用户名: 密码: 验证码:
沙门菌质粒和毒力基因对细胞自噬的影响及其分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过建立沙门菌感染的细胞模型,观察伤寒沙门菌质粒pRST98及与其密切相关的沙门菌质粒毒力基因(Salmonella plasmid virulence gene B, spvB)对自噬及感染结局的影响,探讨其发生机制及相关信号通路,以期揭示沙门菌质粒毒力基因增强宿主菌毒力的分子机制,为探索通过调控细胞自噬水平控制沙门菌感染的新途径,并为后续新药靶点的发现及疫苗开发提供实验和理论依据。
     方法:
     1.沙门菌质粒对细胞自噬及感染结局的影响。以携带质粒PRST98的伤寒沙门菌(Salmonella typhi, S.typhi)野生株ST8为实验株,消除pRST98的突变株PRST98为阴性对照株,携带沙门菌质粒毒力基因(Salmonella plasmid virulence gene, spv)的鼠伤寒沙门菌标准毒株(Salmonella typhimurium)SR-11为阳性对照株,将受试菌与野生型小鼠胚胎成纤维细胞(wide type mouse embryonic fibroblasts, WT-MEFs)及自噬基因5缺陷型小鼠胚胎成纤维细胞(autophagy associated gene5deficient mouse embryonic fibroblasts, Atg5-/-MEFs)体外共培养,制作细胞感染模型。以对数生长期细菌按感染复数(multiplicity of infection, MOI)为100:1感染细胞,同时设立WT-MEFs的自噬激动剂——雷帕霉素(rapamycin, RAPA)干预组。将细胞与细菌共作用1h后吸取上清,此时定为“0"点,加入含有100μg/ml的阿米卡星(Amikacin, AMK)培养液作用2h以去除胞外菌,然后将AMK浓度降为10μg/ml以抑制从感染细胞中释放至培养液中的细菌生长。分别在感染的不同时间段(1h、3h、5h、8h和10h)收获细胞,采用以下方法进行实验检测:①单丹磺酰尸胺(monodansylcadaverin, MDC)染色,荧光显微镜下观察细胞内点状自噬囊泡;②透射电镜(transmission electron microscope, TEM)观察细胞内双层或多层膜结构的自噬小体;③Western Blotting (WB)检测细胞自噬标志蛋白——微管相关蛋白1轻链3-Ⅱ(Microtubule-associated protein1light chain3-Ⅱ, MAP1-LC3-Ⅱ,即LC3-Ⅱ)表达情况;④Annexin.V-FITC/Propidium Iodide (Ann.V/PI)双染流式细胞术(flow cytometry, FCM)分析细胞凋亡率;⑤梯度稀释平板菌落计数法检测胞内集落形成单位(colony forming unit, CFU)。
     2.沙门菌质粒毒力基因spvB影响细胞自噬及机制研究。以spvB缺陷的鼠伤寒沙门菌SR-11突变株(SR-11-△spvB)及含有spvB的野生型鼠伤寒沙门菌标准毒株SR-11(SR-11)为研究对象,将实验菌株体外感染WT-MEFs及Atg5-/-MEFs, MOI为100:1,细胞感染过程同第一部分。分别在感染的不同时间段(1h、3h、5h、8h和10h)收获细胞,进行以下实验:①WB检测细胞LC3-Ⅱ蛋白、磷脂酶D(phospholipase D1——PLD1和phospholipase D2——PLD2)蛋白及Toll样受体4(Toll-like receptors4, TLR4)蛋白表达情况;②放射性[9,103H]油酸标记检测感染细胞的PLD活性;③逆转录聚合酶链反应(reverse transcription polymerase chain reaction, RT-PCR)检测细胞TLR4信使RNA (messanger RNA, mRNA)表达情况;④Ann.V/PI双染FCM分析细胞凋亡率;⑤酶联免疫吸附试验(enzyme linked immunosorbent assay, ELISA)检测细胞Thl型细胞因子干扰素-γ(Interferon-γ, IFN-γ)及Th2型细胞因子白细胞介素-4(interleukin-4, IL-4)和白细胞介素-13(interleukin-13, IL-13)的表达;⑥梯度稀释平板菌落计数法检测胞内CFU。
     结果:
     1.沙门菌质粒对细胞自噬及感染结局的影响
     (1) MDC荧光染色结果:ST8及SR-11感染的各组细胞中,在感染早期,WT-MEFs内可见很少量的点状自噬囊泡颗粒,RAPA干预后,WT-MEFs在感染早期1h点状自噬囊泡颗粒数量增多。感染早期1h,ST8-△pRST98感染的WT-MEFs出现大量的点状自噬囊泡颗粒,3h时颗粒数量减少,RAPA干预的ST8-ApRsT98感染WT-MEFs在早期亦出现数量众多的自噬囊泡颗粒。
     (2)细胞超微结构观察:在感染早期1h, ST8及SR-11感染的WT-MEFs内未见自噬小体,RAPA干预后,ST8及SR-11感染的WT-MEFs胞内可见双层膜结构的自噬小体。感染早期1h,电镜下可见ST8-△pRST98感染的WT-MEFs及RAPA干预的WT-MEFs内有典型的双层或多层膜自噬小体。
     (3) LC3-Ⅱ蛋白表达:在感染早期1h,ST8及SR-11感染WT-MEFs的LC3-Ⅱ表达较弱,RAPA干预后,ST8及SR-11感染WT-MEFs的LC3-Ⅱ表达明显增强。感染中晚期5h-10h, LC3-Ⅱ在上述各组感染细胞均不表达。感染早期1h和3h,ST8-△pRST98感染的WT-MEFs的LC3-Ⅱ表达较强,且LC3-Ⅱ在1h的表达强度高于3h; RAPA干预WT-MEFs后,LC3-Ⅱ表达明显增加。
     (4)3株细菌感染的Atg5-/-MEFs在感染各时间段均没有观察到点状自噬囊泡颗粒、双层膜结构的自噬小体及LC3-Ⅱ表达等自噬现象发生。
     (5)细胞凋亡检测结果:ST8感染的各组细胞中,Atg5-/-MEFs和WT-MEFs之间凋亡率无显著性差异,RAPA干预WT-MEFs后,其凋亡率明显降低。SR-11感染各组细胞的凋亡比较结果与ST8感染细胞类似,Atg5-/-MEFs和WT-MEFs之间凋亡率无显著性差异,在以RAPA干预后,WT-MEFs凋亡率显著降低。ST8-△pRST98感染的各组细胞凋亡结果分析显示,在各个时间段,Atg5-/-MEFs凋亡率最高,RAPA干预的WT-MEFs凋亡率高于RAPA未干预的WT-MEFs凋亡率。
     (6)梯度稀释法计数胞内细菌数量:ST8感染的各组细胞之间,Atg5-/-MEFs和WT-MEFs的胞内细菌数量无显著性差异,而RAPA干预的WT-MEFs胞内细菌数量显著低于RAPA未干预WT-MEFs组。SR-11感染各组细胞的胞内细菌数量比较结果与ST8感染细胞类似,Atg5-/-MEFs和WT-MEFs之间无显著性差异,RAPA干预后,WT-MEFs内细菌数量明显减少。ST8-△pRsT98感染的各组细胞比较结果显示,Atg5-/-MEFs胞内细菌数量最多,RAPA干预的WT-MEFs与RAPA未干预的WT-MEFs之间无显著性差异。
     2.沙门菌质粒毒力基因spvB影响细胞自噬及机制研究
     (1)感染细胞LC3-Ⅱ蛋白表达情况:在感染早期1h和3h, SR-11感染WT-MEFs的LC3-Ⅱ表达明显弱于SR-11-△spvB感染的WT-MEFs,在感染中后期5h~10h,LC3-Ⅱ均不表达。
     (2)感染细胞PLD1和PLD2蛋白表达情况:在各时间段,SR-11感染细胞的PLD1蛋白表达水平强于SR-11-△spvB感染细胞,而PLD2蛋白表达水平在两株细菌感染细胞之间无显著性差异。
     (3)感染细胞TLR4蛋白表达情况:在感染各时间段,SR-11感染细胞的TLR4蛋白表达水平明显弱于SR-11-△spvB感染细胞。
     (4)感染细胞PLD活性测定:SR-11及SR-11-△spvB感染细胞的PLD活性均明显高于空白细胞的PLD基础活性;在感染各时间段,SR-11感染细胞的PLD活性均高于SR-11-△spvB感染细胞,1h达到高峰,以后逐渐下降。
     (5)感染细胞TLR4mRNA表达情况:在感染各时间段,SR-11感染细胞的TLR4mRNA表达水平低于SR-11-△spvB感染细胞。
     (6)感染细胞凋亡率检测:在感染各时间段,SR-11-△spvB感染的WT-MEFs凋亡率显著低于SR-11感染的WT-MEFs及SR-11-△spvB感染的Atg5-/-MEFs凋亡率;SR-11感染的WT-MEFs与Atg5-/-MEFs之间,凋亡率无显著性差异。
     (7)感染细胞的细胞因子表达情况:感染早期和中期(1h~5h),SR-11感染细胞的IFN-γ表达水平低于SR-11-△spvB感染细胞组,而SR-11感染细胞的IL-4及IL-13表达明显高于SR-11-△spvB感染细胞组;在感染后期(8h~10h),两株细菌感染细胞的细胞因子表达无显著性差异。
     (8)胞内细菌数检测:SR-11感染的WT-MEFs及Atg5-/-MEFs之间胞内细菌数量无显著性差异。SR-11-△spvB感染WT-MEFs的胞内细菌数量显著低于SR-11-△spvB感染的Atg5-/-MEFs和SR-11感染的WT-MEFs胞内细菌数。
     结论:
     1.伤寒沙门菌质粒pRST98可通过抑制细胞自噬促进细菌在宿主细胞内的存活和增殖,从而加重细胞损伤。
     2.伤寒沙门菌质粒pRST98抑制自噬的作用与其基因序列上的重要毒力基因spvB密切相关。spvB可通过抑制细胞TLR4表达,促进细胞PLD1表达及增加PLD活性,抑制Th1型细胞因子IFN-γ、促进Th2型细胞因子IL-4和IL-13表达从而导致Th1/Th2免疫漂移等途径抑制细胞自噬。spvB抑制自噬的信号通路与丝氨酸/苏氨酸激酶(serine/threonine protein kinase, AKT)依赖性方式激活TOR激酶(Mammalian Target of Rapamycin, mTOR)密切相关。
     3.作用于mTOR靶点的药物——雷帕霉素可减弱沙门菌质粒毒力基因对自噬的抑制作用,从而增强宿主细胞对感染病原菌的杀伤能力,减轻细胞损伤。
     4.自噬在沙门菌感染中具有“双刃剑”的作用,适度激活有利于清除胞内感染病原菌,减轻细胞损伤;而其缺失、抑制或过度增强可加重细胞损伤和感染。
Objective:To observe the effect of Salmonella virulence plasmid pRST98and Salmonella plasmid virulence gene B (spvB) on cellular autophagy and infection outcome through cells model infected by Salmonella infection in vitro, therefore discuss the molecular mechanism and possible signaling pathway. This study can help to elucidate the virulent mechanism of pRST98in Salmonella infection; also it can provide the experimental and theoretical basis on regulating autophagic pathway, discovering new drug target sites and vaccine exploration for controlling Salmonella infection.
     Methods:
     1. The study of cellular autophagy and infection outcome influenced by Salmonella virulence plasmid. In this study, Salmonella typhi (S. typhi) strain ST8carrying a virulence plasmid pRsT98was used as an experimental strain, pRST98-deletion S. typhi strain ST8-△pRST98was used as a negative control and standard virulent strain Salmonella typhimurium (S. typhimurium) SR-11containing Salmonella plasmid virulence gene (spv) presented on a100Kb virulent plasmid was used as a positive control. Three kinds of bacteria were added to wide type mouse embryonic fibroblasts (WT-MEFs) and autophagy associated gene5deficient mouse embryonic fibroblasts (Atg5-/-MEFs) in vitro respectively at a multiplicity of infection (MOI) of100:1, meanwhile the groups of infected-WT-MEFs treated by autophagy inducer rapamycin (RAPA) were set up. After incubated at37℃for1h (0-h time point), infected cells were washed three times with sterile phosphate buffered saline (PBS); then DMEM completely containing amikacin (100μg/ml) was added to kill remaining extracellular bacteria. After2h of further incubation at37℃, medium in the plates was replaced with DMEM containing amikacin (10μg/ml) to inhibit the propagation of possible extracellular bacteria in the medium. Infected cells were collected and detected at1h,3h,5h,8h and10h time points of infection. Autophagic vacuoles of infected cells were visualized under fluorescence microscopy by monodansycadaverine (MDC) staining. The gold standard of autophagy phenomenon such as double-or multilayer membrane of autophagosome in the cytoplasma was observed by transmission electron microscopy (TEM). The expression of autophagic protein LC3-II was detected by Western Blotting (WB) assay. The apoptotic rate of infected cells was analysized by flow cytometry (FCM) through the method of Annexin.V-FITC (Ann. V)/Propidium Iodide (PI) double staining. The number of bacteria inside infected cells was quantitied by plate count method.
     2. The effect of spvB on cellular autophagy and its molecular mechanism discussion. WT-MEFs and Atg5-/-MEFs were co-cultured with spvB mutant of SR-11strain (SR-11-AspvB) and wide type of SR-11strain containing spvB (SR-11) in vitro. Two kinds of bacteria were added to WT-MEFs and Atg5-/-MEFs at MOI of100:1. After incubated at37℃for1h (0-h time point), infected cells were washed three times with PBS; then DMEM completely containing amikacin (100μg/ml) was added to kill remaining extracellular bacteria. After2h of further incubation at37℃, medium in the plates was replaced with DMEM containing amikacin (10μg/ml) to inhibit the propagation of possible extracellular bacteria in the medium. Infected cells were collected at1h,3h,5h,8h and10h and detected by the following methods. The expression of LC3-Ⅱ protein, phospholipase D (PLD1and PLD2) protein and Toll-ike receptor4(TLR4) protein of infected cells were identified with WB assay. PLD activity of infected cells was detected by radioactive [9,10-3H] oleic acid labeling. The expression of TLR4mRNA in infected cells was semiquantitied by reverse transcription polymerase chain reaction (RT-PCR) assay. Apoptosis of infected cells was detected by FCM through Ann. V/PI double labeling. Thl-type cytokine secretion such as interferon-γ (IFN-γ) of infected cells and Th2-type cytokines such as interleukin-4(IL-4) as well as interleukin-13(IL-13) of infected cells were examined by enzyme-linked immunosorbent assay (ELISA). The number of bacteria inside infected cells was quantitied by plate count method.
     Results:
     1. The effect of Salmonella virulence plasmid on cellular autophagy and infection outcome.
     (1) Results of MDC fluorescent staining under fluorescene microscopy. Only few sporadic autophagic vesicles were observed in the cytoplasm of WT-MEFs infected by and SR-11at1h, while autophagy inducer RAPA-treatment induced lots of autophagic vesicles to appear in WT-MEFs which were infected by ST8and SR-11at1h. In the cytoplasm of WT-MEFs and RAPA-treated WT-MEFs infected by ST8-△pRST98at1h, a few typical autophagic vesicles could be observed, while the number of autophagic vesicles at3h was fewer than at1h.
     (2) Ultrastructure of infected cells under TEM. WT-MEFs infected by ST8and SR-11did not appear typical autophagic vacuoles in the cytoplasm, however, ST8and SR-11infected-WT-MEFs treated by RAPA displayed the trypical autophagic vacuoles with double membrane at1h. WT-MEFs and RAPA-treated WT-MEFs infected with ST8-△pRST98showed typical autophagic vacuole with double-or multilayer membrane in the cytoplasm at1h.
     (3) Expression of autophagic protein LC3-Ⅱ in infected cells. LC3-Ⅱ protein expression in WT-MEFs infected by ST8containing pRST98and SR-11containing spv was weaker than in WT-MEFs infected by ST8-△pRST98at1h; however, this infection-mediated suppression was reversed with RAPA-treatment as shown by the LC3-II protein expression in both RAPA-treated WT-MEFs infected by ST8and SR-11. WT-MEFs infected by ST8-△pRST98showed stronger LC3-Ⅱ protein expression at1h and3h than WT-MEFs infected by ST8and SR-11, and the intensity of LC3-Ⅱ protein expression at1h was stronger than at3h. LC3-Ⅱ protein expression in RAPA-treatment WT-MEFs infected by ST8-△pRST98was higher than in RAPA-untreated WT-MEFs. The intensity of LC3-II protein expression in all infected cells at3h was weaker than at1h, and disappeared from5h to10h.
     (4) Punctate autophagic vesicles, LC3-Ⅱ protein expression and typical autophagic vacuole with double-or multilayer membrane could not been observed in Atg5-/-MEFs infected by three kinds of bacteria at each time points of infection.
     (5) Apoptotic rate of infected cells. Among cells infected by ST8containing pRsT98, the apoptotic rate in WT-MEFs had no significant difference than in Atg5-/-MEFs; while the apoptotic rate in RAPA-treatment WT-MEFs was significant lower than in RAPA untreated-WT-MEFs. The results of apoptotic rate among cells infectd by SR-11contaning spv showed similar as caused by ST8. The apoptotic rate in WT-MEFs had no significant difference than in Atg5-/-MEFs infected by SR-11; while RAPA treatment significant decreased apoptosis in WT-MEFs than in RAPA-untreated WT-MEFs infected by SR-11. The apoptotic rate in Atg5-/-MEFs was highest among cells infected by ST8-△pRST98, and the apoptotic rate in RAPA untreated-WT-MEFs was lower than in RAPA-treatment WT-MEFs infected by ST8-ApRST98.
     (6) The number of bacteria inside infected cells. Among cells infected by ST8, the number of intracellular bacteria in WT-MEFs was similar to the bacterial quantity in Atg5-/-MEFs, while WT-MEFs with RAPA-treatment had less intracellular bacterial quantity than RAPA-untreated WT-MEFs. Among cells infected by SR-11containing spv, the number of intracellular bacteria had no significant difference between WT-MEFs and Atg5-/-MEFs, and RAPA treatment could significant decrease bacterial quantity in WT-MEFs. The number of bacteria in Atg5-/-MEFs was highest among cells infected by ST8-△pRsT98; however, bacterial quantity in RAPA-treatment WT-MEFs had no significant difference than in WT-MEFs without RAPA treatment infected by ST8-△pRST98.
     2. The effect of spvB on cellular autophagy and its'possible molecular mechanism.
     (1) Relative quantity of LC3-Ⅱ protein expression in infected cells. Expression of LC3-Ⅱ protein in WT-MEFs infected by SR-11strain was significant weaker than in SR-11-AspvB strain-infected WT-MEFs at1h and3h. Infected cells did not express LC3-Ⅱ protein during laterly infection from5h to10h.
     (2) Relative quantity of PLD1and PLD2protein expression in infected cells. The expression of PLD1protein in SR-11strain-infected cells was higher than in cells stimulated by SR-11-AspvB strain, while PLD2protein expression had no significant difference between in two kinds of bacterial-infected cells.
     (3) Relative quantity of TLR4protein expression in infected cells. The intensity of TLR4protein expression in SR-11strain-infected cells was significant lower than in cells infected by SR-11-△spvB strain at each time points of infection.
     (4) PLD activity of infected cells. The activity of PLD in cells infected by SR-11and SR-11-△spvB strain was both higher than the basic PLD activity of uninfected cells. PLD activity in SR-11strain-infected cells was higher than in cells infected by SR-11-△spvB strain at each time points of infection. PLD activity of infected cells reached climax at1h and gradually declined at lately infection.
     (5) TLR4mRNA expression of infected cells. The expression of TLR4mRNA in SR-11strain-infected cells was weaker than in cells infected by SR-11-△spvB strain at each time points of infection.
     (6) The apoptotic rate of infected cells. The apoptotic rate in WT-MEFs infected by SR-11-△spvB strain was significant lower than in SR-11strain-infected WT-MEFs and SR-11-△spvB strain-infected Atg5-/-MEFs, while the apoptotic rate had no significant difference between in WT-MEFs and Atg5-/-MEFs infected by SR-11strain.
     (7) Cytokines secretion of infected cells. Expression of Th1type cytokine such as IFN-y in SR-11strain-infected cells was weaker than in cells infected by SR-11-△spvB strain from1h to5h, while the secretion of Th2type cytokines such as IL-4and IL-13in cells infected by SR-11strain were higher than in cells infected by SR-11-△spvB. Three cytokines had no significant difference between in cells infected by two kinds of bacteria at8h and10h.
     (8) Bacterial quantity of infected cells. The number of intracellular bacterial quantity in SR-11-△spvB strain-infected WT-MEFs was significant lower than in WT-MEFs infected by SR-11and Atg5-/-MEFs infected by SR-11-△spvB strain. Intracellular bacterial quantity had no significant difference between in WT-MEFs and Atg5-/-MEFs both infected by SR-11strain.
     Conclusions:
     1. Salmonella virulence plasmid pRST98can promote intracellular bacte(?)al survival or proliferation through inhibiting cellular autophagy and consequently enhance apoptosis of infected fibroblasts, a mechanism underlying pRST98-mediated virulence in S. typhi.
     2. The capability of autophagy inhibition by pRST98is due to the key virulent segment on its genetic sequence spvB. SpvB can inhibit cellular autophagy through TLR4expression inhibition, PLD1expression promotion and PLD activity enhancement, regulation Th1/Th2shift away through increasing Th2type cytokines IL-4and IL-13secretion and decreasing Th1type cytokine IFN-γ secretion. It is speculated that mTOR activation through serine/threonine protein kinase (AKT)-dependent pathway may be one signaling pathway of autophagy inhibition induced by spvB.
     3. Rapamycin (mTOR inhibitor) can attenuate autophagy inhibition induced by spv, therefore enhance the competent of intracellular bacteria elimination by autophagy and lessen the injury of host cells.
     4. Autophagy can act as a "double-edged sword" function in Salmonella infection. Moderate activation of autophagy has a beneficial effect on restricting Salmonella proliferation and reducing the injury of host cells, while its deficiency, inhibition or over enhancement can worse infection and result in the more serious damage of host cells.
引文
[1]Perry JJ, Yousef AE. Salmonella enteritidis in shell eggs:evolving concerns and innovative control measures. Adv Appl Microbiol,2012; 81:243-274.
    [2]肖黔林,周忠海,李秋丽.质粒分析、噬菌体定型及耐药谱测定在伤寒流行病学调查中的应用.中华流行病学杂志,1987;5(5):272-275.
    [3]黄瑞,穆荣普.伤寒沙门氏菌耐药性及其耐药质粒的监测.中华传染病杂志,1994;12(4):204-206.
    [4]黄瑞,吴淑燕,闻玉梅.伤寒沙门菌耐药质粒pRST98介导细菌毒力的研究.中华微生物学与免疫学杂志,2001;21(3):302-305.
    [5]Fierer J, Okamoto S, Banerjee A, Guiney DG. Diarrhea and Colitis in mice response the Salmonella pathogenicity island 2-encoded secretion function but not SifA or spv effectors. Infect Immun,2012; 80(10):3360-3370.
    [6]Eulalio A, FrOhlich KS, Mano M, Giacca M, Vogel J. A candidate approach implicates the secreted Salmonella effector protein SpvB in P-body disassembly. Plos One,2011; 6(3):e17296.
    [7]Santander J, Curtiss R 3rd. Salmonella enterica serovar typhi and paratyphi A are avirulent in newborn and infant mice even when expressing virulence plasmid genes of Salmonella Typhimurium. J Infent Dev Ctries,2010; 4(11):723-731.
    [8]Haneda T, Ishii Y, Shimizu H, Ohshima K, Lida N, Danbara H, Okada N. Salmonella type III effector spvC, a phosphothreonine lyase, contributes to reduction in inflammatory response during intestinal of infection. Cell Microbiol, 2012; 14(4):485-499.
    [9]Kappeli R, Kaiser P, Stecher B, Hardt WD. Roles of spvB and spvC in S. Typhimurium colitis via the alternative pathway. Int J Med Microbiol,2011; 301(2): 117-124.
    [10]Yoon WS, Choi HJ, Park YK. Salmonella typhimurium harboring plasmid expressing interleukin-12 induced attenuation of infection and protective immune responses. J Gen Appl Microbiol,2011; 57(2):115-122.
    [11]Karasova D, Havlickova H, Sisak F, Rychlik I. Deletion of sodCI spvBC in Salmonella enterrica serovar Enteritidis reduced its virulence to the natural virulence of serovars Agona, Hadar and Infantis for mice but not for chickens early after infection. Vet Microbiol,2009; 139(3-4):304-309.
    [12]Feng Y, Liu J, Li YG, Cao FL, Johnston RN, Zhou J, Liu GR, Liu SL. Inheritance of the Salmonella virulence plasmids:mostly vertical and rarely horizontal. Infect Genet Evol,2012; 12(5):1058-1063.
    [13]Clark L, Perrett CA, Malt L, Harward C, Humphrey S, Jepson KA, Martinez-Argudo I, Carney LJ, La Ragioner RM, Humphrey TJ, Jepson MA. Differences in Salmonella enterica serovar Typhimurium atrain invasiveness are associated with heterogeneity in SPI-1 gene expression. Microbiology,2011; 157(pt 7):2072-2083.
    [14]Wu S, Li Y, Song G, qin Z, Huang R. Macrophage apoptosis associated with Salmonella enterica serovar Typhi plasmid. Indian J Exp Biol,2010; 48(8): 773-777.
    [15]Saiid SU, Schwarz S. Plasmid fingerprinting and virulence; gene detection among indigenous strains of Salmonella enterica serovar enteritidis. J Ayub Med Voll Abbottabad,2009; 21(2):83-86.
    [16]Browne SH, Hasegawa P, Okamoto S, Fierer J, Guiney DG. Identification of Salmonella SPI-2 secretion system components required for spvB-mediated cytotoxicity in macrophages and virulence in mice. FEMS Immunol Med Microbiol, 2008; 52(2):194-201.
    [17]Guiney DG, Lesnick. Targeting of the actin cytoskeleton during infection by Salmonella strains. Clin Immunol,2005; 114(3):248-255.
    [18]Tezcan-Merdol D, Engstrand L, Rhen M. Salmonella enterica.spvB-mediated ADP-ribosylation as an activation for host cell actin degradation. Int J Med Microbiol,2005; 295(4):201-212.
    [19]Alzoqaray V, Danguah W, Aquirre A, Urrutia M, Berguer P, Garcia Vescovi E, Haaq F, Koch-Nolte F, Goldbaum FA. Single-domain llama antibodies as specific intracellular inhibitors of spvB, the actin ADP-ribosylating toxin of Salmonella Typhimurium. FASEB,2011; 25(2):526-534.
    [20]Pust S, Hochmann H, Kaiser E, von Figura G, Heine K, Aktories K, Barth H. A cell-permeable fusion toxin as a tool to study the consequences of actin-ADP-ribosylation caused by the Salmonella enterica virulence factor spvB in intact cells. J Biol Chem,2007; 282(14):10272-10282.
    [21]Huang R, Wu S, Zhang X, Zhang Y. Molecular analysis and identification of virulence gene on pRsT98 from multi-drug resistant Salmonella typhi. Cell Mol Immunol,2005; 2(2):136-140.
    [22]Tanida I. Autophagy basics. Microbiol Immunol,2011; 55(1):1-11.
    [23]Rabinowitz JD, White E. Autophagy and metabolism. Science,2010; 330(6009): 1344-1348.
    [24]Knodler LA, Celli J. Eating the strangers within:host control of intracellular bacteria vai xenophagy. Cell Microbiol,2011; 13(9):1319-1327.
    [25]Yano T, aurata S. Induction of autophagy via innate bacterial recognition. Autophagy,2008; 4(7):958-960.
    [26]Gong L, Devenish RJ, Prescott M. Autophagy as a macrophage response to bacterial infection. IUBMB Life,2012; 64(9):740-747.
    [27]Shahnazari S, Brumell JH. Mechanisms and consequences of bacterial targeting by the autophagy pathway. Curr Opin Microbiol,2011; 14(1):68-75.
    [28]Wagner C, Hensel M. Adhesive Mechanism of Salmonella enterica. Adv Exp Med Biol,2011; 715:17-34.
    [29]Kageyama S, Omori H, Saitoh T, Sone T, Guan JL, Akira S, Imamoto F, Noda T, Yoshimori T. The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella. Mol Biol Cell, 2011; 22(13):2290-2300.
    [30]KahrstrOm CT. Host response:Salmonella triumphs over autophagy. Natural Rev Microbiol,2012; 10(8):519.
    [31]Wild P, Farhan H, McEwan DG, Wagner S, Rogov W, Brady NR, Richter B, Korac J, Waidmann O, Choudhary C, Dotsch V, Bumann D, Dikic I. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science,2011; 333(6039):228-233.
    [32]Jia K, Thomas C, Akbar M, Sun Q, Adams-Huet B, Gilpin C, Levine B. Autophagy genes protect against Salmonella Typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proc Nati Acad Sci USA,2009; 106(34): 14564-14569.
    [33]Hernandez LD, Pypaert M, Flavell RA, Galan JE. A Salmonella protein causes macrophage cell death by inducing autophagy. J Cell Biol,2003; 163(5): 1123-1131.
    [34]Weichhart T, Saemann MD. The PI3K/Akt/mTOR pathway in innate immune cells: emerging therapeutic applications. Ann Rheum Dis,2008; 67(S3):iii70-74.
    [35]吴淑燕,李琼,储元元,李嫄渊,黄瑞,秦正红.自噬对鼠伤寒沙门菌所致的巨噬细胞凋亡的影响.微生物学通报2010;37(5):776-782.
    [36]Wu S, Li Y, Xu Y, Li Q, Chu Y, Huang R, Qin Z. A Salmonella enterica serovar Typhi plasmid induces rapid and massive apoptosis in infected macrophages. Cell Mol Immunol,2010; 7(4):271-278.
    [37]Mostowy S, Cossart P. Autophagy and the cytoskeleton:New links revealed by intracellular pathogens. Autophagy,2011; 7(7):1-3.
    [38]Mostowy S, Bonazzi M, Hamon MA, et al. Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbiol,2010; 8(5):433-444.
    [39]Bortoluci KR, Medzhitov R. Control of infection by pyroptosis and autophagy. roleof TLR and NLR. Cell Mol Life Sci,2010; 67(10):1643-1651.
    [40]Harris J, Master SS, De Haro SA, Delgado M, Roberts EA, Hope JC, Keane J, Deretic V. Th1-Th2 polarisation and autophagy in the control of intracellular mycobacteria by macrophages. Vet immunol immunopathol,2009; 128(1-3):37-43.
    [41]周德庆.微生物学教程.北京:高等教育出版社,1996:185.
    [42]Holger H, Timucin T, Alison JL, Thomson AW. Rapamycin inhibits macropinocttosis and mannose receptor-mediated endocytosis by bone marrow-derived dendritic cells. Blood,2002; 100(3):1084-1087.
    [43]Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol,2004; 36(12):2503-2518.
    [44]Koirala J. Multidrug-resistant Salmonella enterica. Lancent Infect Dis,2011; 11(11):808-809.
    [45]Deretic V. Autophagy of intracellular microbes and mitochondria:two sides of the same coin? F1000 Biol Rep,2010; 2:pii:45.
    [46]Campoy E, Colombo MI. Autophagy in intracellular bacterial infection. Biochim Bioplys Acta,2009; 1793(9):1465-1477.
    [47]Lavallard VJ, Meijer AJ, Codogno P, Gual P. Autophagy, signaling and obesity. Pharmacol Res,2012; pii:S1043-6618(12):00167-3.
    [48]Menendez JA, Vellon L, Oliveras-Ferraros C, Cufi S, Vazguez-Martin A. m-TOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency:a roadmap from energy metabolism to stem cell renewal and aging. Cell Cycle,2011; 10(21):3658-3677.
    [49]Lee SB, Kim S, Lee J, Park J, Lee G, Kim Y, Kim JM, Chunq J. ATG1, an autophagy regulator, inhibits cell growth by negatively regulating S6 kinase. EMBO Rep,2007; 8(4):360-365.
    [50]Feldman ME, Shokat KM. New inhibitors of the PI3K-Akt-m TOR pathway: insights into m TOR signaling from a new generation of Tor Kinase Domin ihhibitors (TORKinibs). Curr Top Microbiol Immunol,2010; 347:241-262.
    [51]Altman BJ, Rathmell JC. Metabolic stress in autophagy and cell death pathways. Cold Spring Harb Perspect Biol,2012; 4(9). Pii:a008763.
    [52]Marguez RT, Xu L. Bcl-2:Beclin 1 complex:multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am J Cancer,2012; 2(2):214-221.
    [53]Tung YT, Wang BJ, Hu MK, Hsu WM, Lee H, Huang WP, Liao YF. Autophagy:1 double-edged sword in Alzheimer's disease. J Biosci,2012; 37(1):157-165.
    [54]Kim HJ, Lee S, Jung JU. When autophagy meets viruses:a doubl-edged sword with functions in defense and offense. Semin Immunopathol,2010; 32(4):323-341.
    [55]Kenific CM, Thorbum A, Debnath J. Autophagy and metastasis:another double-edged sword. Curr Opin Cell Biol,2010; 22(2):241-245.
    [56]Bucker MM, Croxen MA, Arena ET, Finlay BB. A comprehensive study of the contribution of Salmonella enterica server Typhimurium SPI2 effectors to bacterial colonization, survival, and replication in typhoid fever, macrophage, and epithelial cell infection modes. Virulence,2011; 2(3):208-216.
    [57]Mendoza Mdel C, Herrero A, Rodicio MR. Evolutionary engineering in Salmonella: emergence of hybrid virulence-resistance plasmids in non-typhoid serotypes. Enferm Infecc Microbiol,2009; 27(1):37-13.
    [58]Willimas LE, Wireman J, Hiliard VC, Summers AO. Large plasmids of Escherichia coli and Salmonella encode highly diverse arrays of accessory genes on common replicon families. Plasmid,2012; pii:S0147-619x (12) 00098-4.
    [59]Guiney DG, Fierer J. The role of the spv genes in Salmonella Pathogenesis. Front Microbiol,2011; 2:129.
    [60]Barth H, Aktories K. New insight into the mode of action of the actin ADP-ribosylating virulence factors Salmonella enterica SpvB and Clostridium botulinum C2 toxin. Eur J Cell Biol,2011; 90(11):944-950.
    [61]Pleskot R, Potocky M, Pejchar P, Linek J, Bezvoda R, Martinec J, Valentova Z, Zarsky V. Mutual regulation of plant phospholipase D and the actin cytoskeleton. Plant J,2010; 62(3):494-507.
    [62]Pribic J, Garcia R, Kong M, Brazill D. Paxillin and phospholipase D interact to regulate actin-based processes in Dictyostelium discoideum. Eukayot Cell,2011; 10(7):977-984.
    [63]Bamburg JR. Listeria monocytogenes cell invasion:a new role for cofilin in co-ordinating actin dynamics and membrane lipids. Mol Microbiol,2011; 81(4): 851-854.
    [64]Baranwal S, Alahari SK. Rho GTPase effector functions in tumor cell invansion and metastasis. Curr Drug Targets,2011; 12(8):1194-1201.
    [65]Han X, Yu R, Ji L, Zhen D, Tao S, Li S, Sun Y, Huang L, Feng Z, Li X, Han G, Schmidt M, Han L. InIB-mediated Listeria monocytogenes internalization requires a balance phospholipase D activity maintained through phosphor-cofilin. Mol Microbiol,2011; 81(4):860-880.
    [66]Han L, Wu XQ, Meng YF, Ji L, Chen SP. Listeria-induced host cellular actin cytoskeleton rearrangement and phospholipase D. Wei Sheng Wu Xue Bao,2006; 46(5):852-855.
    [67]Krawczyk-Balska A, Bielecki J. Molecular aspects of Listeria monocytogenes infection. Pol J Microbiol,2004; 53 suppl:17-22.
    [68]Greco E, Santucci MB, Quintiliani G, Papi M, De Spirito M, Fraziano M. CpG oligodeoxynucloetides promote phospholipase D dependent phagolysosome maturiation and intracellular mycobacterial killing in M.tuberculosis infection type II alveolar epithelial cells. Cell Immunol,2009; 259(1):1-4.
    [69]Auricchio G, Garg SK, Martino A, Volpe E, Ciaramella A, De Vito P, Baldini PM, Colizzi V, Fraziano M. Role of macrophage phospholipase D in natural and CpG-induced antimycobacterial activity. Cell Microbiol,2003; 5(12):913-920.
    [70]Criss AK, Silva M, Casanova JE, McCormick BA. Regulation of Salmonella-induced neutrophil transmigration by epithelial ADP-ribosylation factor 6. J Biol Chem,2001; 276(51):48431-48439.
    [71]Alzogaray V, Danguah W, Aguirre A, Urrutia M, Berguer P, Garcia Vescovi E, Haag F, Koch-Nolte F, Goldbaum FA. Single-domin llama antibodies as specific intracellular inhibitors of spvB, the actin ADP-ribosylating toxin of Salmonella typhimurium. FASEB,2011; 25(2):526-534.
    [72]Spano S, Ugalde JE, Galan JE. Delivery of a Salmonella Typhi exotoxin from a host intracellular comparnment. Cell Host Microbe,2008; 3(1):30-38.
    [73]Margarit SM, Davidson W, Frego L, Stebbins CE. Asteric antagonism of actin polymerization by a Salmonella virulence protein. Structure,2006; 14(8): 1219-1229.
    [74]Kanaho Y, Funakoshi Y, Hasegawa H. Phospholipase D signaling and its involvement in neurite outgrowth. Biochim Biophys Acta,2009; 1791(9):898-904.
    [75]Bach AS, Enjabert S, Comunale F, Bodin S, Vitale N, Charrasse S, Gauthier-Rouviere C. ADP-ribosylation factor 6 regulation mammalian myoblast fusion through phospholipase D1 and phosphatidylinositol 4,5-bisphosphate signaling pathways. Mol Biol Cell,2010; 21(14):2412-2424.
    [76]Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticum. J Cell Biol,2008; 182(4):685-701.
    [77]Roth MG. Molecular mechanisms of PLD function in membrane traffic. Traffic, 2008; 9(8):1233-1239.
    [78]Foster DA. Regulation of mTOR by phosphatidic acid? Cancer Res,2007; 67(1): 1-4.
    [79]Dall'Armi C, Hurtado-Lorenzo A, Tian H, Morel E, Nezu E, Chan RB, Yu WH, Robinson KS, Yeku O, Small SA, Duff K, Frohman MA, Wenk MR, Yamamoto A, Di Paolo G. The phospholipase D1 pathway modulates macroautophagy. Nat Commun,2010; 1:142. doi:10.1038/ncomms1144.
    [80]Hornberger TA, Chu WK, Mak YW, Hsiung JW, Huang SA, Chien S. The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. Proc Natl Acad Sci U S A,2006; 103(12):4741-4746.
    [81]Sun Y, Chen J. mTOR signaling:PLD takes center stage. Cell Cycle,2008; 7(20): 3118-3123.
    [82]Sun Y, Fang Y, Yoon MS, Zhang C, Roccio M, Zwartkruis FJ, Armstrong M, Brown HA, Chen J. Phospholipase D1 is an effector of Rheb in the mTOR pathway. Proc Natl Acad Sci U S A,2008; 105(24):8286-8291.
    [83]Xu L, Salloum D, Medlin PS, Sagcena M, Yellen P, Perrella B, Foster DA. Phospholipase D mediates nutrient input to mammalian target of rapamycin comples 1 (mTORC1). J Biol Chem,2011; 286(29):25477-25486.
    [84]Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N. Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab,2009; 296(4): E592-E602.
    [85]Seay MD, Dinesh-Kumar SP. Autophagy takes its TOLL on innate immunity. Cell Host Microbe,2007; 2(2):69-70.
    [86]Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindste T, Thompson CB. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell, 2005; 120(2):237-248.
    [87]Xu Y, Liu XD, Gong X, Eissa NT. Signaling pathway of autophagy associated with innate immunity. Autophagy,2008; 4(1):110-112.
    [88]Xu Y, Jagannath C, Liu XD, Sharafkhaneh A, Kolodzieiska KE, Eissa NT. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity,2007; 27(1):135-144.
    [89]Galluzzi L, Kepp O, Kroemer G. Autophagy and innate immunity ally against bacterial invasion. EMBO J,2011; 30(16):3213-3214.
    [90]Delgado M, Singh S, De Haro S, Master S, Ponpuak M, Dinkins C, Ornatowski W, Vergne I, Deretic V. Autophagy and pattern recognization receptors in innate immunity. Immunuol Rev,2009; 227(1):189-202.
    [91]Kleinnijenhuis J, Oosting M, Plantinga TS, van der Meer JW, Joosten LA, Crevel RV, Netea MG. Autophagy modulates the Mycobacterium tuberculosis-induced cytokine response. Immunology,2011; 134(3):341-348.
    [92]Singh SB, Davis AS, Taylor GA, Deretic V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science,2006; 313(5792):1438-1441.
    [93]Harris J, De Haro SA, Master SS, Keane J, Roberts EA, Delgado M, Deretic V. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacteriium tuberculosis. Immunity,2007; 27(3):505-517.
    [94]Barthelmann J, Nietsch J, Blessenohl M, Laskay T, van Zandbergen G, Westermann J, Kalies K. the protective Thl response in mice is induced in the T-cell zone only three weeks after infection with Leishimania major and during early T-cell activation. Med Micrbiol Immunol,2012; 201(1):25-35.
    [95]Cardoso BA, Martins LR, Santos CI, Nadler LM, Boussiotis VA, Cardoso AA, Barata JT. Interleukin-4 stimulates proliferation and growth of T-cell acute lymphoblastic leukemia cells by activating mTOR signaling. Leukemia,2009; 23(1):206-208.
    [96]Yang M, Kumar RK, Foster PS. Pathogenesis of steroid-resistant airway hyperresponsiveness:interaction between IFN-gamma and TLR4/MyD88 pathways. J Immunol,2009; 182(8); 5107-5115.
    [1]Martinez-Borra J, Lopez-Laeera C. Autophagy and self-defence. Advances in Experimental Medical and Biology,2012; 738:169-184.
    [2]Glick D, Bath S, Macleod KF. Autophagy:cellular and molecular mechanisms. The Journal of Pathology,2010; 221(1):3-12.
    [3]He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annunal Review of Genetics,2009; 43:67-93.
    [4]Yano T, Kurata S. Intracellular recognition of pathogens and autophagy as innate immunity host defence. The Journal of Biochemistry,2011; 150(2):143-149.
    [5]Birmingham CL, Higgins DE, Brumell JH. Avoiding death by autophagy: interactions of Listeria monocytogenes with the macrophage autophagy system. Autophagy,2008; 4(3):368-371.
    [6]Birmingham CL, Canadien V, Kaniuk NA, Steinberg BE, Higgins DE, Brumell JH. Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature,2008; 451(7176):350-354.
    [7]Yoahikawa Y, Oqawa M, Hain T, Chakraborty T, Sasakawa C. Listeria monocytogenes ActA is a key player in evading autophagic recognition. Autophagy, 2009; 5(8):1220-1221.
    [8]Dortet L, Mostowy S, Cossart P. Listeria and autophagy escape:involvement of InIK, an internalin-like protein. Autophagy,2012; 8(1):132-134.
    [9]Anand PK, Tait SW, Lamkanfi M, Amer AO, Nunez G, Pages G, Pouyssegur J, McGargill MA, Green DR, Kanneganti TD. TLR2 and RIP2 pathways mediate autophagy of Listeria monocytogenes via extracellular signal-regulated kinase (ERK) activation. The Journal of Biological Chemistry,2011; 286(50): 42981-42991.
    [10]Huang J, Canadien V, Lam GY, Steinberg BE, Dinauer MC, Magalhaes MA, Glogauer M, Grinstein S, Brumell JH. Activation of antibacterial autophagy by NADPH oxidases. The Proceeding of the National Academy of Sciences USA,2009; 106(15):6226-6231.
    [11]Pyo JO, Jang MH, Kwon YK, Lee HJ, Jun JI, Woo HN, Cho DH, Choi B, Lee H, Kim JH, Mizushima N, Oshumi Y, Jung YK. Essential roles of Atg5 and FADD in autophagic cell death:dissection of autophagy cell death into vacuole formation and cell death. The Journal of Biological Chemistry,2005; 280(21):20722-20729.
    [12]Harris J, Master SS, De Haro SA, Delgado M, Roberts EA, Hope JC, Keane J, Deretic V. Th1-Th2 polarisation and autophagy in the control of intracellular mycobacteria by macrophages. Veterinary Immunology and Immunopathology, 2009; 128(1-3):37-43.
    [13]Dutta RK, Kathania M, Raje M, Majumdar S. IL-6 inhibits IFN-y induced autophagy in Mycobactarium tuberculosis H37Rv infected macrophages. The International Journal of Biochemistry and Cell Biology,2012; 44(6):942-954.
    [14]Jagannath C, Lindsey DR, Dhandayuthapani S, Xu Y, Hunter RL Jr, Eissa NT. Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nature Medicine,2009; 15(3):267-276.
    [15]Shin DM, Yuk JM, Lee HM, Lee SH, Son JW, Harding CV, Kim JM, Modlin RL, Jo EK. Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a function vitamin D receptor signaling. Cell Microbiolgy,2010; 12(11).-1648-1665.
    [16]Biswas D, Qureshi OS, Lee WY, Croudace JE, Mura M, Lammas DA. ATP-induced autophagy is associated with rapid killing of intracellular mycobacteria within human monocytes/macrophages. BMC Immunology,2008; 9:35.
    [17]Yuk JM, Shin DM, Lee HM, Yang CS, Jin HS, Kim KK, Lee SH, Kim JM, Jo EK. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe,2009; 6(3):231-243.
    [18]Zhang L, Zhang H, Zhao Y, Mao F, Wu J, Bai B, Xu Z, Jiang Y, Shi C. Effects of Mycobacterium tuberculosis ESAT-6/CFP-10 protein on the autophagy function of mouse macrophages. DNA and Cell Biology,2012; 31(2):171-179.
    [19]Ogawa M, Sasakawa C. Shigella and autophagy. Autophagy,2006; 2(3):171-174.
    [20]Kayath CA, Hussey S, EI hajjami N, Nagra K, Philpott D, Allaoui A. Escape of intracellular Shigella from autophagy requires binding to cholesterol through the type III effector, IcsB. Microbes and Infection,2010; 12(12-13):956-966.
    [21]Gong L, Cullinane M, Treerat P, Ramm G, Prescott M, Adler B, Boyce JD, Devenish RJ. The Burkholderia pseudomallei type Ⅲ secretion system and BopA are required for evasion of LC3-associated phagocytosis. PLoS One,2011; 6(3): e17852.
    [22]Lee MS, Cherla RP, Jenson, MH, Leyva-lllades D, Martinez-Moczygemba M, Tesh VL. Shiga toxins induce autophagy leading to differential signaling pathways in toxin-sensitive and toxin-resistant human cells. Cellular Microbiology,2011; 13(10):1479-1496.
    [23]Mostowy S, Sancho-Shimizu V, Hamon MA, Simeone R, Brosch R, Johansen T, Cossart P. P62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. The Journal of Biological Chemistry,2011; 286(30): 26987-26995.
    [24]Birmingham CL, Brumell JH. Autophagy recognizes intracellular Salmonella enterica serovar Typhimurium in damaged vacuoles. Autophagy,2006; 2(3): 156-158.
    [25]Thurston TL, Wandel MP, von Muhlinen N, Foeglein A, Randow F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature,2012; 482(7386):414-418.
    [26]Birmingham CL, Smith AC, Bakowski MA, Yoshimori T, Brumell JH. Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. The Journal of Biological Chemistry,2006; 281(16):11374-11383.
    [27]Huang J, Birmingham CL, Shahnazari S, Shiu J, Zheng YT, Smith AC, Campellone KG, Heo WD, Gruenheid S, Meyer T, Welch MD, Ktistakis NT, Kim PK, Klionsky DJ, Brumell JH. Antibacterial autophagy occurs at PI(3)P-enriched domains of the endoplasmic reticulum and requires Rab1 GTPase. Autophagy,2011; 7(1):17-26.
    [28]Jia K, Thomas C, Akbar M, Sun Q, Adams-Huet B, Gilpin C, Levine B. Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. The Proceeding of the National Academy of Sciences USA,2009; 106(34):14564-14569.
    [29]吴淑燕,李琼,储元元,李嫄渊,黄瑞,秦正红.自噬对鼠伤寒沙门菌所致巨噬细胞凋亡的影响.微生物学通报,2010;37(5):776-782。
    [30]Cemma M, Kim PK, Brumell JH. The ubiquitin-binding adaptor proteins p62/SQSTM1 and NDP52 are recruited independently to bacteria-associated microdomains to target Salmonella to the autophagy pathway. Autophagy,2011; 7(3):22-26.
    [31]Weidberg H, Elazar Z. TBK1 mediates crosstalk between the innate immune response and autophagy. Science Signaling,2011; 4(187):pe39.
    [32]Wild P, Farhan H, McEwan DG, Wagner S, Rogov W, Brady NR, Richter B, Korac J, Waidmann O, Choudhary C, Dotsch V, Bumann D, Dikic I. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science,2011; 333(6039):228-233.
    [33]Hernandez LD, Pypaert M, Flavell RA, Galan JE. A Salmonella protein causes macrophage cell death by inducing autophagy. The Journal of Cell Biology,2003; 163(5):1123-1131.
    [34]Yang M, Kumar RK, Foster PS. Pathogenesis of steroid-resistant airway hyperresponsiveness:interaction between IFN-gamma and TLR4/MyD88 pathways. The Journal of Immunology,2009; 182(8):5107-5115.
    [35]No authors listed. Helicobacter pylori can multiply in autophagic vesicles. Experimental Biology and Medicine (Maywood),2009; 234(2):171-180.
    [36]Wang YH, Gorvel JP, Chu YT, Wu JJ, Lei HY. Helicobacter pylori impairs murine decdritic cell response to infection. PloS One,2010,5(5):e10844.
    [37]Wang YH, Wu JJ, Lei HY. When Helicobacter pylori invades and replicates in the cells. Autophagy,2009; 5(4):540-542.
    [38]Raju D, Hussey S, Ang M, Terebiznik MR, Sibony M, Galindo-MataE, Gupta V, Blanke SR, Delgado A, Romero-Gallo J, Ramiee MS, Mascarenhas H, Peek RM, Correa P, Streutker C, Hold G, Kunstmann E, Yoshimori T, Silverberg MS, Giradin SE, Philpott SJ, El Omar E, Jones NL. Vacuolating cytotoxin and variants in Atg16L1 that disrupt autophagy promote Helicobacter Pylori infection in humans. Gastroenterology,2012; 142(5):1160-1171.
    [39]Terebiznik MR, Raju D, Vazquez CL, Torbricki K, Kulkarni R, Blanke SR, Yoshimori T, Colombo MI, Jones NL. Effect of Helicobacter pylori's vacuolating cytotoxin on the autophagy pathway in gastric epithelial cells. Autophagy,2009; 5(3):370-379.
    [40]Mostowy S, Cossart P. Autophagy and the cytoskeleton:New links revealed by intracellular pathogens. Autophagy,2011; 7(7):1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700