用户名: 密码: 验证码:
主动源OBS探测及地壳结构成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渤海海域及邻区位于华北东部,是我国重大地震灾害的频发地区。同时渤海海域蕴藏着丰富的石油资源,是我国新的能源增长点。另外渤海海区几乎为地球深部构造调查资料的空白区。因此在渤海开展深部探测研究,对该区的油气资源勘探开发、防震减灾和科学创新有重大意义。
     论文基于主动源OBS探测的广角反射/折射原理,利用大容量气枪枪阵为震源、海底地震仪为探测手段在渤海首次开展人工地震深部地球物理探测试验,获得一条NNW向295km长的二维广角反射/折射地震剖面,通过对数据的分析、处理、震相识别以及反演成像,得到研究测线的地壳结构模型,并进行该区域深部结构的初步解释。主要的研究工作和成果如下:
     (1)此次试验使用9300cu.in气枪枪阵作为震源输出的震源子波有效压制气泡效应并具有良好的低频高峰波形,在深部壳幔结构研究中是一次成功的尝试。
     (2)耦合和噪音是影响主动源海底地震仪探测的主控因素。此次渤海试验93%站位耦合效果良好,而噪音是造成渤海海底地震仪数据信噪比低下的主要原因。渤中凹陷东南侧基本代表渤海海域的静噪水平,为南海深水海区的10倍以上,整个渤海内噪音呈无规则分布。数据整体质量与水深呈正向关系。
     (3)结合渤海区的构造背景,运用正演拟合和相邻站位相关分析的方法对OBS数据进行震相识别和分析。渤海海区内浅层沉积层震相丰富,体现了凸起和凹陷区沉积构造差异;深部壳幔边界震相清晰,反映了不同构造单元莫霍界面的结构特征;地壳内震相缺失或者断续出现。
     (4)通过初至层析和逐层层析,研究了渤海新生代沉积地层的结构特征。渤海海域新生代沉积层以沙三段为界划分为两层,第一沉积层速度为1.76—3.5km/s,渤中凹陷处最厚4.2km;庙西凹陷区最厚2.3km;埕宁隆起区厚2.5km;渤南凸起区厚1.7km,胶辽隆起区厚300—400m。第二沉积层速度为4.2—4.5km/s,该层分布在渤中凹陷和庙西凹陷内,渤中凹陷处埋深最深为5.8km,庙西凹陷处埋深3.8km,由渤中凹陷向东西两侧呈尖灭趋势,沙垒田凸起处最浅埋深3.0km,渤南凸起处最浅埋深2.0km,在胶辽隆起区该层缺失。
     (5)综合利用初至层析、逐层层析和最小二乘反演法开展OBS数据的地壳深部结构成像研究。沿测线方向,莫霍面埋深整体变化幅度较大,渤中凹陷和郯庐断裂带内存在局部隆升,莫霍面的起伏变化与新生代凸起与凹陷呈现镜像对称关系。渤海内下地壳整体表现为高速,盆地内下地壳速度略高于胶辽隆起区。郯庐断裂带东西两侧存在高低速异常,是向下切穿莫霍面的证据,为上地幔热物质上涌提供通道,并引起壳幔边界的起伏变化,也与渤海海域地壳内强震有直接关系。
The Bohai Sea and its adjacent area in the east part of the North China is a regionthat suffers frequently from severe earthquake disasters; on the other hand, the BohaiSea is rich in oil making it a new energy growth point. However it is almost blank indeep structural information in this area. A study of the deep investigation is thereforesignificant for the exploration and production of oil, for the earthquake prevention anddisaster reduction and for the science innovation.
     Based on the principle of wide angle reflection/infraction of active OBS, a295km2D NNW wide angle reflection/refraction seismic profile was acquired for thefirst time in the Bohai Sea using high volume air gun array as the source and OBS asthe receivers. After careful data analysis, processing, phase identification andinversion, the crustal structure model of the survey line was obtained and the deepstructure of this area was interpreted. The main research work and results are asfollows:
     (1)An air gun array with total volume of9300cu. in was employed as theseismic source; the output wavelet suppressed the bubbles effectively and showed finelow frequency peak waveforms, making it a successful trial in the study of deepcrustal-mantle structure.
     (2)Coupling and noise were the main factors affecting active OBS investigation.Ninety-three percent of the OBS stations in this study were good in coupling, leavingnoise to be the primary cause for the low S/N ratio of the data. The noise in thesoutheast Bozhong sag which were more than10times of that in the deep water areain the South China Sea was representative of the noise level in the Bohai Sea, wherethe noise were randomly distributed. The quality of the data showed a positivecorrelation with water depth.
     (3)In combination with the tectonic setting of the Bohai area, the methods of forward fitting and correlation analysis among adjacent stations were utilized toanalyze the OBS data and to do the phase identification. There were abundant phasesfrom shallow sedimentary layers showing the structural difference between embossingand depressing regions; the seismic phase from the crustal-mantle boundary wasdistinct indicating the structural features of Moho in various tectonic units; phasesfrom inside the crust were absent or discontinuous.
     (4)The structural features of the Cenozoic stratum were studied by first-arrivaltomography and layer-by-layer tomography. The Cenozoic stratum was divided into2layer by the Member3of Shahejie. The velocity of the first layer was1.76km/s to3.5km/s; the biggest thickness in the Bozhong depressing area was4.2km while it was1.7km in the Bonan depression; the thickness of the Chengning Bonan and Jiaoliaoembossing regions were2.5km,1.7km and300to400m, respectively. The velocityof the second layer which appeared mainly in the Bozhong and Miaoxi depressionswas4.2km/s to4.5km/s; the deepest point of the Bozhong depression was5.8kmand it went thinner from the center to the east and to the west; the depth of the Miaoxidepression was3.8km; the shallowest points of the Chengning and Bonan embossingareas were3.0km and2.0km, respectively; this layer disappeared in the Jiaoliaoembossing region.
     (5)The deep structure imaging was achieved by comprehensive first-arrivaltomography, layer-by-layer tomography and least square inversions. The depth ofMoho varied significantly along the direction of the survey line; there existed regionalembossing in the Bozhong depression and the Tanlu fault area; and variation in thedepth of Moho was mirror symmetry to the Cenozoic embossing; the velocity of thelower crust was generally high while the velocity of the lower crust in the depressionswas slightly higher than that of ht Jiaoliao embossing area; a high and low velocityanomaly appeared in the east and west of Tanlu fault respectively, indicating its cutoffof Moho, providing a channel for the upwelling of thermal material from the uppermantle, causing the variation in the relief of the mantle boundary and being relateddirectly with strong earthquakes in the curst in the Bohai Sea.
引文
Aki, K., Christoffersson, A., Husebye E. Determination of the three-dimensional seismicstructure of the lithosphere. J. Geophys. Res.,1977,82:277~296
    Aki, K., Lee, W. determination of three dimensional velocity anomalies under a seismic arrayusing first P arrival times from local earthquakes,1, Ahomogeneous initial model. J.Geophys. Res.,1976,81:4381-4399
    Al-Damegh K, Sandvol E, Barazangi M. Crustal structure of the Arabian plate-new constraintsfrom the analysis of teleseismic receiver functions[J]. Earth and Planetary Science Letters,2002,355:247-263
    Asakawa E, Mizohara S, Kasahara J. Ocean Bottom Imaging using Multiple Reflected WaterWaves Obtained by OBS[J]. Geophysical Research Abstracts,2007,9:01581
    Bohnhoff M, Makris J, Papanikolaou D, et al. Crustal investigation of the Hellenic subductionzone using wide aperture seismic data[J].Tectonophysics,2001,343:239-262
    Breivik A J, Mjelde R, Grogan P, et al. A possible Caledonide arm through the Barents Seaimaged by OBS data [J]. Tectonophysics,2002,355:67-97
    Breivik A J, Mjelde R, Grogan P, et al. Caledonide development offshore–onshore Svalbardbased on ocean bottom seismometer, conventional seismic, and potential field data.Tectonophysics,2005,401:79-117
    Breivik A J, Mjelde R, Grogan P, et al. Crustal structure and transform margin developmentsouth of Svalbard based on ocean bottom seismometer data[J]. Tectonophysics,2003,369:37-70
    Cary, P., and Stewart, R. R.2003, Processing Ocean-Bottom Seismic (OBS) Data from the WhiteRose oilfield, offshore Newfoundland, CREWES Research Report, volume15
    Cerveny V and Psencik I. SEIS83-Numerical modeling of seismic wave fields in2-D laterallyvarying layered structures by ray method. Documentation of EarthquakeAlgorithms,1984,36-40
    Chen A T, Nakamura Y. Velocity structure beneath eastern offshore of southern Taiwan based onOBS data and its tectonic significance[J]. TAO,1998,9(3):409-424
    Christeson G L, Nakamura Y, Buffler R T, et al. Deep crustal structure of the chicxulub impactcrater[J].Journal of Geophysical Research,2001,106(10):21751-21769
    Cloetingh S, Cornu T, Ziegler P A, et al. Neotectonics and intraplate continental topography ofthe northern Alpine Foreland[J]. Earth-Science Reviews,2006,74:127-196
    Davide S, Solarino S, Eva C. P wave seismic velocity and Vp/Vs ratio beneath the Italianpeninsula from local earthquake tomography [J]. Tectonophysics,2009,465:1-23
    Drakatos G, Karastathis V and Makris J, et al.3D crustal structure in the neotectonic basin of theGulf of Saronikos (Greece)[J]. Tectonophysics,2005,400:55-65
    Dziewonski A.M. Mapping the lower mantle: determination of lateral heterogeneity in P velocityup to degree and order6. J. Geophys. Res.,1984,89:5929-5952
    Flueh E R, Fisher M A., Bialas J, et al. New seismic images of the Cascadia subduction zonefrom cruise SO108—ORWELL[J]. Tectonophysics,1998,293:69-84
    Humphreys, E., Clayton, R. Adaptation of back projection tomography to seismic travel timeproblems. J. Geophys. Res.,1988,93:1073~1085
    Jinli Huang, Dapeng Zhao. Seismic imaging of the crust and upper mantle under Beijing andsurrounding regions[J]. Physics of the Earth and Planetary Interiors,2009,173:330-348
    Katzman R, W. Steven Holbrook, et al. Combined vertical-incidence and wide-angle seismicstudy of a gas hydrate[J]. Journal of Geophysical Research,1994,99(B9):17975-17995
    Klingelhoefer F, Labails C, Cosquer E. Crustal structure of the SW-Moroccan margin fromwide-angle and reflection seismic data (the DAKHLA experiment) Part A-Wide-angleseismic models[J]. Tectonophysics,2009,468(1-4):63-82
    Kodaira S, Hori T, Ito A, et al. A cause of rupture segmentation and synchronization in theNankai trough revealed by seismic imaging and numerical simulation [J]. Journal ofGeophysical Research,2006,111:B09301
    Labails C, Olivet J L, The Dakhla study group. Crustal structure of the SW Moroccan marginfrom wide-angle and reflection seismic data (the Dakhla experiment). Part B—Thetectonic heritage[J].Tectonophysics,2009,468(1-4):83-97
    LeBlanca C, Loudena K, Mosherb D. Gas hydrates off Eastern Canada Velocity models fromwide-angle seismic profiles on the Scotian Slope[J]. Marine and PetroleumGeology,2007,24:321-335
    Leveque, J., Rivera, L. Wittlinger, G. On the use of the checker-board test to assess the resolutionof tomographic inversions. Geophys. J. Int.,1993,115:313~318
    Liang Zhao, Tianyu Zheng. Seismic structure of the Bohai Bay Basin, northern China:Implications for basin evolution[J]. Earth and Planetary Science Letters,2005,231:9–22
    Ling Chen, Tianyu Zheng, Weiwei Xu. Receiver function migration image of the deep structurein the Bohai Bay Basin, eastern China[J]. Geophysical Research Letters,2006,33:
    Madrussani G, Rossi G, Camerlenghi A. Traveltime Tomographic Inversion of OBS data,Offshore Western Svalbard [J]. Geophysical Research Abstracts,2003,5:05078
    Makris, J. and Thie en, J. Offshore seismic investigations with a newly developed ocean bottomseismograph,53rd ann. SEG meeting, Las Vegas,1983
    Martinez M D, Lana X and Guinto E R. Shear-wave attenuation tomography of thelithosphere–asthenosphere system beneath the Mediterranean region [J]. Tectonophysics,2008
    McClymont A F, Clowes R M. Anomalous lithospheric structure of Northern Juan de Fuca plate-a consequence of oceanic rift propagation[J]. Tectonophysics,2005,406:213-231
    Mienert J, Bunz S, Guidard S, et al. Ocean bottom seismometer investigations in the OrmenLange area offshore mid-Norway provide evidence for shallow gas layers in subsurfacesediments[J]. Marine and Petroleum Geology,2005,22(1-2):287-297
    Morgan J V, Christeson G L, Zelt C A. Testing the resolution of a3D velocity tomogram acrossthe Chicxulub crater[J]. Tectonophysics,2002,355:215-226
    Nakamura Y, McIntosh K, Chen A T. Preliminary results of a large offset seismic survey west ofHengchun Peninsula, southern Taiwan[J]. TAO,1998,9(3):395-408
    Okaya D, Henrys S, Stern T. Double-sided onshore–offshore seismic imaging of a plateboundary-“super-gathers” across South Island, New Zealand [J]. Tectonophysics,2002,355:247-263
    Oshida A, Kubota1R, Nishiyama E, et al. A new method for determining OBS positions forcrustal structure studies, using airgun shots and precise bathymetric data [J]. ExplorationGeophysics,2008,39:15–25
    Parsons T, Trehu A M, Luetgert J H, et al. A new view into the Cascadia subduction zone andvolcanic arc-Implications for earthquake hazards along the Washington margin[J]. Geology,1998,26(3):199-202
    Petersen C, Papenberg C, Klaeschen D. Local seismic quantification of gas hydrates and BSRcharacterization from multi-frequency OBS data at northern Hydrate Ridge[J]. Earth andPlanetary Science Letters,2007,(255):414–431
    Rawlinson N, Sambridge M. seismic traveltime tomography of the crust and lithosphere[J].Advances in Geophysics,2003,46:81-197
    Sachpazi M, Galvé A, Laigle M, et al. Moho topography under central Greece and itscompensation by Pn time-terms for the accurate location of hypocenters: The example ofthe Gulf of Corinth1995Aigion earthquake [J]. Tectonophysics,2007,440:53-65
    Schmitz M, Avila J, Bezada M, et al. Crustal thickness variations in Venezuela from deepseismic observations[J]. Tectonophysics,2008,459:14-26
    Smelror M, Dehls M, Ebbing J. Towards a4D topographic view of the Norwegian sea margin[J].Global and planetary Change,2007,58:382-410
    Thurber, C. Earthquake locations and three-dimensional crustal structure in the Coyote Lakearea, central California. J. Geophys. Res.,1983,88:8226~8236
    Tianyu Zheng, Liang Zhao, Ling Chen. A detailed receiver function image of the sedimentarystructure in the Bohai Bay Basin.[J]. Physics of the Earth and Planetary Interiors,2005,129:143
    Tsuruga K, Kasahara J, Kubota R, et al. Evaluation and interpretation of the effects ofheterogeneous layers in an OBS air-gun crustal structure study[J]. Exploration Geophysics,2008,39:1-14
    Wang T K, Chen M K, Lee C S. Seismic imaging of the transitional crust across the northeasternmargin of the South China Sea[J]. Tectnophysics,2006,412:237-254
    Yinshuang Ai, Zhongyin Shen. Crust and upper mantle structure beneath Bohai Sea inferred fromreceiver function study[J]. Earthq Sci,2011,24:35-43
    You Tian, Dapeng Zhao, Ruomei Sun, et al. Seismic imaging of the crust and upper mantlebeneath the North China Craton[J]. Physics of the Earth and Planetary Interiors,2009,172:169–182
    Zelt C A and Forsyth D A. Modelling wide-angle seismic data for crustal structure: SoutheasternGrenville Province. Journal of Geophysical Research,1994, B6:11687-11704
    Zelt C A and Smith R B. Seismic trave-ltime inversion for2-D crustal velocity structure.Geophys. J.Int,1992,108:16-34
    Zelt C A. Modelling strategies and model assessment for wide-angle seismic traveltime data.Geophys. J.Int,1999,139:183-204
    Zhao D, Hasegawa A, Horiuchi S. Tomographic Imaging of P and S wave velocity structurebeneath northeastern Japan. J. Geophys. Res.,1992,97:19909-19928
    Zhao Minghui, Qiu Xuelin, Xia Shaohong, et al. Seismic structure in the northeastern SouthChina Sea: S-wave velocity and Vp/Vs ratios derived from three-component OBS data[J].Tectnophysics,2010,480:183-197
    Zhao, D. New advances of seismic tomography and its applications to subduction zones andearthquake fault zone: A review. The Island Arc,2001,10:68~84
    Zhao, D., Lei, J., Liu, L. Seismic tomography of the Moon. Chinese Sci. Bull.,2008,53:3897-3907
    陈国光,徐杰,高战武.华北渤海湾盆地大震的构造特征[J].华北地震科学,2003,21(2):7-15
    陈国光,徐杰,马宗晋,等.渤海盆地现代构造应力场与强震活动[J].地震学报,2004,26(7):396-403
    陈晓利,陈国光,叶洪,等.渤海海域现代构造应力场的数值模拟[J].地震地质,2005,27(2):289-297
    龚育龄,王良书,刘绍文,等.济阳坳陷大地热流分布特征[J].中国科学(D辑),2003,33(4):384-391
    郝天珧,游庆瑜.国产海底地震仪研制现状及其在海底结构探测中的应用.地球物理学报[J],2011,54(12):3352-3361
    贺传松,朱露培,丁志峰,等.用远震接收函数研究渤海盆地的沉积覆盖[J].地质学报,2010,84(5):716-722
    侯贵延,钱祥麟.渤海中部磁性层析成像的初步研究[J].北京大学学报(自然科学版),2003,39(1):112-117
    胡加山,胡贤根,崔世凌.东营凹陷典型重磁电震综合解释方法研究[J].石油物探,2009,48(4):401-406
    胡圣标,张容燕,罗毓晖,等.渤海盆地地热历史及构造—热演化特征[J].地球物理学报,1999,42(6):748-755
    解秋红.渤海及邻区地应力场分析及构造稳定性评价[博士学位论文].青岛:中国海洋大学,2010
    赖晓玲,李松林,孙译.渤海及邻区3次7级以上地震的深部构造背景[J].大地测量与地球动力学,2007,27(1):31-33
    雷栋,胡祥云.地震层析成像方法综述[J].地震研究,2006,29(4):418-426
    李江,庄灿涛,薛兵,等.宽频带海底地震仪的研制[J],地震学报,2010,32(5):610-618
    李强,王春镛,刘瑞丰,等.应用层析成像技术研究华北地壳速度结构[J].地震地磁观测与研究,1999,20(5):88-97
    李三忠,索艳慧,戴黎明,等.渤海湾盆地形成与华北克拉通破坏[J].地球前缘,2010,17(4):64-89
    李三忠,索艳慧,周立宏,等.华北克拉通内部的拉分盆地:渤海湾盆地黄骅坳陷结构结构与演化[J].吉林大学学报(地球科学版),2011,41(5):1362-1378
    李淑玲,孟小红,付立新,等.黄骅坳陷前新生代残留盆地结构与基底性质研究.地球物理学报,2010,53(9):2204-2212
    李文勇,周坚鑫,熊盛青,等.从航空重力看郯庐断裂系(渤海)及其围区构造几何学特征[J].地球科学,2010,31(4):549-556
    李志伟,郝天珧,徐亚,等.华北克拉通上地幔顶部构造特征_来自台站间Pn波到时差成像的约束[J].科学通报,2011,56(12):962-970
    李志伟,胥颐,郝天珧,等.环渤海地区的地震层析成像与地壳上地幔结构[J].地球物理学报,2006,49(3):797-804
    刘春成,戴富贵,杨津,等.渤海湾盆地海域古近系—新近系地质结构和构造样式地震解释[J].中国地质,2010,37(6):1545-1558
    刘光夏,赵文俊,贺为民,等.渤海及邻区居里等温面的研究[J].地震地质,1996,18(4):389-402
    刘光夏,赵文俊,任文菊,等.渤海重力三维正演研究的初步成果[J].地震学报,1997,19(1):102-106
    刘光夏,赵文俊,任文菊,等.渤海地壳厚度研究.物探与化探[J],1996,20(4):316-317
    刘光夏,赵文俊,张先康.郯庐断裂带渤海段的深部构造特征──地壳厚度和居里面的研究结果[J],长春科技大学学报,1996,26(4):388-391
    刘建华. OBS广角反射地震及其意义[J].东海海洋,2000,18(1):15-20
    刘廷海,李思田,高坤顺,等.渤中凹陷莫霍面特征及盆地形成机制[J].中国海上油气,2008,20(5):302-304
    陆基孟.地震勘探原理[M].北京:石油工业出版社,1982
    吕川川,郝天珧,丘学林,等.南海西南次海盆北缘海底地震仪测线深部地壳结构研究[J].地球物理学报,2011,54(12):3139-3149
    吕作勇,吴建平.华北地区地壳上地幔三维P波速度结构[J].地震学报,2010,32(1):1-11
    罗文造,阎贫,温宁,等.南海北部潮汕坳陷海区海底地震仪调查实验[J].热带海洋学报,2009,28(4):59-65
    苗庆杰,周翠英,马玉香,等.1969年渤海7.4级地震研究述评[J].华北地震科学,2010,28(1):8-15
    丘学林,赵明辉,敖威,等.南海西南次海盆与南沙地块的OBS探测和地壳结构[J].地球物理学报,2011,54(12):3117-3128
    丘学林,赵明辉,叶春明,等.南海东北部海陆联测与海底地震仪探测[J].大地构造与成矿学,2003,27(4):295-300
    丘学林,周蒂,夏戡原,等.南海西沙海槽地壳结构的海底地震仪探测与研究[J],热带海洋,2000,19(2):9-18
    邱楠生,魏刚,李翠翠,等.渤海海域现今地温场分布特征[J].石油天然气地质,2009,30(4):412-419
    阮爱国,牛雄伟,丘学林,等.穿越南沙礼乐滩的海底地震仪广角地震试验.地球物理学报[J],2011,54(12):3139-3149
    宋占隆,杨卓欣,石金虎,等.用Pg波走时重建华北地区结晶基底速度及时间项图像[J].华北地震科学,1997,15(2):9-16
    孙金龙,夏少红,徐辉龙,等.2010年南海北部海陆联测项目简介及初步成果[J],华南地震,2010,增刊(30),45-51
    孙若昧,赵燕来,梅世蓉.渤海及其邻区的地震层析成像[J].地球物理学报,1993,36(1):44-53
    滕吉文,张中杰,张秉铭,等.渤海地球物理场与深部潜在地幔热柱的异常构造背景[J].地球物理学报,1996,40(4):468-480
    汪素云,许忠淮,裴顺平.华北地区上地幔顶部Pn波速度结构及其构造含义[J].中国科学(D辑),2003,33(增刊):91-98
    王良书,刘绍文,肖卫勇,等.渤海盆地大地热流分布特征[J].科学通报,2002,47(2):151-155
    王嘹亮,张志荣,阎贫,等.潮汕坳陷地壳结构探测初步成果[J].南海地质研究,2003,00:66-71
    王帅军,张先康,方盛明,等.渤海湾西北缘及其邻近地区地壳结构与构造特征[J].地球物理学报,2008,51(5):1451-1458
    王彦林,阎貧,郑红波,等. OBS记录的时间和定位误差校正[J].热带海洋学报,2007,26(5):40-46
    王志烁,王春镛,曾融生,等.华北及邻区地壳上地幔三维速度结构的地震走时层析成像[J].CT理论与应用研究,2008,17(2):15-27
    魏文博,叶高峰,金胜,等.华北地区地壳P波三维速度结构[J].地球科学—中国地质大学学报,2007,32(7):441-452
    吴振利,李家彪,阮爱国,等.南海西北次海盆地壳结构:海底广角地震实验结果[J].中国科学:地球科学,2011,41(10):1463-1476
    吴振利,阮爱国,李家彪,等.南海中北部地壳深部结构探测新进展[J].华南地震,2008,28(1):21-28
    吴振利,阮爱国,李家彪,等.南海南部海底地震仪试验及初步结果[J].海洋学研究,2010,28(1):55-61
    夏常亮,夏密丽,王祥春.交叉能量矩阵在海底地震仪水平分量旋转中的应用[J].西安石油大学学报(自然科学版),2010,25(3):11-14
    夏戡原,周蒂,苏达权,等.莺歌海盆地速度结构及其对油气勘探的意义[J],科学通报,1998,43(4):361-367
    夏少红,丘学林,赵明辉,等.香港地区海陆地震联测及深部地壳结构研究[J].地球物理学进展,2008,23(5):1389-1397
    夏少红,丘学林,赵明辉,等.香港与珠三角地区海陆联合地震探测的数据处理[J].热带海洋学报,2007,26(1):35-38
    肖龙,王方正,王华,等.地幔柱构造对松辽盆地及渤海湾盆地形成的制约[J].地球科学-中国地质大学学报,2004,29(3):283-291
    肖卫勇,王良书,李华,等.渤海盆地地温场研究[J].中国海上油气(地质),2001,12(2):105-110
    徐守余,严科.渤海湾盆地构造体系与油气分布[J],地质力学学报,2005,11(3):259-265
    徐亚,郝天珧,戴明刚,等.渤海残留盆地分布综合地球物理研究,地球物理学报,2007,50(3):868-881
    薛斌,阮爱国,李湘云,等. SEDISIV型短周期自浮式海底地震仪数据校正方法[J].海洋学研究,2008,26(2):98-102
    阎贫,刘昭蜀,姜绍仁.东沙群岛海域的折射地震探测[J].海洋地质与第四纪地质,1996,16(4):19-24
    阎贫,刘昭蜀,姜绍仁.南海北部地壳的深地震地质结构探测[J].海洋地质与第四纪地质,1997,17(2):21-27
    杨卓欣,赵金仁,张先康,等.华北莫霍面构造形态-深地震测深数据的三维反演[J].地震地质,2000,22(1):74-80
    于湘伟,陈运泰,王培德.京津唐地区中上地壳三维P波速度结构[J].地震学报,2003,25(1):1-14
    张成科,张先康,赵金仁,等.渤海湾及其邻区壳幔速度结构研究与综述[J].地震学报,2002,24(4):428-435
    张春灌.从航空重力看郯庐断裂系(渤海)及其围区[J].断块油气田,2010,17(2):169-172
    张恺.渤海湾盆地深部壳—幔结构和大地热流场对油气分布、富集规律控制的探讨[J].石油勘探与开发,1993,20(6):1-7
    张岭,刘劲松,郝天珧,等.渤海湾盆地及其邻域地区地壳与上地幔层析成像[J].地球物理学报,2007,37(11):1444-1455
    赵明辉,丘学林,夏戡原,等.南海东北部海陆联测地震数据处理及初步结果[J].热带海洋学报,2004,23(1):58-63
    赵明辉,丘学林,叶春明,等.南海东北部海陆深地震联测与滨海断裂带两侧地壳结构分析[J].地球物理学报,2004,47(5):845-852
    赵岩,张毅祥,姜绍仁,等.南海北部地球物理特征及地壳结构[J].热带海洋,1996,15(2):37-44
    郑建常,顾瑾平,张元生.联合反演研究华北地区三维速度结构[J].地球物理学进展,2008,22(6):1706-1714
    周斌,张英凯,李继训.渤海及邻区地震地质、地球物理场和地震活动特征[J].西北地震学报,2000,22(3):333-337
    周焕鹏,盖殿广,李霞.渤海地区的地震活动特征[J].高原地震,2000,12(1):50-54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700