用户名: 密码: 验证码:
AB_5型储氢合金及其氢化物的X射线衍射微结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先全面地综述了国内外在储氢合金的结构和微结构方面的研究进展情况,并在此基础上确定以AB_5型储氢合金及其氢化物的X射线衍射微结构(指纳米级晶粒)作为研究方向。迄今为止,国内外在储氢合金的几何结构方面作了大量的研究工作,但主要集中于两端,一是合金及其氢化物的晶体结构(原子排列)方面,一是合金的显微结构(指微米级晶块)方面,而对于两者之间的X射线衍射微结构却缺乏必要的重视。但是,由于它在合金的晶体结构与显微结构中所起的纽带作用,以及它与晶粒边界性质,品格应变以及晶体缺陷等方面的重要联系,因此它对储氢合金的电化学性质必具有重要影响。进行X射线衍射微结构方面研究的困难之一在于缺乏先进的分析方法,因为对于大部分的AB_5型储氢合金,充氢过程中或充氢后都容易发生X射线衍射各向异性线形宽化,但传统的计算各向异性线形宽化的模型都假设晶粒为理想的椭球型,与实际情况相差较远。Popa于1998年提出的X射线衍射各向异性线形宽化模型,不但能准确得出晶粒的实际形貌,而且同时还能获得多晶体中各种形貌的晶粒的分布情况。本文首先以过计量比La(Ni,Sn)_(5+x)(x=0.1~0.4)合金作为研究对象,考察了不同凝固条件下(常规熔铸,快凝5m/s、10m/s、15m/s、20m/s以及退火处理)的合金根据Popa提出的线形宽化模型所得到的纳米晶尺寸、形状,并将其与合金的晶体结构以及电镜下观察到的显微结构相联系,得出了这三个不同结构层次之间的相互关系。进一步的,在用原位X射线衍射方法得到商业化含Co合金MlNi_(3.75)Co_(0.75)Mn_(0.3)Al_(0.2),无Co合金MlNi_(4.0)Fe_(0.6)Al_(0.3)Si_(0.1)以及过计量比合金LaNi_(4.830)Sn_(0.314)在充放氢过程中的相变化,晶格变化的基础上,本文详细研究了以上储氢合金在氢致循环过程中的X射线衍射微结构演变,并阐述了引起这些变化的深层次原因。基于以上微结构研究和原位研究的成果,本文最后还对纳米级微结构(X射线衍射微结构)与合金电化学性能之间的关系进行了探索。
     X射线衍射Rietveld结构分析表明,过计量比La(Ni,Sn)_(5+x)(x=0.1~0.4)合金仍保持CaCu_5型结构,但Sn只随机取代位于3g(0.5,0,0.5)位置上的部分Ni,而过计量的Ni则以沿c轴定向排列的Ni-Ni原子对的形式随机取代部分la(0,0,0)位置上的La原子,即形成所谓的“哑铃对”结构,该结构的特征是la位上的原子在B_(33)方向上的热振动分量远大于其它方向上的热振动分量,且c轴晶格长度呈现异常增加的现象。对不同凝固条件下过计量比合金的纳米晶尺寸进行计算的结果表明,铸态合金包含扁圆柱状和长圆柱状两种纳米晶粒,而5m/s合金则完全由单一的扁圆柱状纳米晶所构成,并与退火态合金的纳米级晶粒在形状上和结构均匀性上具有很好的相似性,随着快凝速度的提高,合金的纳米晶粒沿(001)晶面方向上的尺寸增加,而
    
    浙江大学博士学位论文
    (1 10)晶面方向上的晶粒尺寸基本不变,在高快凝速度下(10而s,巧而s,20而s),
    合金都由沿(001)晶面方向定向生长的长圆柱状晶粒和沿(lro)晶面方向生长的
    扁圆柱状晶粒组合而成。与此相对应的是,扫描电镜下观察得到的铸态合金的显微
    结构表现为沿冷凝方向定向生长又兼以少量侧面生长的树枝状形貌,5而s快凝合金
    的显微结构在形貌上为均匀细小的柱状,而在高快凝速度下(10而s,巧而s,20耐s),
    通过扫描电镜既观察到了均匀细小的柱状形貌,又观察到了少量的树枝状形貌,在
    结构形态和均匀性方面表现出了与纳米级晶粒很好的对应关系。另一方面,合金的
    晶体结构对纳米晶大小具有一定的影响,当晶体结构中的“哑铃对”数量越多时,
    纳米晶沿(001)晶面方向上的尺寸就越小,但在(110)晶面方向上的变化相对不
    明显。
     对商业化含Co合金MINi37sCoo75Mno.3Alo.2,无Co合金MIN从.oFeo.沪103510.,及
    过计量比合金LaN认830sn0.31;进行X射线衍射原位研究得出如下结果:
    (l)相变。商业化含co合金在充放氢过程中的相变过程为a骨Y骨牡p铃p伪a,其
     中a为固溶体相,p为充氢相,Y为两者之间的过渡相,三者都属于caCus型的
     结构,除了以上各相外,尚有少量的未反应相保留在整个充放电(充放氢)过程
     中,过渡相丰度随充电电流的增大而减少,而保留相丰度的相应变化刚好与之相
     反。对于无C。合金及过计量比合金,相变过程可以简单表示为a骨p锌a。
    (2)晶格变化。含c。商业化合金,过计量比合金和无C。合金在充氢过程中都发生
     了不连续的晶格膨胀,当充氢至翰(H八边)=4.0时,三者从a相直接转变为旦相
     的不连续晶格膨胀率分别为10%,11.8%和12.1%,但对于商业化合金,由于过
     渡相的存在,其实际的不连续晶格膨胀率仅为7.2%(从a相转变为下相)。对于
     含Co的商业化合金和过计量比合金,它们的充氢相在充氢过程中的晶格变化还
     呈现出各向异性特征。对于前者,其晶格的盯c值在充氢过程中先减小后增加,
     而对于后者,留c值一直减小。但无C。合金充氢相的留c值在整个充氢过程中
     都基本不变。以上合金充氢相的晶格变化在整个充放氢过程中都近似为可逆。
    (3)x射线衍射微结构演变。研究结果表明,由于以上三?
In this thesis, previous works on crystal structures and micro-structures of hydrogen storage alloys and their hydrides have been intensively reviewed. On this basis, the X-ray diffraction micro-structures (mainly refer to nanometer crystallite) of AB5-type alloys and their hydrides were selected as the main subject of this study. Until now, although much attention has been paid to the crystal structures and the grain properties of AB5-type hydrogen storage alloys, the X-ray diffraction microstructures between them were much less studied. However, because of the importance of it in the structural conjunction between crystal structure and grain, and the determination of it on the properties of grain boundary, lattice strain and defect, it can be supposed to have many effects on the electrochemistry of AB5-type hydrogen storage alloys. Difficulty on this study is the shortage of advanced micro-structural analysis. For the AB5-type hydrogen storage alloys, it's well-known that its X-ray diffraction line broaden
    ing during or after the hydrogen-induced cycling is always anisotropic. But the classic model for the anisotropic broadening is based on the assumption that the crystallites are ellipsoid, which is far away from the reality. However, the model proposed by Popa in 1998 for the anisotropic line broadening not only can get the shape of the crystallite, but also can obtain the distribution of the crystallites with different shape. In this study, the nanometer crystallites of over-stoichiometric La(Ni, Sn)5+x (x=0.1-0.4) alloys obtained at different cooling conditions, e.g. the as-cast, the annealed and the rapidly solidified with the rate 5 m/s, 10 m/s, 15 m/s, 20 m/s, were investigated and correlated to the crystal structures and grains observed by SEM technique. Furthermore, based on the studies on phase transitions and lattice changes of MlNi3.75Coo.75Mn0.3Al0.2 commercialized Co-included alloy, MlNi4.0Fe0.6Al0.3Si0.1 Co-free alloy and over-stoichiometric LaNi4.830Sn0.314 alloy during the hydriding-dehydridin
    g process, the micro-structural evolutions, especially the nanometer crystallite changes during the hydriding-dehydriding process were intensively studied by in-situ X-ray diffraction. At the last of this thesis, relationships between crystallite and electrochemical behaviors were also investigated.
    Structural analysis by Rietveld refinement indicated that over-stoichiometric La(Ni, Sn)5+x (x=0.1-0.4) alloys still keep the CaCus-type structure, while Sn only occupy 3g(0.5, 0, 0.5) sites and some of Ni replace La at la(0, 0, 0) sites in the form of Ni-Ni "dumbbells" oriented along c-axis. One of the characteristics of this "dumbbell" structure is the B33 component of thermal parameters of the atoms in la(0, 0, 0) sites is much higher than others. Another characteristic of this "dumbbell" structure is the enhancement in c-axis is much higher than that in a-axis compared to LaNi5. By calculating the crystallite sizes of the over-stoichiometric alloys prepared at different cooling conditions, it indicated that the as-cast alloy is composed by the plate-like and the columnar crystallites, while the alloy solidified at the cooling rate of 5 m/s is exclusively composed by plate-like crystallites. As the increasing of cooling rate, crystallite size along (001) plane is enhanced, while that along (110) plane alm
    ost keep untouched. For the alloys prepared at higher cooling rates(10 m/s, 15 m/s, 20 m/s), they are composed by two type of crystallites. One is columnar that grow directionally along (001) plane and the other is plate-like obtained by the side growth along (110) plane. Accordingly, pattern of as-cast alloy observed by
    
    
    
    SEM are dendritic, which mainly consists of grains grow either along or perpendicularly to the direction of heat transformation, while grains of the alloy solidified at the cooling rate of 5 m/s are exclusively columnar. For the alloys prepared at higher cooling rates(10 m/s, 15 m/s, 20 m/s), both the columnar and the dendritic grains have been found out by SEM technique. In a word, all
引文
[1] 大角 泰章,金属氢化物的性质与应用,北京:化学工业出版社,1990
    [2] 雷永泉 主编,新能源材料,天津:天津大学出版社,2000
    [3] Ovshinsky S R, Fetcenko M A, J Ross Science, 1993, 260:176
    [4] 陈清泉,詹宜巨,21世纪的绿色交通工具—电动车,北京:清华大学出版社,2000
    [5] Hong K, J Alloys Comp, 2001, 321:307
    [6] 彭美勋,王零森,沈湘黔等,中国有色金属学报,2003,13(5):1130
    [7] Weidner J W, Timinerman P, J Electrochem Soc, 1994, 141(2): 346
    [8] Mosupelly S, Screins C C, weidner J W, J Electrochem Soc, 1998, 145(1): 29
    [9] 周震,阎杰,张允什等,应用化学,1998,15(2):40
    [10] Delemas C, Jessier C, J Mater Chem, 1997,7(8): 1439
    [11] 王超群,王宁,李娜娜等,中国有色金属学报,2002,12(3):496
    [12] Zhu W H, Ke J J, Yu H M, et al, J Power Sources, 1995, 56:75
    [13] 原鲜霞,王萌东,詹峰,电化学,2000,6(1):65
    [14] Wang X Y, Yan J, Zhou Z, Int Hydrogen Energy, 1998, 23(10): 873
    [15] Kamath P V, Dixit M, Indira L, J Electrochem, Soc, 1994, 141(11): 2956
    [16] Liu B, Wang X Y, Yuan H T, et al., J Applied Electrochemistry, 1999, 29:855
    [17] Demourgues-Guerlou L, Delmas C, J Electrochemical Soc, 1994, 141 (3): 713
    [18] van Vucht J H N, Kuijpers F A and Bruning H C AM, Philps Res Rep, 1970, 25: 133.
    [19] Reilly J J, et al., Inor Chem, 1968, 7:2254
    [20] Lei Y Q, Wu Y M, Yang Q M, et al., Z Phys Chem, 1994, 183:379
    [21] Tsukahara M, Takahashi K, Mishima T, et al., J Alloys Compd, 1995, 226:203
    [22] Lamloumi J, Percheron-Guégan A, Lartigue C, et al., J Alloys Comp, 1987, 130:111
    [23] Lartigue C, Percheron-Guégan A and Achard J C, et al, J Alloys Comp, 1980, 75:23
    [24] Percheron-Guégan A, Lartigue C and Achard J C, J Alloys Comp, 1980, 74:1
    [25] Gurewitz E, Pinto H, Dariel M P, et al., J Phys F, 1983, 13:545
    [26] van Mal H H, Buschow K H J and Kuijpers F A, J Less-Common Met, 1973, 32: 289.
    [27] Nakamura Y, Sato K, Fujtani S, et al., J Alloys Comp, 1998, 267:205
    [28] Joubert J M, et al., J Alloys Comp, 1999, 293-295:124
    [29] Cantrell J S and Beiter TA, J Alloy Comp, 1994, 207/208:372
    [30] Sakai T, Miyamura H, Kuriyama H, et al., J Less-Common Met, 1990, 159:127
    [31] Uchida H, Masayoshi T and Huang Y C, J Less-Common Met, 1982, 88:81
    [32] Joubert J M, Latroche M, Percheron-Guégan, et al., J Alloys Comp, 1998, 275-277: 118
    
    
    [33] Adzic G, Johnson J R, Mukeijee S, et al., J Alloys Comp, 1997, 253/254:579
    [34] Adzic G D, Johnson J R, Reilly J J, et al., J Electrochem Soc, 1995, 10:3424
    [35] Sakai T, Miyamura H, Kuriyama H, et al., J Less-Common Met, 1990, 159:127
    [36] Sakai T, Hazama T, Miyamura N, et al., J Less-Common Met, 1991, 172-174:1175
    [37] Reilly J J, Adzic G D, Johnson J R, et al., J Alloys Comp, 1999, 293-295:569-582
    [38] Adzic G D, Johnson J R, Reilly J J, et al., J Electrochem Soc, 1995, 142:3429
    [39] Davenport A J, Isaacs H S, Kendig M W, et al., Corrosion Sci, 1991, 32(5/6): 653
    [40] Kanda M, Yamamoto M, Kanno K, et al., J Less-Common Met, 1987, 129:13
    [41] Latroche M, et al., J Alloy Comp, 1999, 293-295:637
    [42] Latroche M, Chabre Y, et al., J Alloys Comp, 2002, 330-332:787
    [43] Sakai T, Miyamura H, et al., J Electrochem Soc, 1990, 137(3):795
    [44] Notten P H L, Einerhand R E F and Daams J L C, J Alloys Comp, 1994, 210:221
    [45] Vogt T, Reilly J J, Johnson J R, et al., Electrochem Solid-State Lett, 1999, 2(3): 111
    [46] Yasuda K, J Alloys Comp, 1997, 253-254:621
    [47] Notten P H L and Hokleling P J, J Electrochem Soc, 1991, 138(7): 1877
    [48] 宏存茂,第七届全国电化学会议,长春,1994,81
    [49] 宏存茂,张玉芳等,新型功能材料,1994,373
    [50] Notten P H L, Daams J A C and Einerhand R R F, J Alloys Comp, 1994, 210:233
    [51] [n14] Lichtenberg F, Kohler V, Folzer A, et al, J Alloys Comp, 1997, 253-254; 570
    [52] Zhou Y, Zhang Y F, Lei Y Q, et al., Int J Hydrogen Energy, 1998, 23(3):183
    [53] Miyamura H, Sakai t, Kuriyama N, et al., J Less-Common Met, 1989, 146:197
    [54] Mishima R, Miyamura H, Sakai T, et al., J Alloy comp, 1993, 192:176
    [55] Zhang S K, Shu K Y, et al., Int J Hydrogen Energy, 2003, 28:977
    [56] Liu B H, Li Z P, Chen C P, et al., J Alloys Comp, 1995, 231:820
    [57] Corre S, Bououdina M, Kuriyama N, et al, J Alloys Comp, 1999, 292:166
    [58] Aymard L, Lenain C, Courvoisier, et al, J Electrochem Soc, 1999, 146:2015
    [59] Tessier P, Schulz R, Strom-Olsen J O, et al., J Mater Res, 1998, 13:1538
    [60] Zaluski L, Zaluska A, Tessier P, et al., J Alloys Comp, 1995,227:53
    [61] Liang G, Huot J, Schulz R, J Alloys Comp, 2001, 320:133
    [62] Takeya K, Tsugita Y and Okajima Y, J Alloys Comp, 1993, 192:167
    [63] Li C-J, Wang X-L, J Alloys Comp, 1998, 270, 246.
    [64] Hu W-K, Kim D-M, Jeon S-W, et al., J Alloy Comp, 1998,270:255.
    [65] Chartouni D, Kuriyama N, Otto A, et al., J Alloys Comp, 1999, 285:292
    [66] Kronberger H, J Alloys Comp, 1997, 253-254:87
    [67] 张大为,袁华堂,张允什,化学通报,1998,2:19
    
    
    [68] Bowman A L, Anderson J L, Merson N G, proc 10th Rare Earth Research Conf., Carefree, AR, 1973:485
    [69] Yartis V A, Burnasheva V V, Semenko K N, et al., Int J Hydrogen Energy, 1982, 7: 957
    [70] Charles B M, James L and Charles E L, et al., J Less-Common Met, 1981, 78:119
    [71] Thompson P, Reilly J J, Corliss L M, et al., J Phys F, 1986, 16:675
    [72] Gross K J, Züttel A, Schlapbach L, J Alloys Comp, 1998, 274:239
    [73] Lartigue C, Percheron-Guégan A and Achard J C, J Less-Common Met 1985,113:127
    [74] Latroche M, Percheron-Guégan A, Bourée-Vigneron F, J Alloys Comp, 1998, 265: 209
    [75] Brodowsky H, Yasuda K and Itagaki K, Z Phys Chem, 1993, 179:45
    [76] Westlake D G, J Less-Common Met, 1983, 91:1
    [77] Switendick A C, Z Phys Chem N F, 1979, 117:89
    [78] Didisheim J J, Yvon K, Shaltiel D, et al., Solid State Commun, 1979, 32:1087
    [79] Shoemaker D P and Shoemaker C B, J Less-Common Met, 1979, 68:43
    [80] Magee C B, Liu J and Lundin C E, J Less-Common Met, 1981, 78:119
    [81] Irodova A V, Glazkov V P, Somenkov VA, et al., J Less-Common Met, 1981, 77:89
    [82] Didisheim J J, Yvon K, Fischer P, et al., Solid State Commun, 1981, 38:637
    [83] Oesterricher H, J Phys Chem, 1981, 85: 2319
    [84] Lundin C E, Lynch F E and Magee C B, J Less-Common Met, 1977, 56:19
    [85] Percheron-Guégan A, Lartigue C, Achard J C, J Less-Common Met, 1985, 109:287
    [86] Gschneidner K A, Takeshita Jr T, Chung Y, et al., J Phys F, 1982, 12: L1
    [87] Mendelsohn M H, Gruen D M and Dwight A E, J Less-Common Met, 1979, 63: 193
    [88] Mendelsohn M H and Gruen D M, et al, J Less-Common Met, 1981, 78:275
    [89] Van Mal H H, Buschow K H J and Miedema A R, J Less-Common Met 1974, 35:65
    [90] Chartouni D and Gross K, J Electrochem Soc, 2001, 148(3): A241
    [91] Ono S, et al., J Less-Common Met, 1985, 113: 113
    [92] Nakamura Y, Oguro K, Uehara I, et al., J Alloys Comp, 2000, 298:138
    [93] Kisi E H, Buckley C E, Gray E M, et al., J Alloys Comp, 1992:369
    [94] Zaluski L, Zaluska A, Str(?)m-Olsen J O, J Alloys Comp, 1997, 253-254:70
    [95] Nomura K, Uruno h, Ono S, J Less-Common Met, 1985, 107:221
    [96] Fischer P, Furrer A, Busch G, et al., Helv Phys Acta, 1977, 50:421
    [97] Thompson P, Reilly J J, Corliss L M, et al., J Phys F, 1986, F16:675
    [98] Thompson P, Reilly J J, Hastings J M, J Less-Common Met, 1987, 129:105
    [99] Lartigue C, Le Bail A, Percheron-Gu6gan A, J Less-Common Met, 1987, 129:65
    
    
    [100] Nakamura Y, Akiba E, J Alloys Comp, 2000, 308:309
    [101] Kim G, et al., Acta Metall Mater, 1994,42(9): 3157
    [102] Kim G, et al., Acta Metall Mater, 1995, 43(6):2233
    [103] Wu E, Kisi E H, Gray E Mac A, J Appl Cryst, 1998,31:363
    [104] Cerny R, Joubert J M, Latroche M, et al., J Appl Crystallogr, 2002, 35:288
    [105] Joubert J M, et al., J Alloy Comp, 2002, 330-332, 208.
    [106] Sakai T, Oguro K, Miyamura H, et al., J Less-Common Met, 1990, 161:193
    [107] 张允什,电池,1993,23(3):135
    [108] Law H H, Vyas B, Zahurak S M, et al., J Electrochem Soc, 1996, 143:2596
    [109] Zhang Y S, Chen Y X, Chen J, J Alloys Comp, 1993, 190:L37
    [110] Chen J, Zhang Y S, Int J Hydrogen Energy, 1995, 20(3):2235
    [111] Sakai T, Ishikawo H, Oguro K, et al., J Electrochem Soc, 1987, 134:558
    [112] Munehisa I, Katsunori K, Satoshi K, et al., J Alloys Comp, 1999:284
    [113] Ogawa H, Kawano H, J Power Sources, 1988, 12:393
    [114] Chen J, Dou S X, Liu H K, J Alloys Comp, 1997, 256:40
    [115] Wang X L, Suda S, Z Phys Chem, 1994, 183
    [116] Liu F J, Suda S, J Alloys Comp, 1995, 231:742
    [117] Kudoh Y, Okonami M, Migazaki S, Acta Metall, 1985, 11:2049
    [118] Andresen A F, J Less-Common Met, 1982, 88:1
    [119] Soubeyroux J L, Fruchart D, Briis A A, J Alloys Comp, 1999,293-295:88
    [120] Fruchart D, Rouault A, Shoemaker C B, et al., J Less-Common Met, 1980, 73: 363
    [121] Didisheim J J, Yvon K, Shaltiel D, et al., Solid State Commun, 1979, 31:47
    [122] Fruchart D, Rouault A, Shoemaker C B, J Less-Common Met, 1980, 73:363
    [123] 雷永泉,张文魁,杨晓光等,金属学报,1998,34(1):45
    [124] 徐艳辉,浙江大学博士学位论文,2001年
    [125] Yu J Y, Lei Y Q, Chen C P, et al.,J Alloys Comp, 1995,231:578
    [126] Gao X P, Song D Y, Zhang Y S, et al., J Alloys Comp, 1995,231:582
    [127] Yang X G, Lei YQ, Zhang W K, et al., J Alloys Comp, 1996,243:151
    [128] Kim D M, Jang K J, Lee J Y, J Alloys Comp, 1999,293-295:583
    [129] Ovshinsky S R, Fetcenko M A, J Science, 1993,260(9): 176
    [130] Lu G L, Shu K Y, Chen L S, et al., J Alloys Comp, 1999, 293-295:107-112
    [131] Knosp B, Jordy C, Blanchard Ph, et al., J Electrochem Soc, 1998, 145(5): 1478
    [132] Huot J, Akiba E, Ogura T, et al., J Alloys Comp, 1995, 218:101
    [133] Joubert J M, Latroche M, Percheron-Guégan A, et al., J Alloys Comp, 1996, 240:
    
    219
    [134] Kohno T, Yoshida H, Kanda M, J Alloys Comp, 2004, 363:249
    [135] Oesterreicher H, Clinton J, Bittner H, Mater Res Bull, 1976, 2:1241
    [136] Miyamura H, Sakai T, Oguro K, et al., J Less-Common Met, 1989, 146:197
    [137] Chen J, Takeshita H T, Tanaka H, et al., J Alloys Comp, 2000, 302:304
    [138] Chen J, Kuriyama N, Takeshita H T, et al., Electrochem Solid-State Lett, 2000, 3:249
    [139] Macland A, Andersen A, Videm K, J Less-Common Met, 1976, 347
    [140] Kadir K, Sakai T, Uehara I, J Alloys Comp, 1997, 257:115
    [141] Kadir K, Sakai T, Uehara I, J Alloys Comp, 2000, 302:112
    [142] Baddour-Hadjean R, Meyer L, Pereira-Ramos J P, et al., Electrochimica Acta, 2001,46:2383
    [143] Dunlap B D, Viccaro P J and Shenoy G K, J Less-Common Met, 1980, 74:75
    [144] Parthé E and Lemaire R, Acta Cryst, 1975, B31:1879
    [145] Cromer D T and Larson A C, Acta Cryst, 1959, 12:855
    [146] Latroche M, Percheron-Guégan, J Alloys Comp, 2003, 356-357:461
    [147] Benham M J, Bennington S, Ross D K, et al., Z Phys Chem N F, 1989, 163:283
    [148] Bartashevich M I, Pirogov A N, Voronin V I, et al., J Alloys Comp, 1995, 231:104
    [149] Kadir K, Sakai T, Uehara I, J Alloys Comp, 1999, 287(1-2): 264
    [150] Kadir K, Sakai T, Uehara I, J Alloys Comp, 2000, 302(1-2): 112
    [151] Baddour-Hadjean R, Meyer L, Pereira-Ramos J P, et al, Electrochimica Acta, 2001, 46:2385
    [152] Liao B, Lei Y Q, Lu G L, et al., J Alloys Comp, 2003, 356-357:746

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700