarapu V. Application of a Novel Eigenvalue Trajectory Tracing Method to Identify Both Oscillatory Stability Margin and Damping Margin[J]. IEEE Trans. on Power System, 2006, 21(2): 817-824.
    [62] Ashwani Kumar, S.C. Srivastava, S.N. Singh. Available Transfer Capability Assessment in a Competitive Electricity Market using a Bifurcation Approach[J]. IEE Proc.-Gener. Transm. Distrib., 2004, 151(2): 133-140.
    [63] P.K. Satpathy, D. Das, P.B. Dutta Gupta. A Fuzzy Approach to Handle Parameter Uncertainties in Hopf Bifurcation Analysis of Electric Power Systems[J]. Electrical Power and Energy Systems, 2004, 26: 527–534.
    [64] Ian Dobson, Fernando Alvarado, Christopher L. DeMarco. Sensitivity of Hopf bifurcations to Power System Parameters[C]. Proceeding of 31st Conference on Decision Control, Tucson, Artzona, December 1992, 2928-2933.
    [65] Claudio A. Ca?izares, Nadarajah Mithulananthan, Federico Milano, et al. Linear Performance Indices to Predict Oscillatory Stability Problems in Power Systems[J]. IEEE Trans. on Power Systems, 2004, 19(2): 1104-1114
    [66] Venkatasubramanian V., Schattler H, aborszky J. Local Bifurcations and Feasibility Regions in Differential-algebraic Systems[J]. IEEE Trans on Automatic Control, 1995, 40(12): 1992-2013.
    [67] Venkatasubramanian V. Singularity Induced Bifurcation and the Van De Pol Oscillator[J]. IEEE Trans on Circuits and Systems I, 1994, 41(11); 765-769.
    [68] Beardmore R E. A Study of Bifurcation in Singular Differential Equations Motivated by Electrical Power System[D]. Ph D. Dissertation, Brunnel University, U. K, 1999.
    [69]王庆红,周双喜.电力系统微分代数模型奇异诱导分岔分析[J].中国电机工程学报, 2003, 23(7): 18-22.
    [70] Venkatasubramanian V., H. Sch?ttler and J. Zaborszky. Voltage Dynamics: Study of a Generator with Voltage Control, Transmission, and Matched WM Load[J]. IEEE Trans on Automatic Control, 1992, 37(11): 1717-1733.
    [71]曹国云,王冲,陈陈.中心流形方法降维分析电压崩溃中的Fold分岔[J].中国电机工程学报, 2002,2(7): 40-43.
    [72] P. Kundur. Small Signal Stability Analysis Program: version 3.1, Final report on EPRI TR-101850-V2R1, 1994, Projects 2447-01, 1208-11, -12, -13.
    [73]王成山,李国庆,余贻鑫,等.电力系统区域间功率交换能力的研究(一)连续型方法的基本理论及应用[J].电力系统自动化, 1999, 23(3): 23-26.
    [74] Seydel R. Numerical Computation for Bifurcation points in Nonlinear Equations[J]. Numerische Mathematik, 1979, Vol.33: 981-991.
    [75] Ajjarapu V. Identification of Steady-state Voltage Stability in Power System[J]. Int. J. Energy Syst., 1991, Vol.33: 43-46.
    [76] Carpaneto E G, Chicco G et al. A Newton-Raphson Method for Steady State Voltage Stability Assessment[J]. Proc. Bulk Power Syst., MD: 1991, 341-345.
    [77] Chiang H D, Jumear R J. A More Efficient Formulation for Computation of the Maximum Loading in Electric Power System[J]. IEEE Trans. on Power Systems, 1995, 10(2): 635-646.
    [78] Rene Jean-Jumeau, Chiang H D. Parameterizations of Load-flow Equation for Eliminating Ill-conditioning Load Flow Solution[J]. IEEE Trans on Power Systems, 1993, 8(3): 1004-1012.
    [79]曾江,韩祯祥.电压稳定临界点的直接计算法[J].清华大学学报(自然科学版), 1997, 37(S1): 91-94.
    [80] Yongqiang Liu, Zheng Yan, Yixin Ni, et al. A Study on Mechanism of Voltage Collapse based on the Theory of Transversality of Equilibrium Points[J]. Electric Power Systems Research,2004, 70: 163–171.
    [81]郭瑞鹏,韩祯祥.电压崩溃临界点计算的改进零特征根法[J].中国电机工程学报,2000,20(5): 63-66.
    [82] Parker C.J., Morrison I.F. Application of an Optimization Method for Determining the Reactive Margin from Voltage Collapse in Reactive Power Planning[J]. IEEE Trans. on Power Systems, 1996, 11(3): 1473-1481
    [83]郭瑞鹏,韩祯祥,王勤.电压崩溃临界点的非线性规划模型及算法[J].中国电机工程学报, 1999, 19(4): 14-17.
    [84] Cutsem T.V. Dynamic and Static Aspects of Voltage Collapse. Proceeding of Bulk Power System Voltage Phenomena-Voltage Stability and Security, 1989, EPRI EL-6183(6): 55-79.
    [85] Pai M. A, Sauer P. W. Staticand Dynamic Nonlinear Loads and Structural Stability in Power Systems[J]. Proceedings of the IEEE, 1995, 83(11): 1562-1572
    [86]邵洪泮.电力系统稳定性的直接分析法[M].北京:水利电力出版社,1991.
    [87]程浩忠.电力系统无功与电压稳定性[M].北京:中国电力出版社,2004.
    [88]顾圣士.微分方程和动力系统[M].上海:上海交通大学出版社,2000.
    [89]张芷芬,李承治,郑志明等.向量场的分岔理论基础[M].北京:高等教育出版社,1997
    [90]陆启韶.分岔与奇异性[M].上海:上海科技教育出版社,1995
    [91]陆启韶.现代数学基础[M].北京:北京航空航天大学出版社,2000.
    [92]张锦炎,冯贝叶.常微分方程几行理论与分支问题[M].北京:北京大学出版社,2000.
    [93] C. Vournas, M. karystianos. Load Tap Changers in Emergency and Preventive Voltage Stability Control[J]. IEEE Trans. on PWRS, 2004, 19(1): 492-498.
    [94] Sekine Y. Reverse Action of On-Load Tap Changer in Association with Voltage Collapse[J]. IEEE Trans. on PWRS, 1991, 6(1): 300-306.
    [95] A. Griewank, G. Redien. The Calculation of Hopf points by a Direct Method[J]. IMA J, Numer. Anal. 1983,3: 295-303.
    [96] M. Holdniok, M. Kubicek. New Algorithms for the Evaluation of Complex Bifurcation points in Ordinary Differential Equations[J]. A comparative numerical study, Appl. Math. Comp. 1984,15: 261-274.
    [97] Ye Ruisong. A New Approach for the Computation of Hopf Bifurcation Points[J]. Applied Mathematics and Mechanics, 2000, 21(11): 1300-1307.
    [98] Ajjarapu V., B. Lee. Bifurcation Theory and Its Application to Nonlinear Dynamical Phenomena in an Electrical Power System[J]. IEEE Trans. on Power System, 1992, 7(1): 424-431.
    [99] Yuan Zhou, Ajjarapu V. A Fast Algorithm for Identification and Tracing of Voltage and Oscillatory Stability Margin[J]. Proceedings of the IEE, 2005, 93(5): 934-946.
    [100]杜正春,刘伟,方万良,等.小干扰稳定分析中一种关键特征值计算的稀疏实现[J].中国电机工程学报,2005,25(2):17-21.
    [101] J.M. Campagnolo, N. Martins, J.L.R. Pereira et al. Fast Small-Signal Stability Assessment Using Parallel Processing[J]. IEEE Trans. on Power System, 1994, 9(2): 949-956.
    [102] G. Angelidis, A. Semlyen. Efficient Calculation of Critical Eigenvalue Clusters in the Small Signal Stability Analysis of Large Power Systems[J]. IEEE Trans. on Power System, 1995, 10(1): 427-432.
    [103] Angelidis G., Semlyen, A. Improved Methodologies for the Calculation of Critical Eigenvalues in Small Signal Stability Analysis[J]. IEEE Trans. on Power System, 1996, 11(3): 1209– 1217.
    [104] Semlyen A., Wang, L. Sequential Computation of the Complete Eigensystem for the Study Zone in Small Signal Stability Analysis of Large Power Systems[J]. IEEE Trans. on Power System, 1988, 3(2): 715– 725.
    [105] J.M. Campagnolo, N. Martins, D. M. Falcao. Refactored Bi-Iteration: A High Performance Eigensolution Method for Large Power System Matrices[J]. IEEE Trans. on Power System, 1996, 11(3): 1228-1235.
    [106] L. Wang, A. Semlyeq. Application of Sparse Eigenvalue Techniques to the Small Signal Stability Analysis of Large Power Systems[J]. IEEE Trans. on Power Systems, 1990, 5(2): 635-642.
    [107] P. Kundur, G. J. Rogers, D. Y. Won, et al. A Comprehensive Computer Program Package for Small Signal Stability Analysis of Power Systems. IEEE Trans. on Power Systems, 1990, 5(4): 1076-1083.
    [108] Gibbard, M.J. Vowles, D.J. Pourbeik, P. Interactions and Effectiveness of Power System Stabilizers and FACTS Device Stabilizers in Multimachine Systems[J]. IEEE Trans. on Power Systems, 2000, 15(2): 748– 755.
    [109] B. Lee, H. Song, S-H. Kwon, etal. Calculation of Rightmost Systems using the Block (BACM) Eigenvalues in Power Arnoldi Chebyshev Method[J]. IEE Proc-Gener. Trans. Distrib. 2003, 150(1): 23-27.
    [110]谷寒雨,陈陈.一种新的大型电力系统低频机电模式计算方法[J].中国电机工程学报,2000,20(9):50-54.
    [111]孙建生,侯志俭,王承民.Arnodi算法在电力系统静态电压稳定分析中的应用[J].电力系统及其自动化学报, 2005, 17(5): 79-81.
    [112]杜正春,刘伟,方万良,等.大规模电力系统关键特征值计算的Arnoldi-Chebyshev方法[J].西安交通大学学报, 2004, 38(10): 995-999.
    [113]陈桂芝.解大规模非对称矩阵特征问题的一些精化算法[D].大连:大连理工大学,2000.
    [114] G..H.戈卢布,C.F.范洛恩著,袁亚湘等译.矩阵计算[M].北京:科学出版社,2001.
    [115] Y. Saad. Numerical Solution of Large Nonsymmetric Eigenvalue Problems[J]. Comput. Phys. Commun, 1989,53:71-90.
    [116] Y. Saad. Variations on Arnoldi’s Method for Computing Eigenelements of Large Unsymmetric Matrices[J]. Linear Algebra and its Applications, 1980, 34:269-295.
    [117] R.B. Morgan. On Restarting the Arnoldi Method for Large Nonsymmetric Eigenvalue Problems[J]. Math. Comput. 1996, 65: 1213-1230.
    [118] D.C. Sorensen. Implicit Application of Polynomial Filters in a k-step Arnoldi Method[J]. SIAM J. Matrix Anal. Appl., 1992, 13: 357-385.
    [119] Z. Jia. Polynormial Characterizations of the Approximate Eigenvectors by the Refined Arnoldi Method and an Implicitly Restarted Refined Arnoldi Algorithm[J]. Linear Algebra Appl., 1999, 287: 191-241.
    [120]贾仲孝,陈桂芝.解大规模非对称矩阵特征问题的精化Arnoldi方法的一种变形[J].数值计算与计算机应用, 2003, (2): 102-110.
    [121] Z.Jia. A Refined Iterative Algorithm based on the Block Arnoldi Process for Large Unsymmetric Eigenproblems[J]. Linear Algebra Appl., 1998, 270:171-189.
    [122] Z.Jia. Refined Iterative Algorithms based on Arnoldi’s Process for Large Unsymmetric Eigenproblem[J]. Linear Algebra Appl., 1997, 259:1-23.
    [123]王锡凡,方万良,杜正春.现代电力系统分析[M].北京:科学出版社,2003.
    [124] Xiaoyu Wen, Ajjarapu V. Critical Eigenvalue Trajectory Tracing for Power System Oscillatory Stability Assessment[C]. Power Engineering Society General Meeting, IEEE, Denver, USA, 6-10 June, 2004(12):1883-1889.
    [125] Frequency Domain Analysis of Low Frequency Oscillations in Large Electric Power Systems. EPRI Tech. Rep. EL-726, Apr. 1978.
    [126] Thomas Smed. Feasible Eigenvalue Sensitivity for Large Power System[J]. IEEE Trans. on Power Systems, 1993, 8(2): 555– 562.
    [127] Hae-Kon Nam, Yong-Ku Kim, Kwan-Shik Shim, et al. A New Eigen-sensitivity Theory of Augmented Matrix and its Applications to Power System Stability Analysis[J]. IEEE Trans. on Power Systems, 2000, 15(1): 363– 369.
    [128] Alves D. A., da Silva L. C. P., Castro C. A., et al. New Parameterization Schemes for the Continuation Load Flow Method[C]. Proceedings of International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, 2000:179-184.
    [129] Phichaisawat S, Song Y H, Taylor G A. Congestion Management Considering Voltage Security Constraints[C]. Proceedings of International Conference on Power System Technology, 2002,3:1819-1823.
    [130]王成山,魏炜.一种改进的步长控制连续性潮流计算方法[J].电工技术学报,2004, 19(2):58-63.
    [131] George Angelidis, Adam Semlyen. Improved Methodologies for the Calculation of Critical Eigenvalues in Small Signal Stability Analysis[J]. IEEE Trans. on Power Systems, 1996, 11(3): 1209–1217.
    [132] Leonardo T.G. Lima, Licio H. Bezerra, Carlos Tomei, et al. New Method for Fast Small-Signal Stability Assessment of Large Scale Power Systems[J]. IEEE Transaction on Power System, 1995, 10(4):1979-1985.
    [133] Jorge M. Campagnolo, Nelson Martins, Jose L.R. Pereira, et al. Fast Small-signal Stability Assessment using Parallel Processing[J]. IEEE Transaction on Power System, 1993, 9(2): 949-956.
    [134] L. Wang, A. Semlyen. Application of Sparse Eigenvalue Techniques to the Small Signal Stability Analysis of Large Power Systems[J]. IEEE Trans. on Power Systems, 1990, 5(2): 635–642.
    [135] Robert Kalaba, Karl Spingarn, Leigh Tesfatsion. Variational Equations for the Eigenvalues and Eigenvectors of Nonsymmetric Matrices[J]. Journal of Optimaization Theory and Applications, 1981, 33(1):1-8.
    [136] Ji, W., Venkatasubramanian V. Dynamics of a Minimal Power System: Invariant Tori and Quasiperiodic Motions[J]. IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications, 1995, 42(12): 981-1000.
    [137] Alpay O. Heinz S. A Computational Method for Calculation of the Feasibility Boundary and Clustering in Differential-Algebraic Systems[J]. IEEE Trans. on Circuits and System I: Fundamental Theory and Applications, 2005, 52(9): 1940-1952.
    [138]曹国云,赵亮,刘丽霞,等.动态电压稳定模型中二维参数分岔边界的计算[J].电力系统自动化, 2005, 29(7): 24-27.
    [139] Lerm, A.A.P. Control of Hopf Bifurcation in Multi-area Power Systems via a Secondary Voltage Regulation Scheme[C]. Power Engineering Society Summer Meeting, 2002, 3: 1615-1620.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700