用户名: 密码: 验证码:
长江中下游江湖水交换规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河湖关系的研究是当今社会和科学界普遍关注与研究的热点问题之一。科学地认识、正确地处理河湖关系,是维护健康河流、构建和谐人水关系以及人地关系的重点和关键。河湖水沙交换问题是河湖关系的核心问题,是河湖关系演变的纽带。河湖水沙变化和交换是河湖关系演变的驱动力之一。而河湖水交换则是水沙交换的核心和载体,水多则沙多,无水则无沙,因此,河湖水交换问题的研究是澄清河湖水沙交换问题乃至河湖关系的前提和基础。
     我国长江中下游的洞庭湖和鄱阳湖与长江干流河湖关系问题成为当前正确处理长江中下游人水关系乃至人地关系的焦点问题。自2005年4月首届长江论坛在武汉成功举办以来,《保护与发展长江宣言》得到社会各界的热烈响应,“维护健康长江、促进入水和谐”的新时期治江思路正在积极实践。毫无疑问,三峡工程建成后,在防洪、错峰等方面成效显著,尤其是2010年汛期三峡成功经历了接近1998年洪峰流量的考验、能有效控制长江上游的洪水,大量减少荆江、洞庭湖的洪水威胁。当前,需要改变治水理念,探索湖区人水和谐相处的可能途径,处理好长江中下游江湖关系,使长江中下游江湖水系肌体的调蓄功能得以充分发挥,维护健康长江、健康湖泊和健康河口。
     本论文运用普通水文学、工程水文学、随机水文学和水资源科学等的基本理论,采用多种时间序列统计分析方法、Mann-Kendall趋势和突变检验法、小波分析(Wavelet analysis)法,等定性与定量分析相结合,借助计算机技术,统计分析软件SPSS,科学计算软件Matlab等,利用ArcGIS、MapINFO和CoreIDRAWX3等地理信息系统软件和做图软件,在对长江中下游通江湖泊与干流水交换分析的基础上,得到洞庭湖和鄱阳湖与长江水交换的规律,推导出普适性的河湖水交换强度的量化公式,并在洞庭湖和鄱阳湖与长江干流水交换研究上取得成功,论文重点分析了三峡水库运行前后长江干流与两湖的水交换及其变化,并分析了特殊水文年份江湖水交换过程,以期探讨江湖水交换理论、以及合理开发利用水资源、并为维护长江中下游健康的江湖关系乃至健康的河口提供科学参考与建议。
     一、三峡水库对长江干流径流变化影响
     三峡水库运行以后,长江干流枯季径流年内所占比例增大,汛期末端月10月径流所占比例却减少,且宜昌站表现最突出。说明三峡水库运行后长江干流径流特征发生了变化,三峡水库运行加剧了长江中下游汛期径流减少的趋势,加大了枯季径流增加的趋势;并且,2002年干流径流序列存在跳跃点与2003年三峡水库蓄水有关。可见,三峡水库运行改变了坝下游径流的年内分配,使年内分配差值减小。
     二、三峡水库运行前后江湖水交换规律
     1洞庭湖与长江干流水交换。三峡水库运行之后2003-2009年与1998-2002年相比三口分流量之和减小了220×10~8m~3。2003-2009年9-10月份三口流量之和比蓄水前减少了870m~3/s,减少幅度为38.9%。2003-2009年宜昌站流量50000m~3/s和30000m~3/s时,三口分流比较1998-2002年略增;10000m~3/s时,三口分流比较1998-2002年减少。2003-2009年与以前时段相比,城陵矶(七)站出湖流量在宜昌站高流量时受干流顶托作用更明显,在中、低流量时,与2000-2002年相比城陵矶流量变化不大。
     2鄱阳湖与长江干流水交换规律。湖口站多年平均径流量在三峡水库运行前后变化不明显。可是径流的年内分配在2000s与以前相比枯季所占比例增加,水库蓄水月9和10月份径流年内分配比例较1990s有所增加。2010年9月和10月湖口径流量增加,是由于长江干流流量小、水位低,对湖口顶托作用减少而引起的。2010年鄱阳湖与长江干流水交换系数I_p=0.21,且该年长江干流没有发生江水倒灌现象,长江对鄱阳湖顶托作用小,同样说明了这一点。
     长江水倒灌鄱阳湖现象,年代际间倒灌规律发生了变化,2000s与同样枯水年组1980s和1960s相比,江水倒灌年数、总天数和总水量都减少。
     三、不同径流频率条件下江湖水交换计算成果
     1利用水量平衡原理计算了不同频率组合下长江干流与洞庭湖水交换量。当长江干流径流频率为5%的丰水年,恰遇四水也是5%的丰水年时,则洞庭湖可以分洪658×10~8m~3,同年补给长江干流水量为3191×10~8m~3;三口和四水都是50%的平水年时,洞庭湖分长江干流水量为545×10~8m~3,同年补给长江干流2403×10~8m~3水量;当三口和四水都是95%的特大干旱年时,洞庭湖只能补给长江1873×10~8m~3的水量。
     2利用水量平衡原理计算了不同条件下长江干流与鄱阳湖水交换量。频率为5%、50%、75%和95%时,湖口年径流量分别为2300×10~8m~3、1440×10~8m~3、1175×10~8m~3和930×10~8m~3。
     四、特殊水文年份江湖水交换过程
     1典型枯水年江湖水交换
     (1)1978年洞庭湖和鄱阳湖与长江干流水交换系数分别为0.57和0.56,洞庭湖和鄱阳湖与长江水交换作用处于稳定状态,该年发生了长江水倒灌入鄱阳湖的现象。2006年洞庭湖和鄱阳湖与长江干流水交换系数分别为0.89和0.51,前者是湖对长江强补给状态,后者是江湖作用接近稳定状态。
     (2)2006年三峡水库运行使长江中下游干流径流全年分配趋于均匀。特别是增大了枯季径流量,使河槽水位上升,影响了江湖水交换的过程,使长江下游出现枯季不枯的好现象。
     (3)1978年和2006年都是长江流域典型枯水年,中游通江湖泊对干流补水作用更明显,尤其是2006年鄱阳湖干流补给水量为1564×10~8m~3,超过了平水年。
     2典型丰水年江湖水交换
     (1)1954年洞庭湖和鄱阳湖与长江干流水交换系数分别为0.35和0.34,洞庭湖和鄱阳湖与干流水交换作用较强,发挥了湖泊的分洪调蓄作用。1998年洞庭湖和鄱阳湖与长江水交换系数分别为0.46和0.39,洞庭湖与干流水交换强度接近多年平均水平,主要作用是分洪,但没有1954年分洪作用大;鄱阳湖对长江的分洪作用较强,但也没有1954年分洪作用大。
     (2)洞庭湖和鄱阳湖1954年补给长江水量为分别为5248x10~8m~3和2481×10~8m~3,分别约占同期大通径流量的38.6%和19.0%;1998年补给长江水量分别为3994x10~8m~3和2650×10~8m~3,分别约占同期大通径流量的32.1%和21.3%。
     3无论丰水年还是枯水年洞庭湖和鄱阳湖对长江的调蓄作用都是非常重要的。丰水年,两湖对长江干流起到分洪、消峰等作用,减轻下游洪水压力;枯水年,两湖对长江干流主要是水量补充作用,使得下游河道保持一定的流量。
     五、江湖水交换量化研究成果
     用河湖水交换系数来表示河湖水交换强度,并推导出了普适性的河湖水交换系数的量化计算公式((?)),在洞庭湖、鄱阳湖与长江干流水交换研究中推导出其江湖水交换系数计算公式((?)和((?)),并取得成功。两湖与长江干流水交换量化研究结果表明,历年的江湖水交换系数能够反映两湖与长江干流水交换的真实情况。此公式具有应用价值。
At present, the research on the river-lake relation is one of the popular topics which attracted various attentions from researchers and the whole society. Scientific understanding and proper management on the river-lake relation is the key to keep river healthy, as well as to build a harmonious human-water and human-land relationship. Water and sediment exchanges of river-lake system are the core issues of the relation of river-lake system, which are the bond of the evolution of the relation of river-lake system. Variations in the water and sediment and exchanges of them in the river-lake system are one of the driving forces in the evolution of the relation of river-lake system. Moreover, water exchange in the river-lake system is the carrier of the sediment exchange between rivers and lakes, which means more water more sediment and no water no sediment. Consequently, the study of water exchange in the river-lake system is the premise and basis for clarifying the problem of water and sediment exchange between river and lake, or even the relation of river-lake system.
     The relation of river-lake system in the Dongting Lake and the Poyang Lake at the middle and lower reaches of the Yangtze River has become the focus to properly handling the man-water relationship or even the man-land relationship of the Yangtze River. Since the First Yangtze River Forum Annual Meeting was held successfully in Wuhan City in April 2005, Protection and development declaration for Yangtze River received enthusiastic response from the whole society. At present, the ideas of 'Maintain a healthy Yangtze River, Promote harmonious man-water relationship'are being actively practised. Beyond all doubt, after the completion of the Three Gorges Project (TGD), it received remarkable achievements in controlling floods, avoiding peak discharge et al. Especially, in the flood period of 2010, when the peak flow was close to that of 1998, it effectively controlled the upper Yangtze River flooding, reduced the amount of flood in the Jingjiang reach and the Dongting lake, and mitigated the flood disaster of the Jingjiang reach. It is necessary to change the contemporary ideas on water management, and to explore a reasonable way to reach a harmonious man-water relationship in lake area, so that the potentialities of lake regulation of river-lake system can be brought into full function. Simultaneously, it is in favor of maintenance of a healthy Yangtze River arid Estuary.
     Basic theories of general hydrology, engineering hydrology, stochastic hydrology and water resources sicence, as well as various methods of time-series statistical analysis, Mann-Kendall tendency and mutation inspection, Wavelet Analysis etc., were applied in this paper. By using qualitative and quantitative analysis, and with the aid of computer technology, statistical analysis software SPSS 15.0, scientific calculation software Matlab R2007b, geographical information system software ArcGIS and MapINFO, drawing software CorelDRAW X3 etc., this paper, based on the analysis of water exchange between mainstream and lakes, received the rules of water exchange between the Dongting Lake and the Yangtze River as well as between the Poyang Lake and the Yangtze River, deduced a quantitative formula of river-lake water exchange intensity which has been successfully used in the research on the water exchange of the Dongting Lake and the Poyang Lake. In this paper, the author emphatically analyzed the variations in the water exchange between two lakes and the mainstream of the Yangtze River before and after the operation of the Three Gorges Reservoir (TGR) and exchange processes in special hydrologic years. The purposes are to probe the theory of the water exchange of river-lake system, to provide scientific basis and some suggestions for rational utilization of water resources, and for maintenance of a healthy relationship of river-lake system as well as a healthy estuary.
     ⅠThe impact of the TGR on the variations in the runoff of the Yangtze River
     Since the operation of the TGR, the proportion of the runoff of the mainstream of the Yangtze River in the dry season in that of a whole year has risen. In the meantime, the proportion of runoff in October, which is the last month of the flood season, has gradually decreased. This phenomenon was particularly prominent at Yichang station. In conclusion, the runoff of the Yangtze River has changed after the completion of the TGD. The results from these analyses on the impact of the TGR on the mainstream runoff indicate that the operation of the TGR intensified the trend of the decrease in the flood season runoff in the middle and lower reaches of the Yangtze River and enhanced the tendency of the increase in the dry season runoff. Furthermore, the jumping point of the mainstream runoff sequence in 2002 was related to the impounding of the TGR in 2003. Therefore, the operation of the TGR has changed the distribution of the runoff within a year downstream of the dam, which made the proportion of each month's runoff within a year equably.
     ⅡThe rules of river-lake water exchange before and after the operation of TGR
     i) The rules of water exchange between the Dongting Lake and the mainstream of the Yangtze River. After the operation of the TGR, the total runoff of Three Inlets during 2003-2009 decreased by 220×10~8m~3, compared with 1998-2002. The total mean flowin September and October of Three Inlets decreased by 870m~3/s during 2003-2009. The rate of decrease was 38.9%. During 2003-2009, when the flow at Yichang was 50000 m~3/s and 30000 m~3/s, the split ratio of Three Inlets increased, but when the flow at Yichang reduced to 10000 m~3/s, the split ratio of Three Inlets decreased, compared with that during 1998-2002. After the operation of the TGR, 2003-2009, compared to the previous data, the outflow of Chenglingji (Qilishan) was more affected by the waterback effect of trunk stream of the Yangtze River when the flow at Yichang was biger, while the outflow of Chenglingji (Qilishan) changed little when the flow at Yichang was medium or low, compared with that of 2000-2002.
     ii) The rules of water exchange between the Poyang Lake and the mainstream of the Yangtze River. After the completion of the Three Gorges Project (TGP), the annually mean discharge changed little, but proportion of the runoff in the dry season in the annual runoff of the mainstream of the Yangtze River in 2000 increased, compared with previous data. In September and October, this was also the reservoir impounding water time, the proportion of the runoff of this period within a year increased, compared with 1990s. The increase in the runoff at Hukou during September and October in 2010 was was caused by the lower water level, lower flow and weak backwater effect of the Yangtze River. The coefficient of water exchange I_p equals 0.21, without backward water from the mainstream of the Yangtze River to the Poyang Lake in this year, which also shows this point.
     The phenomenon of backward flow from the Yangtze River to the Poyang Lake at Hukou changed from decade to decade. The number of years and days when there was backward water declined in 2000s when compared with that during 1960s and 1980s, and the water volume of backward water also decreased simultaneously.
     ⅢResults of river-lake water exchange with the runoff of different frequencies
     ⅰ) Under the conditions with runoff of different frequencies, the water exchange between the mainstream of the Yangtze River and the Dongting Lake was computed with the water balance principle. The Four Tributaries experience 5% high flow year when the mainstream of the Yangtze River is in 5% rich water year.The water volume of flood diversion to the Dongting Lake from the mainstream is 658×10 m and the lake supplies3191×10~8m~3 of water for the Yangtze River at the same year. When Three Inlets and Four Tributaries experience 50% normal year, the water volume of flood diversion to the Dongting Lake is 545×10~8m~3 with supplying 2403×10~8m~3 of water for the mainstream, Whereas when the Three Inlets and Four Tributaries are in 95% low flow year, the Dongting Lake only supplies 1873×10~8m~3 of water for the Yangtze River.
     ii) Under the conditions with runoff of different frequencies, the water exchange between the mainstream of the Yangtze River and the Poyang Lake was computed by using the water balance principle. The annual runoff of Hukou is 2300×10~8m~3、1440×10~8m~3、1175×10~8m~3 and 930×10~8m~3 when the frequencies are 5%、50%、75% and 95%.
     IV River-lake water exchange process in special hydrological years
     i) Main conclusions on water exchange between river and lakes in the typical low flow years
     (1) The water exchange coefficient was 0.57 between the Yangtze River and the Dongting Lake and 0.56 between the Yangtze and the Poyang in 1978. Water exchange was stable between the mainstream of the Yangtze River and the Dongting and the Poyang Lake. The backward flow from the river to the lake appeared in this year. In 2006, the water exchange coefficients of these two systems were 0.89 and 0.51 respectively, the former showed that there was strong water supply from the lake to the river, while the latter revealed a situation of approximately stable water exchange between the river and the lake.
     (2)The annual runoff distribution of the middle and lower reaches of the Yangtze River became more uniform after the operation of TGR in 2006. The runoff increased, especially in dry season, which led to the water level rise in the channel, affecting the water exchange process between the river and lakes, which resulted in rich water in the Yangtze River in the dry season, compared to other low flow years.
     (3) 1978 and 2006 were both typical lower flow years of the Yangtze River basin, the water supply, therefore, from river-connected lakes in the middle reach to the mainstream was more obvious, especially in 2006. For instance the Poyang Lake supplied 1564×10~8m~3 of water for the river, which was much more than the normal year.
     ii) Main conclusions on water exchange between river and lakes in typical flood years
     (1) Water exchange coefficient of Dongting-Yangtze was 0.35 in 1954, and 0.34 for Poyang-Yangtze. Water exchange was strong between the both two lakes and the river, and they played the main role in flood diversion, runoff regulation and storage. The two coefficients in 1998 were 0.46 and 0.39 respectively. The strength of the Dongting-Yangtze water exchange was close to the normal year, whereas the main function, flood diversion, was much weeker than that in 1954. The situation was similar in the Poyang lake, despite that the flood diversion was relatively stronger.
     (2) The volume of the water supply from the Dongting and the Poyang Lake to the Yangtze River was 5248×10~8m~3 and 2481×10~8m~3 in 1954, which accounted for nearly 38.6% and 19.0% of the runoff at Datong Station during the same period. For the year of 1998, the volume of the water supply was 3994×10~8m~3 and 2650×10~8m~3, which accounted for 32.1% and 21.3% of the runoff at Datong.
     ⅲ) The Dongting and the Poyang Lake played an important role in water regulation and storage for the Yangtze River either in high or low flow years. In flood years, the two lakes store water and smooth the peak flow of the flood, reducing the downstream flooding threatening.In low flow years, the two lakes play a prominent role in water supply and maintaining a certain flow downstream.
     Ⅴ. Achievements on quantified analysis of water exchange between the river and the lake
     Water exchange coefficients of the Yangtze-Dongting and the Yangtze-Poyang were able to indicate the real water exchange between the two lakes and Yangtze over the years. Therefore, it is a practical way for common use to quantitatively analyze the river-lake water exchange.
引文
[1]Fulazzaky M A, Akil H. Development of data and information centre system to improve water resources management in indonesia[J]. Water Resource Management,2008, doi: 10.1007/s11269-008-9314-0.
    [2]Coe M T, Birkett C M. Calculation of river discharge and prediction of lake height from satellite radar altimetry:example for the Lake Chad basin[J]. Water Resources Research,2004, 40, W10205, doi:10.1029/2003WR002543:1-11.
    [3]Jeong K S, Kim D K, Joo G J. Delayed influence of dam storage and discharge on the determination of seasonal proliferations of Microcystis aeruginosa and Stephanodiscus hantzschii in a regulated river system of the lower Nakdong River (South Korea) [J]. Water Research,2007,41:1269-1279.
    [4]Baldwin D S, Gigney H, Wilson J S, et al. Drivers of water quality in a large water storage reservoir during a period of extreme drawdown[J]. Water Research,2008,42:4711-4724.
    [5]IPCC. Climate Change 2007:The Scientific Basis. Summary for Policymakers and Technical Summary of Working Group I to the Fourth Assessment Report [M]. Cambridge, UK and New York, USA:Cambridge University Press,2007.
    [6]Dai Zhijun, Du Jjinzhou, Li Jiufa, et al. Runoff characteristics of the Changjiang River during 2006:effects of extreme drought and the impounding of the Three Gorges Dam [J]. Geophysical Research Letters,2008,35, L07406, doi:10.1029/2008GL033456.
    [7]Yin Yixing, Youpeng Xu, Ying Che n. Relationship between flood/drought disasters and ENSO from 1857 to 2003 in the Taihu Lake basin, China [J]. Quaternary International, 2009,208:93-101.
    [8]Marco Gemmer, Tong Jiang, Buda Sua, Zbigniew W. Kundzewicz, Seasonal precipitation changes in the wet season and their influence on flood/drought hazards in the Yangtze River Basin, China, Quaternary International,186 (2008),12-21 doi:10.1016/j.quaint.2007.10.001
    [9]李志,王健,刘文兆.泾河流域气候变化及其与ENSO的关系[J].地理科学进展,2010,29(7):833-839.
    [10]刘春蓁.气候自然变异与齐后强迫变化对径流影响研究进展[J].中国水利,2008,2:41-46.
    [11]李红军,汪志红,刘新春,杨青.阿克苏河径流变化与北大西洋涛动的关系[J].地理学报,2008,63(5):491-501.
    [12]Tharme R E. A global perspective on environmental flow assessment:emerging trends in the development and application of environmental flow methodologies for rivers[J]. River Research and Applications,2003,19:397-441.
    [13]Nilsson C, Reidy C A, Dynesius M, et al. Fragmentation and flow regulation of the world's large river systems[J]. Science,2005,308(5720):405-408.
    [14]Xu Kehui, Milliman J D. Seasonal variations of sediment discharge from the Yangtze River before and after impoundment of the Three Gorges Dam[J]. Geomorphology,2009, 104:276-283. doi:10.1016/j.geomorph.2008.09.004
    [15]Romanowicz R J. Data based mechanistic model for low flows:Implications for the effects of climate change[J]. Journal of Hydrology,2007,336:74-83.
    [16]Laaha G., Bloschl G.. Low flow estimates from short stream flow records-a comparison of methods[J]. Journal of Hydrology,2005,306:264-286.
    [17]Smakhtin VU. Low flow hydrology:a review[J]. Journal of Hydrology,2001,240:147-186.
    [18]Nutzmann G, Mey S. Model-based estimation of runoff changes in a small lowland watershed of north-eastern Germany[J]. Journal of Hydrology,2007,334:467-476.
    [19]Dougla E M, Vogel R M, Kroll C N. Trends in floods and low flows in the United States: impact of spatial correlation[J]. Journal of Hydrology,2000,240:90-105.
    [20]Wong C M, Williams E E, Pittock J, et al. World's top 10 rivers at risk[R]. WWF International. Gland, Switzerland,2007.40-45.
    [21]Du Yun, Cai Shuming, Zhang Xiaoyang, et al. Interpretation of the environmental change of Dongting Lake, middle reach of Yangtze River, China, by 210Pb measurement and satellite image analysis[J]. Geomorphology,2001,41:171-181. PⅡ:S0169-555XZ01.00114-3.
    [22]Yin Hongfu, Liu Guagnrun, Pi Jiangao, et al. On the river-lake relationship of the middle Yangtze reaches[J]. Geomorphology,2007,85:197-207. doi:10.1016/j.geomorph.2006.03.017
    [23]Nakayama T, Watanabe M. Role of flood storage ability of lakes in the Changjiang River catchment[J]. Global and Planetary Change,2008,63:9-22.
    [24]Bonnet M P, Barroux G, Martinez J M, et al. Floodplain hydrology in an Amazon floodplain lake (Lago Grande de Curuai') [J]. Journal of Hydrology,2008,349:18-30.
    [25]Reza K A, Nabavi S H. Dominant discharge in the KOR River, Fars Province, Iran[A]. Tenth International Water Technology Conference,2006. IWTC10. Alexandria. Egvpt.299-306.
    [26]Smith L C, Pavelsky T M. Estimation of river discharge, propagation speed, and hydraulic geometry from space:Lena River, Siberia[J]. Warer Resources Research,2008,44, W03427, doi:10.1029/2007WR006133:1-11.
    [27]Wang Guojie, Jiang Tong, Blender R, et al. Yangtze 1/f discharge variability and the
    [28]Sun Shaoan, Xiang Aimin, Zhu Ping, et al. Gravity change and its mechanism after the first interacting river-lake system[J]. Journal of Hydrology,2008,351:230-237. doi:10.1016/j.jhydrol.2007.12.016. water impoundment in Three Gorges Project[J]. Acta Seismologica Sinica,2006,19(5): 522-529.
    [29]Fourniadis I.G., J.G. Liu and P.J. Mason, Landslide hazard assessment in the Three Gorges area, China, using ASTER imagery:Wushan-Badong, Geomorphology,84 (2007),126-144.
    [30]Yang Shilun, Zhao Qingying, Belkin I M. Temporal variation in the sediment load of the doi:10.1016/j.geomorph.2006.07.020. Yangtze river and the influences of human activities [J]. Journal of Hydrology,2002,263:56-71.
    [31]姜加虎,黄群.三峡工程对坝下长江流量影响研究[J].湖泊科学,1997,9(2):105-111.
    [32]曹勇,陈吉余,张二凤等.三峡水库初期蓄水对长江口淡水资源的影响[J].水科学进展,2006,17(4):554-558.
    [33]Fang Hongwei, Rodi Wolfgang,Three dimensional mathematical model and its application in the neighborhood of the Three Gorges Reservoir dam in the Yangtze Riber, Acta Mechanica
    [34]黄群,姜加虎.近50年来洞庭湖区的内湖变化[J].湖泊科学,2005,17(3):202-206.Sinica (English Series),2002,18(3):235-243.
    [35]马元旭,来红州.荆江与洞庭湖区近50年水沙变化的研究[J].水土保持研究.2005.12(4):103-106.
    [36]姜加虎,黄群.洞庭湖近几十年来湖盆变化及冲淤特征[J].湖泊科学,2004,16(3):209-214.
    [37]郭鹏,陈晓玲,刘影.鄱阳湖湖口、外洲、梅港三站水沙变化及趋势分析(1955-2001)[J].湖泊科学,2006,18(5):458-463.
    [38]Wang Suiji., Chen Zhongyuan, Smith D G. Anastomosing river system along the subsiding doi:10.1016/j.catena.2004.11.007. middle Yangtze River basin, southern China[J]. Catena,2005,60:147-163,
    [39]Hu Qi, Feng Song, Guo Hua, et al. Interactions of the Yangtze river flow and hydrologic
    [40]罗小平,郑林,齐述华等.鄱阳湖与长江水沙通量变化特征分析[J].人民长processes of the Poyang Lake, China[J]. Journal of Hydrology,2007,347:90-100.江,2008,39(6):12-14.
    [41]许全喜,胡功宇,袁晶.近50年来荆江三口分流分沙变化研究[J].泥沙研究,2009,5:1-8.
    [42]李义天,郭小虎,唐金武等.三峡建库后荆江三口分流的变化[J].应用基础与工程科学学报,2009,17(1):21-31.
    [43]李义天,郭小虎,唐金武,孙昭华.三峡水库蓄水后荆江三口分流比估算[J].天津大学学报,2008,41(9):1027-1034.
    [44]许继军,陈进,黄思平.鄱阳湖洪水资源潜力与利用途径探讨[J].水利学报,2009,4:474-480.
    [45]韩其为.江湖流量分配变化导致长江中游新的洪水形势[J].泥沙研究,1999,5:1-12.
    [46]闵骞,刘影,马定国.退田还湖对鄱阳湖洪水调控能力的影响[J].长江流域资源与环境,2006,15(5):574-578.
    [47]徐德龙,熊明,张晶,鄱阳湖水文特性分析[J].人民长江,2001,32(2):21-22.
    [48]冯明义.江汉湖群调蓄功能研究[J].四川师范学院学报(自然科学版),1995,1(4):327-331
    [49]陈进,黄薇,通江湖泊对长江中下游防洪的作用[J].中国水利水电科学研究院学报,2005,3(1):11-15.
    [50]王孝忠.湖南的水灾及其防治[M].1999,湖南人民出版社,1-106.
    [51]周宏春,王毅,于秀波等编著,长江中游退田还湖与可持续发展[M].北京:经济科学出版社,2002年:1-56.
    [52]湖南省国土委员会办公室,湖南省经济研究中心编,洞庭湖区整治开发综合考察研究专题报告,内部资料,1986,335-432.
    [53]李景保,尹辉,卢承志等.洞庭湖区的泥沙淤积效应[J].地理学报,2008,63(5):514-523.
    [54]杨桂山,马超德,常思勇主编.长江保护与发展报告2009[M].武汉:长江出版社,2009.115-127.
    [55]朱宏富.从自然地理特征探讨鄱阳湖的综合治理和利用[J].江西师范大学学报(自然科学版),1982,1:42-56.
    [56]孙晓山.加强流域综合管理确保鄱阳湖一湖清水[J].江西水利科技,2009,35(6):87-92.
    [57]朱宏富,金锋,李荣防.鄱阳湖调蓄功能与防灾综合治理研究[M].北京:气象出版社,2002:1-70.
    [58]Keshavarzi Ali Reza and Nabavi, S. H. Dominant Discharge in the KOR River, Fars Province, Iran, Tenth International Water Technology Conference, IWTC10 2006, Alexandria, Egypt299-306.
    [59]Laurence C. Smith, and Tamlin M. Pavelsky, Estimation of river discharge, propagation speed,and hydraulic geometry from space:Lena River, Siberia, WATER RESOURCES RESEARCH, VOL.44, W03427, doi:10.1029/2007WR006133,2008 (1-11)
    [60]Brooks G.R., D.E. Lawrence, The drainage of the Lake Ha!Ha! reservoir and downstream geomorphic impacts along Ha!Ha! River, Saguenay area, Quebec, Canada, Geomorphology, 28(1999),141-168. PⅡ: S0169-555X_98.00109-3.
    [61]Jordan A. Clayton, James C. Knox, Catastrophic flooding from Glacial Lake Wisconsin, Geomorphology 93 (2008) 384-397 doi:10.1016/j.geomorph.2007.03.006
    [62]Yin Hongfu, Changan Li, Human impact on floods and flood disasters on the Yangtze River, Geomorphology,41(2001),105-109 PⅡ:S0169-555X(01).00108-8
    [63]Yu Fengling, Chen Zhongyuan, Ren Xianyou, Yang Guifang, Analysis of historical floods on the Yangtze River, China:Characteristics and explanations, Geomorphology,113 (2009), 210-216 doi:10.1016/j.geomorph.2009.03.008
    [64]Dai S.B., X.X. Lu, Sediment deposition and erosion during the extreme flood events in the middle and lower reaches of the Yangtze River, Quaternary International,226 (2010) 4-11, doi:10.1016/j.quaint.2010.01.026
    [65]李坤刚.我国洪旱灾害风险管理[J].中国水利,2003,3,B刊:47-48.
    [66]徐国弟.长江地区资源开发与可持续发展[M].武汉:武汉出版社,1999,46-68.
    [67]毛端谦.鄱阳湖区水旱灾害灾情分析[J].江西师范大学学报(自然科学版),1992,16(3):234-240.
    [68]苏连璧,长江洪水的时间分布及其出现情况[J].地理学报,1981,36(2):209-215.
    [69]闵骞.1996年江西省洪涝灾害的对策及启示[J].灾害学,1998,13(1):45-49.
    [70]段德寅,陈耀湘,张国君厄尔尼诺和大气环流异常与1998年洞庭湖区洪涝的关系[J].湖南农业大学学报,1999,25(3):221-224.
    [71]余曼平.黑潮暖流与洞庭湖区汛期降水和洪涝的关系[J].气象,1999,25,9:21-23.
    [72]谈广鸣,罗景.98长江洪水位特点及其对策研究[J].水利水电科技进展,1999,19(2):12-14.
    [73]Zong Yongqiang and Chen Xiqing. The 1998 Flood on the Yangtze, China[J]. Natural Hazards, 22:165-184,2000.
    [74]潘志祥,宁迈进.1998年洞庭湖流域特大暴雨的雨水情分析[J].气象,1999,25(9):11-14.).
    [75]杨义文,魏则安,艾秀,1998年与1954年长江洪水的对比和思考[J].气象科技年,1999,1:16-19.
    [76]闵骞,鄱阳湖1998洪水特征,水文,2001,21(3):55-58.[52]
    [77]闵骞.20世纪90年代鄱阳湖洪水特征的分析[J].湖泊科学,2002,14(4):323-330.
    [78]刘东生,熊明,张景泰.长江城陵矶—汉口河段的冲淤变化及影响分析[J].水利水电快报,1999,20(18):24-27.
    [79]熊道光,泥沙淤积是形成1998年长江中下游大洪水的重要因素[J].江西水利科技,1999,25(2):80-81
    [80]吴宜进,蔡述明.长江中游洪涝灾害的发展趋势与跨流域治理的必要性[J].长江流域资源与环境,1999,8(3):334-338.
    [81]李景保,杨燕,许树辉,洞庭湖区1991-2000年大洪涝灾害特点与成因分析[J].湖南师范大学自然科学学报,2001,24(4):90-94.
    [82]云惟群,付凌晖,王惠文.鄱阳湖地区洪水灾害模式分析[J].灾害学,2003,18(1):30-35
    [83]晏洪.浅谈鄱阳湖蓄滞洪区防洪安全问题[J].科技广场,2006,12,122-124.
    [84]胡大超,贾亚男,熊平生.鄱阳湖区洪水灾害与孕灾环境变化的关系问题研究[J].国土与自然资源研究,2010,3,56-57.
    [85]曾群华,郭跃.洞庭湖区洪涝灾害的特征及成因分析[J].地质灾害与环境保护,2003,14(3):55-60.
    [86]刘晓群,卜继勘.长江中游洪水的大湖模拟与湖区治理[J].湖南水利水电,2005,6:30-32.
    [87]廖小红.三峡工程对洞庭湖区滨湖城市排涝的影响[J].中国农村水利水电,2006,7:20-24.
    [88]王凤,吴敦银,李荣防.鄱阳湖区洪涝灾害规律分析[J].湖泊科学2008,20(4):500-506.
    [89]闵骞,汪泽培.鄱阳湖近500年较大洪水出现规律的初步分析[J].江西水利科技,1992,18(1):76-83.
    [90]闵骞,汪泽培.都阳湖近600年洪水规律的分析[J].湖泊科学,1994,6(4):375-383.
    [91]王艳君,姜彤,许崇育.长江流域20 cm蒸发皿蒸发量的时空变化[J].水科学进展,2006,17(6):830-833.
    [92]徐俊杰,何青,刘红等.2006年长江特枯径流特征及其原因初探[J].长江流域资源与环境,2008,17(5):716-722.
    [93]刘红,何青,徐俊杰等.特枯水情对长江中下游悬浮泥沙的影响[J].地理学报,2008,63(1):50-64.
    [94]周亮广,王岽,戴仕宝,赵来.长江2006年汛期特枯径流分析[J].自然资源学报,2009,24(3):448-456.
    [95]陈吉余,何青.2006年长江特枯水情对上海淡水资源安全的影响[M].北京:海洋出版社,2009:1-146.
    [96]戴志军,李九发,赵军凯等.特枯2006年长江中下游径流特征及江湖库径流调节过程[J].地理科学,2010,30(4):577-581.
    [97]闵骞,鄱阳湖区干旱与变化[J].江西水利科技,2006,3(3):125-128.
    [98]闵骞,鄱阳湖区干旱的定量判别与变化特征[J].水资源研究,2007,28(1):5-7.
    [99]李世勤,闵骞,谭国良,潘汉明,陈家霖,鄱阳湖2006年枯水特征及其成因研究[J].水文,2008,28(6):73-76.
    [100]闵骞,闵聃.鄱阳湖区干旱演变特征与水文防旱对策[J].水文,2010,30(1):84-88.
    [101]彭锐,黄河清,郑林.鄱阳湖区1959年至2005年降水过程的持续性特征与减灾对策[J].资源科学,2009,31(5):731-742.
    [102]李志红.聚焦黄河治理60周年(1949-2006):河道演变[EB/OL]. http://www.ha.xinhuanet.com/xhzt/2006-10/23/content 8326495.htm,2006-10-23.
    [103]石国钰,许全喜,陈泽方,长江中下游河道冲淤与河床自动调整作用分析[J].山地学报,2002,20(3):257-265.
    [104]潘庆燊.长江中下游河道演变趋势及对策[J].人民长江,1997,28(5):22-24.
    [105]潘庆燊,卢金友,胡向阳.长江中游宜昌至城陵矶河段河道演变分析[J].长江科学院院报,1997,14(3):19-22.
    [106]潘庆燊.长江中下游河道近50年变迁研究[J].长江科学院院报,2001,18(5):18-22.
    [107]余明辉,梁杏,段文忠,未矩蓉.长江中下游洪水位变化与河床冲淤[J].南水北调与水利科技,2004,2(6):31-35.
    [108]余明辉,段文忠,余蔚卿.长江中下游河床冲淤与洪水位变化[J].武汉大学学报(工学版),2005,38(3):1-5.
    [109]段文忠.下荆江裁弯与城陵矶水位抬高的关系[J].泥沙研究.1993,1:39-50.
    [110]李学山,王翠平.荆江与洞庭湖水沙关系演变及对城螺河段水情影响分析[J].人民长江,1997,28(8):6-8.
    [111]杨晓刚,杨朝云,彭玉明.荆江河床演变过程中环境影响初探[J].人民长 江,2010,41(3):59-63.
    [112]孙昭华,李义天,李明,葛华.长江中游宜昌~沙市段河床冲淤与枯水位变化[J].水利水运工程学报,2007,4:14-20.
    [113]韩其为,周松鹤,三口分流河道的特性及演变规律[J].长江科学院院报,1999,16(5):5-8.
    [114]唐日长.下荆江裁弯对荆江洞庭湖影响分析[J].人民长江,1999,30(4):20-23.
    [115]刘晓群.泥沙淤积对四水尾闾防洪的影响研究[A].湖南省洞庭湖可持续发展研究会.洞庭湖科学考察[C],内部资料,2005.
    [116]韩其为,何明民.三峡水库建成后长江中、下游河道演变的趋势[J].长江科学院院报,1997,14(1):12-16.
    [117]卢金友.荆江三口分流分沙变化规律研究[J].泥沙研究,1996,4:54-61.
    [118]许炯心.长江宜昌-武汉河段泥沙年冲淤量对水沙变化的响应[J].地理学报,2005,60(2):337-348
    [119]马逸麟,张然,诸葛春,王志强.江西长江河道演变及其对水患灾害形成的影响[J].地质灾害与环境保护,2008,19(2):24-28.
    [120]陈建国,周文浩,孙高虎,洪健.黄河小浪底水库初期运用与下游河道冲淤的响应[J].泥沙研究,2008,5:1-8.
    [121]李茂田,于霞,陈中原,40年来长江九江河段河道演变及其趋势预测[J].地理科学,2004,24(1):76-82.
    [122]林承坤,洞庭湖水沙特性与湖泊沉积[J].地理科学,1987,7(1):10-18.
    [123]周松鹤,黄万士,洞庭湖区泥沙淤积分析[J].泥沙研究,1985,2:62-67
    [124]黄旭初 朱宏富.从构造因素讨论都阳湖的形成与演变[J].江西师范大学学报(自然科学版),1983,1:126-133.
    [125]Wang Jian, Chen Xia, Zhu Xiaohua, Liu Jinling, William Y.B. Chang, Taihu Lake, lower Yangtze drainage basin:evolution, sedimentation rate and the sea level[J]. Geomorphology, 41(2001),183-193 PⅡ: S0169-555X(01).00115-5.
    [126]李景保,王克林,秦建新等,洞庭湖年径流泥沙的演变特征及其动因[J].地理学报,2005,60(3):503-510.
    [127]彭登楼.人类活动对长江中下游洪水特性影响分析[J].人民长江,1996,27(4),15-17
    [128]陈竹青,夏自强,马喜荣.人类活动对长江流域洪灾加剧的影响[J].东北水利水电,2005,3:36-37.
    [129]徐龙.鄱阳湖无序采砂的影响及对策研究[J].科技广场,2009,6,:103-104.
    [130]罗敏逊,卢金友,荆江与洞庭湖汇流区演变分析[J].长江科学院院报,1998,15,(3):11-16.
    [131]张本.鄱阳湖研究[M].上海:上海科学技术出版社,1988,第一版:1-71.
    [132]林承坤,高锡珍.水利工程修建后洞庭湖径流与泥沙的变化[J].湖泊科学,1994,6(1):33-39.
    [133]林承坤,许定庆,吴小根.洞庭湖的调节作用对荆江径流的影响[J].湖泊科学,2000,12(2):105-110.
    [134]施修端,夏薇,杨彬.洞庭湖冲淤变化分析(1956-1995年)[J].湖泊科学,1999,11(3):99-205.
    [135]高俊峰,张琛,姜加虎等.洞庭湖的冲淤变化和空间分布[J].地理学报,2001,56(3):269-277.
    [136]程时长,王仕刚.鄱阳湖现代冲淤动态分析[J].江西水利科技,2002,28(2):125-128.
    [137]闵骞.鄱阳湖近期沉积趋势及防治[J].江西水利科技1988,1:61-63.
    [138]长江水文局.洞庭湖与鄱阳湖的泥沙淤积继续减少[J].水利水电快报,2006,18:13.
    [139]S. Kebede, Y. Travi, T. Alemayehu, V. Marc, Water balance of Lake Tana and its sensitivity to fluctuations in rainfall, Blue Nile basin, Ethiopia[J]. Journal of Hydrology,316 (2006) 233-247 doi:10.1016/j.jhydrol.2005.05.011
    [140]段文忠,郑亚慧,刘建军,长江城陵矶-螺山河段水位抬高及原因分析[J].水利学报,2001,2:29-34.
    [141]安申义,长江螺山站高水位流量关系和城陵矶(莲花塘)控制水位的研究[J].水利水电技术,2001,32(11):1-6.
    [142]施修端.长江螺山汉口大通三站水位流量关系历年变化分析[J].人民长江,1993,24(7):43-48
    [143]卢金友,罗敏逊.长江中游宜昌至城陵矶河段水位变化分析[J].人民长 江,1997,28,(5):25-28.
    [144]舒长根,刘影,吕建星.鄱阳湖高洪水位及其预报[J].广东气象,2006,3:50-53.
    [145]周霞,赵英时,梁文广.鄱阳湖湿地水位与洲滩淹露模型构建[J].地理研究,2009,28(6):1722-1730.
    [146]胡春华.历史时期鄱阳湖湖口长江倒灌分析[J].地理学报,1999,54(1):77-82
    [147]Zhao Junkai, Li Jiufa, Dai Zhijun, et al. Key role of the lakes in runoff supplement in the mid-lower reaches of the Yangtze River during typical drought years [A].2010 International Conference on Digital Manufacturing and Automation, ICDMA 2010, Changsha, China, 874-880.
    [148]卢金友,罗恒凯.长江与洞庭湖关系变化初步分析[J].人民长江,1999,30(4):24-26.
    [149]李义天,李荣,邓金运.长江中游泥沙输移规律及对防洪影响研究[J].泥沙研究,2006,3:12-20.
    [150]闵骞,江泽培.近40年鄱阳湖水位变化趋势[J].江西水利科技,1992,18(4):361-364.
    [151]仲志余,胡维忠.改善江湖关系实现江湖两利[EB/OL].http://www.cesd-sass.org/water/ShowArticle.asp?ArticleID=1971,2009-4-30.
    [152]李义天,邓金运,孙昭华等.泥沙淤积与洞庭湖调蓄量的变化[J].水利学报,2000,31(12):48-52.
    [153]沈焕庭,张超,茅志昌.长江入河口区水沙通量变化规律[J].海洋与湖沼,2000,31(3):288-294.
    [154]J. Rwetabula, F. De Smedt, and M. Rebhun, Prediction of runoff and discharge in the Simiyu River (tributary of Lake Victoria, Tanzania) using the WetSpa model[J]. Hydrology and Earth System Sciences Discussions,4,881-908,2007
    [155]Yi Yi, Bronwyn E. Brock, Matthew D. Falcone, Brent B. Wolfe, Thomas W.D. Edwards, A coupled isotope tracer method to characterize input water to lakes, Journal of Hydrology (2008) 350,1-13, doi:10.1016/j.jhydrol.2007.11.008
    [156]Chen Zhongyuan, Li Jiufa, Shen Huanting, Wang Zhanghua, Yangtze River of China: historical analysis of discharge variability and sediment flux[J]. Geomorphology,41 (2001), 77-91 PⅡ: S0169-555X(01).00106-4
    [157]刘成,王兆印,隋觉义.我国主要入海河流水沙变化分析[J].水利学报,2007,38(12):1444-1452.
    [158]府仁寿,虞志英,金缪,方红卫.长江水沙变化发展趋势[J].水利学报,2003,11:21-29.
    [159]王国杰,姜彤,王艳君等.洞庭湖流域气候变化特征(1961-2003年)[J].湖泊科学,2006,18(5):470-475.
    [160]董力三.洞庭湖区气候及江湖关系历史变迁的探讨[J].长沙电力学院学报,2002,17(4):86-89
    [161]郭华,姜彤,王艳君,陈桂亚.1995-2002年气候因子对鄱阳湖流域径流系数的影响[J].气候变化研究进展,2006,2(5):217-222.
    [162]郭华,姜彤.鄱阳湖流域洪峰流量和枯水流量变化趋势分析[J].自然灾害学报,2008,17(3):75-80.
    [163]左长清.江西省水土保持工作现状与战略措施[J].江西水利科技.1999,25(4):199-203.
    [164]孙鹏,张强,陈晓宏,陈永勤.鄱阳湖流域水沙时空演变特征及其机理[J].地理学报,2010,65(7):828-840.
    [165]姜彤,苏布达,王艳君等.四十年来长江流域气温降水与径流变化趋势[J].气候变化研究进展,2005,1(2):65-68.
    [166]李林,王振宇,秦宁生等.长江上游径流量变化及其与影响因子关系分析[J].自然资源学报,2004,19(6):694-700.
    [167]夏军,王渺林.长江上游流域径流变化与分布式水文模拟[J].资源科学,2008,30(7):962-967.
    [168]Frank H. Quinn, Thomas E. Croley II, Kenneth Kunkel, Stanley J. Changnon, Laurentian Great Lakes Hydrology and Lake Levels under the Transposed 1993 Mississippi River Flood Climate[J]. Journal of Great Lakes Research, Volume 23, Issue 3,1997,317-327
    [169]John D. Lenters, Long-term Trends in the Seasonal Cycle of Great Lakes Water Levels[J].Journal of Great Lakes Research, Volume 27, Issue 3,2001, Pages 342-353
    [170]Brent M. Lofgren, Frank H. Quinn, Anne H. Clites, Raymond A. Assel, Anthony J. Eberhardt, Carol L. Luukkonen, Evaluation of Potential Impacts on Great Lakes Water Resources Based on Climate Scenarios of Two GCMs[J] Journal of Great Lakes Research, Volume 28, Issue 4,2002, Pages 537-554
    [171]Frank H. Quinn, Secular Changes in Great Lakes Water Level Seasonal Cycles[J].Journal of Great Lakes Research, Volume 28, Issue 3,2002, Pages 451-465
    [172]张强,陈桂亚,姜彤,任国玉.近40年来长江流域水沙变化趋势及可能影响因素探讨[J].长江流域资源与环境,2008,17(2):257-263.
    [173]童辉,郑亚慧,许全喜.长江宜昌至汉口河段水沙变化初步分析[J].人民长江,2008,39(1):37-40.
    [174]Xu Kaiqin, Chen Zhongyuan, Zhao Yiwen, Wang Zhanghua, Zhang Jiqun, Seiji Hayashi, Shogo Murakami, Masataka Watanabe, Simulated sediment flux during 1998 big-flood of the Yangtze (Changjiang) River, China[J].Journal of Hydrology,313 (2005) 221-233 doi:10.1016/j.jhydrol.2005.03.006
    [175]施雅风,姜彤,苏布达,陈家其,秦年秀.1840年以来长江大洪水演变与气候变化关系初探[J].湖泊科学,2004,16(4):289-297.
    [176]姜彤,施雅风.气候变暖,长江水灾与可能损失[J].地球科学进展,2003,18(2):277-284.
    [177]张增信,姜彤,张金池,张强,刘宣飞.长江流域水汽收支的时空变化与环流特征[J].湖泊科学,2008,20(6):733-740.
    [178]张永领,高全洲,丁裕国,姜彤.热带气象学报,长江流域夏季降水的时空特征及演变趋势分析[J].热带气象学报,2006,22(2):161-168.
    [179]许继军,杨大文,雷志栋等.长江流域降水量和径流量长期变化趋势检验[J].人民长江,2006,37(9):63-67.
    [180]刘健,张奇,许崇育,张增信.近50年鄱阳湖流域径流变化特征研究[J].热带地理,2009,29(3):213-224.
    [181]戴仕宝,杨世伦.近50年来长江水资源特征变化分析[J].自然资源学报,2006,21(4):501-505.
    [182]郭家力,郭生练,郭靖,陈华.鄱阳湖流域未来降水变化预测分析[J].长江科学院院报,2010,27(8):20-24.
    [183]郭华,姜彤,王国杰,苏布达,王艳君,1961-2003年间都阳湖流域气候变化趋势及突变分析[J].湖泊科学,2006,18(5):443-451.
    [184]Grigor Mihailov, Kristio Daskalov, Nikolay Lissev, The impact of runoff and sediment transport from the provadiyska and Devnenska rivers on the Beloslav lake[J]. Water Science and Technology, Volume 32, Issue 7,1995, Pages 1-8.
    [185]Knut Kaiser, Henrik Rother, Sebastian Lorenz, Peter Gartner and Ralf Papenroth, Geomorphic evolution of small river-lake-systems in northeast Germany during the Late Quaternary[J]. Earth Surf. Process. Landforms,32,1516-1532 (2007). DOI:10.1002/esp.1480
    [186]邹振华,李琼芳,夏自强,王鸿杰.人类活动对长江径流量特性的影响[J].河海大学学报(自然科学版),2007,35(6):622-626.
    [187]James C. Knox, Floodplain sedimentation in the Upper Mississippi Valley:Natural versus human accelerated[J]. Geomorphology,79 (2006) 286-310, doi:10.1016/j.geomorph.2006.06.031.
    [188]Chen Xiqing, Zong Yongqiang, Zhang Erfeng, Xu Jiangang, Li Shijie, Human impacts on the Changjiang (Yangtze) River basin, China, with special reference to the impacts on the dry season water discharges into the sea[J]. Geomorphology,41 (2001),111-123, PⅡ: S0169-555X(01).00109-X.
    [189]王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社,1998,8-9.
    [190]卞鸿翔,龚循礼,洞庭湖区围垦问题的初步研究[J].地理学报,1985,40(2):131-141.
    [191]李新国,江南,朱晓华等.近三十年来太湖流域主要湖泊的水域变化研究[J]..海洋湖沼通报,2006(4):17-24.
    [192]姜加虎,黄群.洞庭湖淤积、围垦对湖区江湖洪水影响的模拟[J].长江流域资源与环境,2006,15(5):584-587.
    [193]刘新,何隆华,周驰.长江中下游近30年来湖泊的水域面积变化研究[J].华东师范大学学 报(自然科学版),2008,4:124-129
    [194]仲志余,胡维忠.试论江湖关系[J].人民长江,2008,39(1):20-22.
    [195]中华人民共和国东海区渔政局.湿地公约[EB/OL]. http://www.dhyzchina.gov.cn/article.asp?news_id=5718,2006-12-31.
    [196]刘中信,叶居新.江西湿地,北京,中国林业出版社,2007,1-38.
    [197]Rother Annette, and Kohler Jan, Formation,Transport and Retention of Aggregates in a River-Lake System (Spree, Germany) [J].Internat. Rev. Hydrobiol.2005,90(3):241-253. DOI: 10.1002/iroh.200410777
    [198]Hu Weiping, Zhai Shuijing, Zhu Zecong, Han Hongjuan, Impacts of the Yangtze River water transfer on the restoration of Lake Taihu[J].ecological engineering,34 (2008) 30-49 doi:10.1016/j.ecoleng.2008.05.018
    [199]Huang Zhihua, Xue Bin, Pang Yong, Simulation on stream flow and nutrient loadings in Gucheng Lake, Low Yangtze River Basin, based on SWAT model[J]. Quaternary International, 208 (2009),109-115. doi:10.1016/j.quaint.2008.12.018
    [200]Steven M. Bartell, Guy Lefebvre, Gre'goire Kaminski, Michel Carreau, Kym Rouse Campbell, An ecosystem model for assessing ecological risks in Que'bec rivers, lakes, and reservoirs[J]. Ecological Modelling 124 (1999) 43-67.
    [201]朱明勇,王学雷,吴后建.江湖关系演变对洪湖湿地的生态影响与对策[J].湿地科学与管理,2007,3(4):59-61
    [202]贺晓英,贺缠生.北美五大湖保护管理对鄱阳湖发展之启示[J].生态学报,2008,28(12):6235-6242.
    [203]李晓东,曾光明,梁婕等.基于层次分析法的洞庭湖健康评价[J].人民长江,2009,40(14):22-25.
    [204]倪才英,曾珩,汪为青.鄱阳湖退田还湖生态补偿研究(Ⅰ)——湿地生态系统服务价值计算[J].江西师范大学学报(自然科学版),2009,33(6):737-742.
    [205]龙振华,黄祥钊,丁雨恒.从洞庭湖生态环境问题看长江水资源开发管理对策[J].水利发展研究,2009,3:13-18.
    [206]胡茂林,吴志强,刘引兰.鄱阳湖湖口水位特性及其对水环境的影响[J].水生态学杂志,2010,3(1):1-6.
    [207]夏少霞,于秀波,范娜.鄱阳湖越冬季候鸟栖息地面积与水位变化的关系[J].资源科学,2010,32(11):2072-2078.
    [208]刘影,徐燕.三峡工程对部阳湖候鸟保护区的影响及对策探讨[J].江西师范大学学报(然科学版),1994,18(4):375-380.
    [209]吴龙华.长江三峡工程对鄱阳湖生态环境的影响研究[J].水利学报,2007,增刊,586-591.
    [210]Wang Zhongsuo, Lu Cai, Hu Huijian, Zhou Yan, Xu Chongren,& Lei Guangchun, Freshwater icefishes (Salangidae) in the Yangtze River basin of China:Spatial distribution patterns and environmental determinants[J].Environmental Biology of Fishes, (2005) 73: 253-262 DOI 10.1007/s10641-005-2146-3
    [211]魏焕奇,刘影.环鄱阳湖地区土地利用与生态系统服务价值[J].广东农业科学,2009,7:173-176.
    [212]刘青,胡振鹏.鄱阳湖流域生态补偿机制初探[J].江西师范大学学报(自然科学版),2010,34(5):547-550.
    [213]李芬,甄霖,黄河清等.鄱阳湖区农户生态补偿意愿影响因素实证研究[J].资源科学,2010,32(5):824-830.
    [214]倪才英,汪为青,曾珩,黄和平.鄱阳湖退田还湖生态补偿研究(Ⅱ)——鄱阳湖双退区湿地生态补偿标准评估[J].江西师范大学学报(自然科学版),2010,34(5):541-546.
    [215]欧阳履泰.试论下荆江河曲的发育与稳定[J].泥抄研究1983,4:1-12.
    [216]韩其为.三峡蓄水有助改善“江湖关系”[N].中国能源报,2010-12-06(20).
    [217]施勇,栾震宇,陈炼钢,金秋.长江中下游江湖关系演变趋势数值模拟[J].水科学进展2010,21(6):832-839.
    [218]卢承志.江湖关系的现状与问题[J].湖南水利水电,2005,6:22-25.
    [219]蔡其华.健康长江与洞庭湖治理[J].人民长江,2007,38(6):1-2.
    [220]陈时若,尤慧.下荆江裁弯前后江湖关系的变化[J].泥沙研究,1991,3:53-61.
    [221]刘晓群,郝振纯,薛联青,徐超,基于洪水问题的洞庭湖湿地区域划分[J].河海大学学报(自然科学版),2010,38(1):10-14.
    [222]胡细英,朱宏富.三峡工程与鄱阳湖区重要城市防洪[J].江西师范大学学报,1998,22(4):365-370.
    [223]刘晓东,吴敦银.三峡工程对鄱阳湖汛期水位影响的初步分析[J].江西水利科技,1999,25(2):71-75.
    [224]傅春,刘文标.三峡工程对长江中下游鄱阳湖区防洪态势的影响分析[J].中国防汛抗旱,2007,3:18-21.
    [225]李荣昉,吴敦银,刘明辉,刘金生,1954年型洪水长江湖口附近地区分洪量的探讨[J].江西师范大学学报(自然科学版),2000,5(2),178-182.
    [226]仲志余,李文俊,安有贵.三峡水库动库容研究及防洪能力分析[J].水电能源科学,2010,28(3):36-38.
    [227]谭培伦.三峡工程建成后长江中下游防洪对策研究[J].人民长江,1998,29(5):6-8.
    [228]廖志丹;傅秀堂;刘俊义.长江中游防洪减灾若干问题及对策[J].人民长江,2000,35(2)4-6.
    [229]周建军.三峡工程建成后长江中游的防洪形势和解决方案(Ⅰ)[J].科技导报,2010,28(22):60-68.
    [230]杨桂山,翁立达,李利锋主编.长江保护与发展报告2007[M].武汉:长江出版社,2007:5-210.
    [231]蔡其华.三峡工程防洪作用与2010年防洪调度实践[J].中国水利,2010,23:22-26.
    [232]廖鸿志,沈华中.2010年三峡水库防洪调度与经济效益初步分析[J].中国防汛抗旱,2010,5:4-6.
    [233]Zhang Qiang, Xu Chong-yu, Stefan Becker, Tong Jiang, Sediment and runoff changes in the Yangtze River basin during past 50 years[J]. Journal of Hydrology, (2006) 331,511-523 doi:10.1016/j.jhydrol.2006.05.036.
    [234]胡向阳,张细兵,黄悦.三峡工程蓄水后长江中下游来水来沙变化规律研究[J].长江科学院院报,2010,27(6):4-9.
    [235]董耀华,惠晓晓,蔺秋生.长江干流河道水沙特性与变化趋势初步分析[J].长江科学院院报,2008,(2):16-20.
    [236]戴仕宝,杨世伦,郜昂,刘哲,李鹏,李明.近50年来中国主要河流人海泥沙变化[J].泥沙研究,2007,2:49-58.
    [237]张珍,杨世伦,李鹏.三峡水库一、二期蓄水对下游悬沙通量影响的计算[J].地理学报,2010,65(5):623-631.
    [238]Chen Xiqing, Yan Yixin, Fu Renshou, Dou Xiping, Zhang Erfeng, Sediment transport from the Yangtze River, China, into the sea over the Post-Three Gorge Dam Period:A discussion[J]. Quaternary International,186 (2008) 55-64 doi:10.1016/j.quaint.2007.10.003
    [239]Xiong Ming, Xu Quanxi, Yuan Jing,Analysis of multi-factors affecting sediment load in the Three Gorges Reservoir[J].Quaternary International,208 (2009) 76-84, doi:10.1016/j.quaint.2009.01.010.
    [240]Hu Bangqi, Wang Houjie, Zuosheng Yang, Xiaoxia Sun, Temporal and spatial variations of sediment rating curves in the Changjiang (Yangtze River) basin and their implications[J].Quaternary International,230 (2011) 34-43 doi:10.1016/j.quaint.2009.08.018
    [241]Yang S. L., Zhang J., Dai S. B., Li M., and Xu X. J., Effect of deposition and erosion within the main river channel and large lakes on sediment delivery to the estuary of the Yangtze River[J]. JOURNAL OF GEOPHYSICAL RESEARCH, VOL.112, F02005, doi:10.1029/2006JF000484,2007.
    [242]Wang Zhanqiao, Chen Zhongyuan, Li Maotian, Jing Chen, Yiwen Zhao,Variations in downstream grain-sizes to interpret sediment transport in the middle-lower Yangtze River, China:A pre-study of Three-Gorges Dam[J]. Geomorphology 113 (2009) 217-229 doi:10.1016/j.geomorph.2009.03.009.
    [243]陈显维,许全喜,陈泽方.三峡水库蓄水以来进出库水沙特性分析[J].人民长江,2008,(8):1-3.
    [244]熊明,许全喜,袁晶,童辉.三峡水库初期运用对长江中下游水文河道情势影响分析[J].水 力发电学报,2009,19(1):120-125.
    [245]黄颖,黄成涛,郑力,裴金林.长江中游瓦口子水道河床演变分析[J].泥沙研究,2009,5:41-46.
    [246]戴仕宝,杨世伦,李鹏,长江干流河道对流域输沙的调节作用[J].地理学报,2006,61(5):461-470.
    [247]唐金武,李义天,孙昭华,郭小虎.三峡蓄水后城陵矶水位变化初步研究[J].应用基础与工程科学学报,2010,12(2):273-280.
    [248]Dai Shibao, Yang Shilun, Zhu Jun, Ang Gao and Peng Li, The role of Lake Dongling in regulating the sediment budget of the Yangtze River[J]. Hydrology and Earth System Science, 9(6),692-698,2005.
    [249]姚仕明,刘同宦.长江流域泥沙资源供需矛盾及对策[J].人民长江,2010,45(15):10-14.
    [250]杨世伦,朱骏,赵庆英.长江供沙量减少对水下三角洲发育影响的初步研究——近期证据分析和未来趋势估计[J].海洋学报,2003,25(5):83-91.
    [251]李鹏,杨世伦,戴仕宝,张文祥.近10年来长江口水下三角洲的冲淤变化——兼论三峡工程蓄水的影响[J].地理学报,2006,62(7):707-716.
    [252]韩其为,杨克诚.三峡水库建成后下荆江河型变化趋势的研究[J].泥沙研究,2000,6(3),1-11.
    [253]熊超,彭玉明,郭焕林.三峡水库蓄水后宜昌至沙市河段冲淤变化分析[J].人民长江,2010,41(14):28-31.
    [254]姚仕明,何广水,卢金友.三峡工程蓄水运用以来荆江河段河岸稳定性初步研究[J].泥沙研究,2009,6:24-29.
    [255]廖小永,卢金友,黎礼刚.三峡水库蓄水运行后荆江河道特性变化研究[J].人民长江,2007,38(11):88-91.
    [256]Chen Zhongyuan, Chen Dechao, Xu Kaiqin, Zhao Yiwen, Wei Taoyuan, Chen Jing, Li Luqian, Masataka Watanabe, Acoustic Doppler current profiler surveys along the Yangtze River[J]. Geomorphology,85 (2007) 155-165 doi:10.1016/j.geomorph.2006.03.018
    [257]周银军,陈立,欧阳娟,刘金.三峡蓄水后典型河段分形维数的变化分析[J].水科学进展,2010,21(3):299-306
    [258]假冬冬,邵学军,王虹,肖毅,周刚,三峡工程运用初期石首河弯河势演变三维数值模拟[J].水科学进展,2010,21(1):43-49.
    [259]刘东风.三峡工程蓄水以来安徽长江河势变化及崩岸情况[J].江淮水利科技,2010,5:11-13
    [260]姜加虎,黄群.三峡工程对洞庭湖水位影响研究[J].长江流域资源与环境,1996,5(4):367-374.
    [261]王崇浩,韩其为.三峡水库建成后荆南三口洪道及洞庭湖淤积概算[J].水利水电技术,1997,(11):16-19
    [262]方春明,钟正琴.洞庭湖容积减小对洞庭湖和长江洪水位的影响[J].水利学报,2001,11:70-74.
    [263]江凌,李义天,孙昭华,黄成涛.三峡工程蓄水后荆江沙质河段河床演变及对航道的影响[J].应用基础与工程科学学报,2010,18(1):1-10.
    [264]秦文凯,府仁寿,王崇浩,韩其为.三峡建坝前后洞庭湖的淤积[J].清华大学学报(自然科学版),1998,38(1):84-87.
    [265]戴仕宝,杨世伦,赵华云,李明.三峡水库蓄水运用初期长江中下游河道冲淤响应[J].泥沙研究,2005,5:35-39.
    [266]郭小虎,李义天,唐金武,朱玲玲.三峡水库运用20 a后对草尾河航道的影响[J].武汉大学学报工学版,2008,42(1):82-87.
    [267]李景保,常疆,吕殿青,朱翔,卢承志,周跃云,邓楚雄.三峡水库调度运行初期荆江与洞庭湖区的水文效应[J].地理学报,2009,64(11):1342-1352.
    [268]宫平,杨文俊.三峡水库建成后对长江中下游江湖水沙关系变化趋势初探Ⅱ[J].江湖关系及槽蓄影响初步研究[J].水力发电学报,2009,28(6):120-125.
    [269]方春明,毛继新,陈绪坚.三峡工程蓄水运用后荆江三口分流河道冲淤变化模拟[J].中国水利水电科学研究院学报,2007,5(3):181-185.
    [270]张细兵,卢金友,王敏,黄悦,许全喜.三峡工程运用后洞庭湖水沙情势变化及其影响初步分析[J].长江流域资源与环境,2010,19(6):640-643.
    [271]姜加虎,黄群.三峡工程对鄱阳湖水位影响研究[J].自然资源学报,1997,12(3),219-220.
    [272]朱信华,董增川,赵杰,陈淑.三峡工程对鄱阳湖水质的影响[J].人民黄河,2009,31(1):57-58.
    [273]王儒述.防洪是三峡工程最大的生态环境效益[J]三峡论坛,2010,1:3-9.
    [274]万咸涛,张新宁,狄鸿,长江三峡大坝与葛洲坝间水域的水环境保护[J].水资源研究,2003,24(1):32-34.
    [275]程根伟,陈桂蓉.试验三峡水库生态调度,促进长江水沙科学管理[J].水利学报,2007,增刊,526-530.
    [276]黄悦,董耀华.三峡工程对长江中下游河道采砂影响及对策[J].人民长江,2008,39(1):3-6.
    [277]Yi Yujun, Wang Zhaoyin, Yang Zhifeng, Impact of the Gezhouba and Three Gorges Dams on habitat suitability of carps in the Yangtze River[J].Journal of Hydrology,387 (2010) 283-291 doi:10.1016/j.jhydrol.2010.04.018
    [278]蔡述,周新宇.人类活动对长江中游湿地生态系统的冲击[J].地理科学,1996,16(2):129-136.
    [279]刘影,蒋梅鑫,朱宏富,三峡工程对鄱阳湖区农田涝渍与土壤潜育化的影响研究[J].江西师范大学学报(自然科学版),1996,20(4):376-379.
    [280]郑林,万良碧.三峡工程对鄱阳湖水环境质量影响的初步分析[J].江西师范大学学报(自然科学版),1998,22(2):177-180.
    [281]李利强,张建波,王文清.三峡工程对长江中游湖泊生态影响及监测因子优选[J].环境监测管理与技术,1999,11(5):12-13.
    [282]邝凡荣.浅析长江三峡工程对洞庭湖区生态环境的影响[J].湖南农业科学,2001,1:11-12.
    [283]洪林,董磊华,李文哲.三峡工程建库后对洞庭湖水位、泥沙和水质的影响分析[J].中国水利,2007,6:13-14.
    [284]郭文献,夏自强,王远坤,韩帅.三峡水库生态调度目标研究[J].水科学进展,2009,20(4):554-559.
    [285]岳红艳,姚仕明.三峡水库蓄水后中下游水沙条件变化及采砂管理对策[J].中国水利,2010,8:14-16.
    [286]C. Y. Jim, Felix Y. Yang, Local Responses to Inundation and De-Farming in the Reservoir Region of the Three Gorges Project (China) [J].Environ Manage, (2006) 38:618-637 DOI 10.1007/s00267-005-0253-8.
    [287]沈国舫,三峡工程对生态和环境的影响[J].科学中国人,2010,8:48-53.
    [288]覃爱基,陈雪英,郑艳霞.宜昌径流时间序列的统计分析[J].水文,1993,5:15-21.
    [289]王德瀚.长江宜昌站枯季径流长期变化分析[J].科技通报,1994,10(3):153-155.
    [290]王文均,叶敏,陈显维.长江径流时间序列混沌特性的定量分析[J].水科学进展,1994,5(2):87-94.
    [291]沈焕庭,王晓春,杨清书.长江河口径流与盐度的谱分析[J].海洋学报,2000,22(4):17-23.
    [292]王盼成,贺松林.长江大通站水沙过程的基本特征Ⅰ径流过程分析[J].华东师范大学学报(自然科学版),2004,2:72-80.
    [293]王盼成,贺松林.长江大通站水沙过程的基本特征Ⅱ输沙过程分析[J].华东师范大学学报(自然科学版),2004,2:81-86.
    [294]黄峰,夏自强,王远坤.长江上游枯水期及10月径流情势分析[J].河海大学学报(自然科学版),2010,38(2):129-133.
    [295]谭维炎,胡四一,王银堂,徐承隆,仲志余,胡维忠,长江中游洞庭湖防洪系统水流模拟——建模思路和基本算法[J].水科学进展,1996,7,(4):336-345.
    [296]胡四一,施勇,王银堂,吴永祥.长江中下游河湖洪水演进的数值模拟[J].水科学进展,2002,13,(3):278-286.
    [397]易波琳,李晓斌,梅金华.洞庭湖面积容积与水位关系及调蓄能力评估[J].湖南地质,2000,19(4):267-270.
    [398]王国杰,姜彤,陈桂亚.长江干流径流的时序结构与长期记忆[J].地理学报,2006,61(1):47-56.
    [399]陈莹,许有鹏,尹义星,刘星才.长江干流日径流序列的多重分形特征[J].地理研究,2008,27(4):819-828.
    [300]张强,陈桂亚,许崇育,许有鹏,刘春玲,姜彤.长江流域水沙周期特征及可能影响原因[J].水科学进展,2009,20(1):80-85.
    [301]黄锡荃主编.水文学[M].北京,高等教育出版社,1993,第一版.
    [302]姚治君,管彦平,高迎春.潮白河径流分布规律及人类活动对径流的影响分析[J].地理科学进展,2003,22(6):599-607.
    [303]黄振平编著.水文统计学[M].南京:河海大学出版社,2003,108-125.
    [304]王文圣,丁晶,金菊良.随机水文学[M].北京:中国水利水电出版社,2008,第二版:10-55.
    [305]胡兴林.甘肃省主要河流径流时空分布规律及演变趋势分析[J].地球科学进展,2000,15(5):516-521.
    [306]李栋梁,张佳丽,全建瑞,章克俭.黄河上游径流量演变特征及成因研究[J].水科学进展
    [J].1998,9(1):22-28.
    [307]邓育仁,丁晶,杨荣富.中国主要河流年径流序列随机变化基本规律的初步研究[J].水科学进展,1990,1(1):13-21.
    [308]邓育仁,丁晶.长江上游河流年径流序列相依性的研究[J].地理科学,1989,9(3):204-212.
    [309]张超,杨秉赓编著.计量地理学[M].北京:高等教育出版社,2002,第二版,28-59.
    [310]徐建华.现代地理学中的数学方法[M].北京:高等教育出版社,2002,第二版,37-120.
    [311]魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社,1999,43-62.
    [312]张建云,章四龙,王金星,李岩.近50年来中国六大流域年际径流变化趋势研究[J].水科学进展,2007,18(2):230-234.
    [313]符淙斌,王强.气候突变的定义和检测方法[J].大气科学,1992,16(4):482-493.
    [314]李运刚,何大明,叶长青.云南红河流域径流的时空分布变化规律[J].地理学报,2008,63(1):41-49.
    [315]王文圣,李跃清,解苗苗,王顺久.长江上游主要河流年径流序列变化特性分析[J].四川大学学报(工程科学版),2008,40(3):70-75.
    [316]杨志峰,李春晖.黄河流域天然径流量突变性与周期性特征[J].山地学报,2004,22(2):140-146.
    [317]丁晶,邓育仁.随机水文学[M].成都:成都科技大学出版社,1988,33-142.
    [318]王文圣,丁晶,李跃清.水文小波分析[M].北京:化学工业出版社,2005,1-141.
    [319]魏凤英,曹鸿兴.中国、北半球和全球的气温突变分析及其趋势预测研究[J].大气科学,1995,19(2):140-148.
    [320]王红瑞,刘昌明.水文过程周期分析方法及其应用[M].北京:中国水利水电出版社,2010,1-130.
    [321]黄嘉佑,李黄.气象中的谱分析[M].北京:气象出版社,1984,1-142.
    [322]黄忠恕.波谱分析方法及其在水文气象学中的应用[M].北京:气象出版社,1983,1-202.
    [323]张瑞,汪亚平,潘少明.长江大通水文站径流量的时间系列分析[J].南京大学学报(自然科学),2006,42(4):423-434.
    [324]王文圣,丁晶,向红莲.水文时间序列多时间尺度分析的小波变换法[J].四川大学学报(工程科学版),2002,34(6):14-17.
    [325]胡昌华,张军波,夏军,张伟.基于MATLAB的系统分析与设计——小波分析[M].西安:西安电子科技大学出版社,1999.
    [326]张少文,丁晶,廖杰,张学成,王玲.基于小波的黄河上游天然年径流变化特性分析[J].四川大学学报(工程科学版),2004,36(3):32-37.
    [327]王文圣,丁晶,向红莲.小波分析在水文中的应用研究及展望[J].水科学进展,2002,13(4):515-520.
    [328]林振山,邓自旺.子波气候诊断技术的研究[M].北京:气象出版社,1999.
    [329]王霞,吴加学.基于小波变换的西、北江水沙关系特征分析[J].热带海洋学报,2009,28(1):21-28.
    [330]卢晓宁,邓伟,张树清,翟金良.霍林河中游径流量序列的多时间尺度特征及其效应分析[J].自然资源学报,2006,21(5):819-825.
    [331]穆兴民,李靖,王飞,徐学选.黄河天然径流量年际变化过程分析[J].干旱区资源与环境,2003,17(2):1-5.
    [332]汤奇成,程天文,李秀云.中国河川月径流的集中度和集中期的初步研究[J].地理学报,1982,37(4):383-393.
    [333]杨远东.河川径流年内分配的计算方法[J].地理学报,1984,39(2):218-317.
    [334]刘贤赵,李嘉竹,宿庆,王春芝,李希国.基于集中度与集中期的径流年内分配研究[J].地理科学,2007,27(6):791-795.
    [335]刘涛,曾祥利,曾军.实用小波分析入门[M].北京:国防工业出版社,2006.
    [336]施修端,夏薇,杨彬.城陵矶站水沙及水位流量关系变化分析[J].人民长江,2000,31(3):35-36.
    [337]沈恒范.概率论与数理统计教程[M].北京:高等教育出版社,1995年.
    [338]丁兰璋,赵秉栋.水文学与水资源基础[M].开封:河南大学出版社,1987,91-110.
    [339]詹道江,叶守泽.工程水文学[M].北京:中国水利水电出版社,2007,180-194.
    [340]林莺,李世才.水文频率曲线简捷计算和绘图技巧[J].水利水电技术,2002,33(7):52-53.
    [341]吴明官,任中海,周庆欣,吴跃红.Excel在水文频率计算中的英语[J].水文,2001,21(5):45-47.
    [342]李文华,王晓鸿,鄢帮有等.鄱阳湖生态环境保护和资源综合开发利用研究总报告[R].鄱阳湖生态经济区重大研究招标课题,2008,9.
    [343]胡清华.松门山矽砂矿的成因及其开发利用[J].江西师范大学学报(自然科学版),1986,4:90-95.
    [344]卢纹岱SPSS for Windows统计分析(第二版)[[M].北京:电子工业出版社,2002,207-224.
    [345]顾中宇.鄱阳湖水文特征分析及水体形态特征的遥感提取[D].江西师范大学硕士学位论文,2007年.
    [346]张基尧.我国水资源开发利用形势与问题[EB/OL]. http://www.nsbd.gov.cn/zx/zxdt/20040713/200407130046.htm.2004-7-13.
    [347]楚泽涵,封锡强,李艳丽.水资源问题应引起关注[J].古地理学报,2000,2(4):84-85.
    [348]赵军凯,李九发,戴志军,闫虹,赵秉栋.基于熵模型的水资源承载力研究——以开封市为例[J].自然资源学报,2009,24(11):1944-1951.
    [349]水利电力部水文局印.全国主要河流水文特征统计,第二部分,逐年统计(至1979年),1982年9月出版,内部资料.
    [350]鄱阳湖围垦课题组.论鄱阳湖区的围垦[J].江西师范大学学报(自然科学版),1987,2:69-77.
    [351]闵骞.鄱阳湖退田还湖及其对洪水的影响[J].湖泊科学,2004,16(3):215-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700