用户名: 密码: 验证码:
土壤机械组成及容重对水分特征参数影响模拟试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国北方部分地区干旱缺水与水土资源大量流失并存,土壤水分蓄渗能力退化,农业生产对天然降水的利用效率低下等现实情况,进行黄土蓄水过程影响机制模拟试验研究,探索土壤组成结构特征对土壤水分入渗——存蓄——蒸发连续过程的影响机制。通过人工配制不同机械组成土壤并设置不同容重梯度,研究了以粘粒含量为量化指标的机械组成与容重对土壤入渗、蓄水、蒸发性能的定量影响,并设计复合试验,分别界定了机械组成与容重对土壤蓄水影响的贡献率,为我国干旱地区农业生产天然降水就地高效利用及土壤扩蓄增容产品开发提供一定理论依据。论文得出以下主要结论:
     1、土壤机械组成对土壤入渗能力有较大影响,入渗能力随土壤粘粒含量增加递减,土壤稳定入渗速率、90 min累积入渗量与其粘粒含量分别呈幂函数、指数函数负相关。
     2、土壤机械组成对土壤蓄水能力有较大影响,土壤蓄水能力随粘粒含量增加而递增。试验土壤饱和含水量与粘粒含量呈指数函数正相关;田间持水量及凋萎系数在粘粒含量小于30.4%前与粘粒含量分别呈指数函数、幂函数正相关,粘粒含量大于30.4%后呈对数函数、指数函数正相关;有效水含量在粘粒含量小于35.8%之前随粘粒含量增加递增,大于35.8%以后,转为递减。
     3、土壤蒸发可分为两个阶段,第一阶段,绝对蒸发强度与土壤机械组成无显著相关,相对蒸发强度随粘粒含量增加而递减;第二阶段,绝对与相对蒸发强度均随粘粒含量增加递增。有效水保持时间在土壤粘粒含量小于15%之前随粘粒含量增加有减少趋势,粘粒含量在15%~30%,则随粘粒含量增加递增,粘粒含量大于30%以后,又转为递减。
     4、土壤容重对土壤入渗能力有较大影响,土壤入渗能力随容重增大递减,试验砂壤、中壤、粘壤稳定入渗速率与容重均呈对数负相关,砂壤120 min累积入渗量与容重呈幂函数负相关,中壤、粘壤则均呈线性负相关。
     5、土壤容重对土壤水分蓄持能力有较大影响,土壤蓄水能力随容重增大递减,比水容量也随容重增大递减,土壤饱和含水量、毛管断裂含水量、田间持水量、凋萎系数、有效水含量、易效水含量、迟效水含量与容重分别呈幂函数、对数、指数、指数、指数、幂函数、对数关系。
     6、蒸发第一阶段,绝对与相对蒸发强度均随容重增大递增,第二阶段则随容重增大递减,有效水保持时间随容重增大递增。
     7、由水分入渗、水分蓄持、水分蒸发三个连续过程组成的土壤广义蓄水过程各环节受机械组成的影响大于受容重的影响。
     总体上,经过本论文的研究,作者在广义土壤蓄水能力影响机制,特别是土壤本身组成结构对其影响的作用过程与机理方面得了一些成果,获得了部分土壤组成结构参数对土壤蓄水过程各环节影响作用的定量关系,进一步明晰了土壤组成结构对土壤蓄水过程影响作用机制,为天然降水高效利用及土壤扩蓄增容产品开发方向提供一定理论依据。
Based on the problems of that drought and water shortage existence at the same time in the north partial area of our country, the decrease of the ability of soil infiltration and the low utilization of natural rain resource in agriculture production, we do the research on the mechanism of the process of soil water storage and quest the effect of soil constitution and structure on the process of the loess soil infiltration-storage-evaporation. By the different level of soil bulk density which was completed in artificial way, we research the measurable influence of the proportion of clay particles and the soil bulk density on the soil infiltration, storage and evaporation. Though designing compound experiments, and give the definition of the different contribution of the mechanism component and the soil bulk density. And this theory form our experiment provides some degree theoretic basis for the efficient utilization of the natural rain resource in the drought area and the development of the production of soil expansion. This thesis gives some conclusions as follows:
     1. Soil mechanical composition has a great effect on soil infiltration capacity, the more clay contained in soil, the weaker infiltration capacity. The stable infiltration rate and 90-min cumulative infiltration have negative power and exponential function relationship with clay particle content.
     2. Soil mechanical composition has a great effect on soil water-holding capacity. Soil water-holding capacity strengthened with the increase of clay particle content. The saturated water of experimental soils has exponential function relationship with clay content. Field moisture capacity and wilting coefficient have exponential and power function relationship with clay content when soil clay content less than 30.4%. And the rulaitionship transform to logarithmic and exponential function relationship when soil clay content more than 30.4%. Available water increased with the increase of clay content when soil clay content less than 35.8%, and it decreased after the clay content point.
     3. The process of soil evaporation can divided into two stages. At the first stage, the absolute evaporation intensity has no significant correlation with soil mechanical composition, and the relative evaporation intensity weakened with the increase of clay content. At the second stage, two types of evaporating intensity both enhanced with the increase of clay content. Avalaible water holding time decreased with the increase of clay content when soil clay content less than 15%, and it increased when soil clay content between 15% and 30%. But after soil clay content more than 30%, it converted to decrease.
     4. Soil bulk density has a great effect on soil infiltration capacity. Soil infiltration capacity weakened with the increase of its bulk density. The stable infiltration rate of sandy loam, medium loam and clay loam all have negative logarithmic function relationship with their bulk density. 120-min cumulative infiltration of sandy loam has negative power function relationship with its bulk density. For medium loam and clay loam is negative linear relationship.
     5. Soil bulk density has a great effect on soil water holding capacity. Soil water holding capacity and specific water capacity both weakened with the increase of its bulk density. The saturated water content, field moisture capacity, wilting coefficient, available water, readily available water, slowly available water of experimented soils respectively has negative power, logarithmic, exponential, exponential, exponential, power, logarithmic relationship with soil bulk density.
     6. Both absolute and relative evaporation intensity enhanced with the increase of bulk density at first evaporating stage and weakened at second stage. Avalaible water holding time increased with the increase of bulk density.
     7. Experimental soil mechanical composition has more effects than bulk density on the generalized soil water holding process which involving three links of water infiltration, water holding and water evaporation.
     In general, after the study of this thesis, the author made some success over the following aspects as generalized soil water storage capacity impact mechanism, particularly the action process and principle of the effects that the soil composition structure producing to itself, obtained partial quantitative relationship of the influential action that soil composition structure parameters producing to each links of soil water storage process, further clarified influential action mechanism that soil composition structure producing to soil water storage process, provided a theoretical basis for the efficient use of natural precipitation and the product development direction of soil storage capacity expansion.
引文
[1]朱显谟.重建土壤水库是黄土高原治本之道[J].科技与社会,2006,21(4):320~324.
    [2]朱显谟,任美锷.中国黄土高原的形成过程与整治对策[J].中国水土保持,1992,(2):4~10.
    [3]朱显谟.维护土壤水库确保黄土高原山川秀美[J].中国水土保持,2006,(1):6~7.
    [4]朱显谟.试论黄土高原的生态环境与“土壤水库”——重塑黄土地的理论依据[J].第四纪研究,2000(6):514~519.
    [5]朱显谟.抢救“土壤水库”治理黄土高原生态环境[J].中国科学院院刊,2000(4):293~295.
    [6]黄昌勇.土壤学[M].北京:中国农业出版社,2000.
    [7]雷志栋,胡和平,杨诗秀.土壤水研究进展与评述[J].水科学进展,1999,10(3):311~318.
    [8] Bouwer H. Intake rate: Cyliner infiltrometer [A ]. KluteA. Methods of Soil A nalysis[C ]. Monograph No. 9. Am.Soc. A gron. M adison, W I,1986:825~843.
    [9] H illel D. Environmental Soil Physics [M ]. New York: Academic Press, 1998.
    [10]吕喜玺,史正学,于东升.用于人工模拟降雨研究南方低丘土壤的渗透[J].水土保持学报, 1995, 9(3):1~8.
    [11]孙海燕,李明思,王振华,等.滴灌点源入渗湿润锋影响因子的研究[J].灌溉排水学报, 2006. 23(3): 14~16.
    [12] Green W H, Ampt G A. Studies on soil physics, flow of air and water through soils[J].J. Agr. Sci., 1911, 76(4):1~24.
    [13] Richards L A. Capillary conduction of liquids in porous mediums[J]. Physics,1931,(1):30~33.
    [14] Kostiakov A N. On the dynamics of the coefficients of water Percolation in soils[J]. In Sixth Commission, International Society of Soil Science, PartA,1932:15~21.
    [15] Horton R E. An approach to ward a physical interpretation of infiltration capacity[J]. SoilSci. Soc. A M. J., 1940, 5(3):399~417.
    [16] Philip J R. The theory of infiltration about sorptivity and algebraic infiltration equations[J]. Soil Sci., 1957, 84(4), 257~264.
    [17]方正三,杨文治,周佩华.黄河中游黄土高原梯田的调查研究[M ].北京:科学出版社,1958.
    [18] Holton H N. A concept for infiltration estimates in watershed engineering[J]. Dept, Agr. Res. Service, 1961, 39(30):41~51.
    [19] Smith R E. The infiltration envelope results from a theoretical infiltrometer[J]. Journal of Hydrology, 1972, 17(1):1~21.
    [20]蒋定生,黄国俊.黄土高原土壤入渗速率的研究[J].土壤学报,1986,23(4):299~304.
    [21]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988.
    [22]李长兴.土壤特性空间变异对流域下渗影响得研究综述[J].陕西水利,1989(4):7~91.
    [23] Franzluebbers A J. Water infiltration and soil structure related to organic matter and its stratification with depth[J ].Soil & Tillage Research , 2002 , 66:97~205.
    [24] Steven L Geiger, Deanna S Durnford. Infiltration in homogenous sands and a mechanistic model of unstable flow[J ].Soil Sci Am J, 2000, 64: 460~469.
    [25]解文艳,樊贵胜.土壤质地对土壤入渗能力的影响[J].太原理工大学学报,2004,35(5):537~540.
    [26]李勇,朱显谟,田积莹.黄土高原植物根系强化土壤渗透力的有效性[J].科学通报,1992,37(4):366~369.
    [27] Colman EA, Bodman G B. Moisture and energy conditions during downward entry ofwater intomoist and layered soils[J].Proceeding of Soil Sci. Soc. Am., 1945,9:3~11.
    [28] Skaggs R W, Khaleel R.Infiltration hydrological modeling of small watersheds[M]. American Society of Agricultural Engineers,1982.
    [29] Yu-Si Fox. One-dimensional infiltration into layered soils[J]. Irrigation and Drainage, 1970,43:121~129.
    [30] Hill D E, Parlange J-Y. Wetting front instability in layered soils. Proceeding of Soil Sci. Soc. Am.,1972,36(5):697~702.
    [31] Hillel D, Baker Ralph S. A descriptive theory of fingering during infiltration into layered soils[J]. Soil Sci., 1988,46(1): 51~55.
    [32] Baker Ralph S, Hillel D. Laboratorytests of theory of fingering during infiltration into layered soils[J]. Soil Sci. Soc. Am.J., 1990,54: 20~30.
    [33] Smith R E, Parlange J Y A. Parameter-efficient hydrologic infiltration model[J]. Water Resources Research,1978,14(3):154~163.
    [34]李生秀.中国旱地农业[M].北京:中国农业出版社,2004.
    [35]刘贤赵,康绍忠.陕西王东沟小流域野外土壤入渗试验研究[J].人民黄河,1998,20(2):14~17.
    [36]田积莹.黄土地区土壤的物理性质与黄土成因的关系[J].中国科学院西北水保所集刊, 1987, (5):1212.
    [37]蒋定生,黄国俊,谢永生.黄土高原土壤入渗能力野外测试[J].水土保持通报,1984,4(4):7~9.
    [38]陈瑶,张科利,罗利芳,等.黄土坡耕地弃耕后土壤入渗变化规律及影响因素.泥沙研究,2005,(5): 45~50.
    [39]丁文峰,张平仓,任洪玉,等.秦巴山区小流域水土保持综合治理对土壤入渗的影响[J].水土保持通报,2007,27(1):11~38.
    [40] Helalia A M. The relation between soil infiltration and effective Porosity in different soils[J], Agricultural Water Management, 1993,24(8):39~47.
    [41] Brakensiek D L, Rawls W J. Soil containing rock fragments:effects on infiltration [J]. Catena, 1994, 23:99~110
    [42] Scott H D. Soil Physics[M ]. Ames: Iow a State U niversity Press,2000.
    [43] Hillel D.Crust formation in lassies soils[J]. International Soil Sci.,1960, 29(5): 330~337.
    [44]江忠善,宋文经,李秀英.黄土地区天然降雨雨滴特性研究[J].中国水土保持,1983,2(3):32~36.
    [45]王燕.黄土表土结皮对降雨溅蚀和片蚀影响的试验研究[D].中科院水利部西北水土保持研究所硕士学位论文,1992.
    [46] Baunhards R L.Modeling infiltration into sealing soil[J].Wate ResourceRes, 1990, 26(1): 2497~2505.
    [47] Hillel D,Gardner W R.Transient infiltration into crust-topped profiles[J]. Soil Sci,1970, 109:69-76..
    [48] Ahuja L R.Applicability of the Green-Ampt approach towater infiltration through surface crust[J].Soil Sci,1974,118:283-288.
    [49] Ben-Hur M. Effect of water quality and drying on soil crust properties[J]. Soil Sci.Soc.Am J,1985,49: 191~196.
    [50]陈浩,蔡强国.坡度对坡面径流、入渗量影响的试验研究[A].晋西黄土高原土壤侵蚀规律实验研究[C].北京:水利电力出版社,1990,17~25.
    [51] freebaim, D. M. Gupta, S. C. Microrelief rainfall and cover effects on infiltration[J]. Soil Tillage Res, 1990,16:307~327
    [52]蔡强国,王贵平,陈永宗.黄土高原小流域侵蚀产沙过程与模拟[M].北京:科学出版社,1998:58~78.
    [53]贾志军,王小平.黄土表面结皮对夏闲坡耕地土壤水分的影响研究[J].中国水土保持,2002,9: 18~19.
    [54]牛伊宁,沈禹颖,高崇岳,等.覆盖和耕作对黄土高原冬小麦土壤入渗特性的影响[J].山地学报, 2006, 24(1):13~18.
    [55] Eigle J D, Moore I D. Effect of rainfall energy on infiltration into a bare soil [J].JRANS. of ASAE, 1983, 26(6):189~199.
    [56] Mcintyer D S. Permeability measurements of soil crust formed By raindrop impact[J].Soil Sci, 1958 (85):185~189.
    [57] Tackett J L, Pearson R W. Some characteristics of soil crus Formed by simulated rainfall[J]. Soil Sci, 1965(996):407~413.
    [58] Moore. Effect of surface sealing on infiltration[J]. Transactions of the ASAE,1984(24):201~205.
    [59] Philip J R. The theory of infiltration:5, the influence of the initial moisture content[J]. Soil Sci., 1958, 84:329-339.
    [60]贾志军,王贵平,李俊义,等.土壤含水率对坡耕地产流影响的研究[J].山西水土保持科技,1990, 22(4): 25~27.
    [61]陈洪松,邵明安,王克林.土壤初始含水率对坡面降雨入渗及土壤水分再分布的影响[J].农业工程学报,2006,22(1):44~47.
    [62]吴发启,赵西宁,佘雕.坡耕地土壤水分入渗影响因素分析[J].水土保持通报,2003,23(1):16~78.
    [63] Bodman G B, Colman E A. Moisture and energy condition during downward entry of water into soil[J]. Soil Sci.Soc.AM.J.1944,8(2):166~182.
    [64]邹焱,陈洪松,苏以荣,等.红壤积水入渗及土壤水分再分布规律室内模拟试验研究[J].水土保持学报, 2005,19(3):174~174.
    [65]费良军,谭奇林,王文焰,等.充分供水条件下点源入渗特性及其影响因素[J].土壤侵蚀与水土保持学报,1999,5(2):70~74.
    [66]马履一,翟明普,王勇.京西山地棕壤和淋溶褐土饱和导水率的分析[J].林业科学,1999,35 (3):109~112.
    [67]王国梁,刘国彬,周生路.黄土丘陵沟壑区小流域植被恢复对土壤稳定入渗的影响[J].自然资源学报,2003,18(5):529~535.
    [68]解文艳,樊贵盛.土壤结构对土壤入渗能力的影响[J].太原理工大学学报,2004,35(4):381~384.
    [69]李雪转,樊贵盛.土壤有机质含量对土壤入渗能力影响的试验研究[J].太原理工大学学报,2006,37 (1):59~62.
    [70]张振华,杨润亚,蔡焕杰,等.土壤质地、密度及供水方式对点源入渗特性的影响[J].农业系统科学与综合研究,2004,20(2):81~84.
    [71]郑秀清,樊贵盛,邢述彦.水分在季节性非饱和冻融土壤中的运动[M].北京:地质出版社,2002.
    [72]艾海舰.土壤持水性及孔性的影响因素[J].干旱地区农业研究,2002,(3):75~74.
    [73] Helalia A M. The relation between soil infiltration and effective porosity in different soils[J]. Agricultural Water Management, 1993, 24:39~47.
    [74]李雪转,樊贵盛.土壤有机质含量对土壤入渗能力及参数影响的试验研究[J].农业工程学报,2006, 22(3):188~190.
    [75]董智军,赵英.黑土有机质含量与土壤水分蒸发关系的研究[J].农业系统与综合研究,2000,16 (2):145~148.
    [76]张保华,何毓蓉,程根伟.贡嘎山东坡林地土壤低吸力段持水特性及其影响因素分析[J].西部林业科学,2006,35(1):49~51.
    [77]柳云龙,吕军,王人潮.低丘红壤作物易旱与土壤持水供水特性的关系[J].浙江大学学报(农业与生命科学版),2002,28(1):42~46.
    [78] Jary W A. Soil physics[M]. printed in the United States of America,1991:61~64
    [79]张治国,张云龙,刘徐师,等.林业生态工程学[M].北京:中国林业出版社,1999.
    [80]于志民,余新晓.水源涵养林效益研究[M].北京:中国林业出版社,1999.
    [81]曾曙才,谢正生,古炎坤等.广州白云山几种森林群落生物量和持水性能[J].华南农业大学学报(自然科学版),2002,23(4):41~44.
    [82]武天云,邓娟珍,王生录等.覆盖黑垆土的持水特性及抗旱性研究[J].干旱地区农业研究,1995, 13(3): 33~37.
    [83]张光灿,刘霞.泰山几种林分枯落物和土壤水文效应研究[J].林业科技通讯,1999,(2):28~29.
    [84]张小泉,张清华,毕树峰.太行山北部中山幼林地土壤水分的研究[J].林业科学,1994,30(3):193~200.
    [85]周择福,李昌哲.北京九龙山不同植被土壤水分特征研究[J].林业科学研究,1994,7(1):48~53.
    [86]刘恩斌,董水丽.黄土高原主要土壤持水性能及抗旱性的评价[J].水土保持通报,1997,17(7):20~26.
    [87]李玉山.黄土高原土壤水分性质及分区[J].中国科学院水利部西北水保所刊集,1985,(2):1~16.
    [88]陈志雄,汪仁真.中国几种主要土壤的持水性质[J].土壤学报,1979,16(3):277~281.
    [89]杨金楼,朱连龙,朱济成.上海地区土壤持水性的研究[J].土壤学报,1982,19(4):35~38.
    [90]刘思春,张一平,高俊凤,等.不同肥力水平下土壤植物大气连续系统水势温度效应研究[J].西北农业学报,1996,5(4):47~53.
    [91]朱祖祥.土壤水分的能量概念及其意义[J].土壤学进展,1979,(1):1~18.
    [92]刘胜,贺康宁,常国梁.黄土高原寒区青海云杉人工林地土壤水分物理特性研究[J].西部林业科学,2005,34(3):25~29.
    [93]李小刚,杨治.甘肃省几种旱地土壤低吸力段持水特性初步研究[J].土壤通报,1994,24(3): 155~157.
    [94] D希勒尔.(华孟等译)土壤和水——物理的原理和过程[M].北京:农业出版社,1981.
    [95]沈思渊,席承藩.淮北主要土壤持水性能及其与颗粒组成的关系[J].土壤学报,1990,27(1):34~42.
    [96]王兵,魏文俊,冷泠.宁夏六盘山不同森林类型土壤贮水与入渗研究[J].内蒙古农业大学学报, 2006,27 (3):1~5.
    [97]朱安宁,张佳宝,程竹华.轻质土壤水分特征曲线估计的简便方法[J].土壤通报,2003,34(4):253~258.
    [98]李小刚.影响土壤水分特征曲线的因素[J].甘肃农业大学学报.1994(3):273-278.
    [99] Willians J, PrebbleRE. The influence of texture Structure and clay mineralogy on the soil moisturecharacteristic[J].Aust J Soil Res,1983,21:15~32.
    [100] Hillel D. Application of soil physics[M]. New York Academic Press.1980.
    [101]贾芳,樊贵盛.土壤质地与田间持水率关系的研究[J].山西水土保持科技,2007,(3):17~19.
    [102]周印东,吴金水,赵世伟,等.子午岭植被演替过程中土壤剖面有机质与持水性能变化[J].西北植物学报,2003,23(6):895~900.
    [103]刘思春,吕家珑,马爱生,等.有机质对黄土善土持水性与水肥效应的影响[J].干旱地区农业研究, 2005,23(3):66~68.
    [104]张强,孙向阳,王涵等.毛乌素沙地土壤的持水特性研究[J].林业科学研究,2004,17:63~66.
    [105]张蔚臻.地下水与土壤水动力学[M].北京:中国水利水电出版社,1996.
    [106] GUBER A K, RAWLS W J, SHEIN E V, et a.l Effect of soilaggregate size distribution on water retention[J]. Soil Sc.i, 2003,168(4): 223-233.
    [107]张仁陟,李小刚,胡华,等.甘肃黄土地区农田土壤水分变异规律研究[J].土壤侵蚀与水土保持学报, 1998,4(4):53~59.
    [108]朱显谟.黄土高原土壤与农业[M].北京:农业出版社,1989.
    [109]杨文治,邵明安.黄土高原土壤水分研究[M].北京:科学出版社,2000.
    [110]李玉山.黄土高原土壤水分性质及其分析研究.中国科学院西北水土保持研究所集刊[C],1985.
    [111]邵明安,杨文治,李玉山.黄土区土壤水分有效性的动力学模式[J].科学通报,1987,32(18):1421~1423.
    [112]李笑吟,毕华兴,张建军,等.晋西黄土区土壤水分有效性研究[J].水土保持研究,2006,13(5):205~211.
    [113] Willians J, Prebble R E. The influence of texture Structure and clay mineralogy on the soil moisture characteristic[J].Aust J Soil Res,1983,21:15~32.
    [114]张景略,苗付山.黄泛平原不同质地土壤的持水特性[J].土壤学报,1985,22(4):350~355.
    [115]姚其华,陈明亮.湖北省几种主要旱地土壤水分特性的研究[J].华中农业大学学报,1989,9(1):80~85.
    [116] Kondo J, Saigusa N, Sato T. A parameterization of evaporation from bare soil surfaces[J]. J. App.l Meteor., 29: 1990, 385-389.
    [117] Yamanaka T,Yonetanit. Dynamics ofevaporation zone in drysandy soils[J]. Journal ofH ydrology, 1999, 217: 135-148.
    [118] Kobayashit, Hew,Nagaih. Mechanisms of evaporation fromsoilwith a dry surface[J].Hydro.l Process, 1998, 12: 2185-2191.
    [119] Kondo J, Saigusan N, Sato T. Amodel and experimental study ofevaporation from bare-soil surfaces[ J]. J. App.l Meteor., 1992,31: 304-312.
    [120]邱胜彬,张江辉.浅析土壤质地及结构对潜水蒸发的影响[J].水土保持研究,1996,3(3):30~34.
    [121]刘铁刚,迟道才,于文颖,等.辽宁地区潜水蒸发规律研究[J].沈阳农业大学学报,2005,36(1):76~79.
    [122]胡顺军,宋郁东,田长彦.潜水埋深为零时塔里木盆地不同土质潜水蒸发与水面蒸发关系分析[J].农业工程学报,2005,21:80~83.
    [123]来剑斌,王永平,蒋庆华,等.土壤质地对潜水蒸发的影响[J].西北农林科技大学学报(自然科学版)2003,31(6):153~157.
    [124]宋炳煜.草原群落蒸发蒸腾的研究[J].气候与环境研究,1997,2(3):222~235.
    [125]时新玲,张富仓,王国栋.土壤失水干燥的动力学实验研究[J].应用基础与工程科学学报,2006,14(3):333~339.
    [126]袁建平,张素丽,张春燕,等.黄土丘陵区小流域土壤稳定入渗速率空间变异[J].土壤学报,2001,38(4): 579~583.
    [127]樊贵盛,邢述彦,赵生义.土壤质地对间歇入渗减渗效果的影响[J].农业工程学报,1998, 14(2): 250~252.
    [128] Arya L M,Paris J F.A physicoempirical model to predict the soil moisture characteristic from particle size distribution and bulk densitydata[J].Soil Sci Soc Am J,1981,45:1023-1030.
    [129] Wu L,Vomocil J A,Childs S W.Pore size,particle size,aggregate size,and water retention[J].Soil Sci Soc Am J,1990,54:952-956.
    [130] Gardner W R, Hillel D, Benyamin Y. Post irrigation of soil water:I. Redistribution[J]. Water Resour, 1970, 6:851~861.
    [131] Gardner W R, Hillel D, Benyamin Y. Post irrigation of soil water:II. Simultaneous redistribution and evaporation[J]. Water Resour,1970,6:1 148~153.
    [132]孟春雷,石建辉.土壤蒸发研究及对旱灾防治的意义[J].防灾科技学院学报,2007,9(1):83~84.
    [133]王会肖,刘昌明,农田蒸散、土壤蒸发与水分有效利用[J].地理学报,1997,52(5):447~454.
    [134]汪增涛,孙西欢,郭向红,等.土壤蒸发研究进展[J].山西水利,2007,1:76~78.
    [135]孟春雷.土壤蒸发及水热传输研究综述[J].土壤通报,2007,38(2):374~378.
    [136]苏凤阁,郝振纯.陆面水文过程研究综述[J].地球科学进展.2001,16(6):795~801.
    [137]李红星.土壤蒸发数学模型的建立及其试验验证(D):杨凌:西北农林科技大学.
    [138]同延安.土壤-植物-大气连续体系中水运移理论与方法[M].西安:陕西科学技术出版社,1998.
    [139]程维新,胡朝炳,张兴权.农田蒸发与作物耗水量研究[M].北京:气象出版社,1994.
    [140]李援农,林性粹.均质土壤积水入渗的气阻变化规律及其影响[J].土壤侵蚀与水土保持学报,1997,3(3):88~93.
    [141] S A泰勒.物理的土壤学[M].北京:农业出版社,1983:151.
    [142] Baumgartl Th, Kock B. Modeling volume change and mechanical properties with hydraulic models[J]. Soil Sci. Soc. Am. J., 2004, 68:57~65.
    [143]邵明安,吕殿青,付晓莉,等.土壤持水特征测定中质量含水量、吸力和容重三者间定量关系I.填装土壤[J].土壤学报,2007,44(6):1003~1009.
    [144] Lu D Q, Shao MA, Horton R. Effect of changing bulk density during water desorption measurement on soil hydraulic properties[J]. SoilScience, 2004, 169(5): 1~11.
    [145]邵明安,黄明斌.土根系统水动力学[M].陕西:陕西科学技术出版社, 2000.
    [146]吕殿青,邵明安,王全九.土壤持水特征测定中的容重变化及其确定方法[J].水利学报, 2003, (3):110~114.
    [147]邵明安.不同方法测定土壤基质势的差别及准确性的初步研究[J].土壤通报,1985,16(5): 223~226.
    [148] Brooks R H, Corey A T. Hydraulic Properties of Porous Media[J]. Hydrology Paper. Fort Collins, Colorado: Colorado State Univ, 1964,3~27.
    [149]邵明安.土壤物理与生态环境建设研究文集[M].西安:陕西科学技术出版社,2000. [ 150 ]王孟本,柴宝峰,李洪建,等.黄土区人工林的土壤持水力与有效水状况[J].林业科学,1999,35(2):7~14.
    [151] Van Genuchten M Th. A closed-form equation for predicting the hydraulic conductivity ofunsaturated soils[J]. Soil Sci Soc Am J, 1980, 44:892~898.
    [152]朱安宁,张佳宝,陈效民,等.封丘地区土壤传递函数的研究[J].土壤学报,2003,40(1):53~57.
    [153]徐绍辉,张佳宝,刘建立,等.表征土壤水分持留特性的几种模型的适应性研究[J].土壤学报, 2002,39(4):498~504.
    [154]刘贤赵,李嘉竹,张振华.土壤持水曲线van Genuchten模型求参的一种新方法[J].土壤学报,2007,44(6):1135~1138.
    [155] Saxton K E, Rzwls W J, Romberger J S, et al. Estimatinggeneralized soil-water characteristics from texture[ J]. Soil Sc.iSoc. Am. J., 1986, 50: 1031-1036.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700