用户名: 密码: 验证码:
何首乌悬浮细胞系的建立和稳定同位素示踪研究二苯乙烯苷合成路径
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二苯乙烯苷(2,3,5,4’-tetrahydroxystilbene-2-O-β-D-glucoside, THSG)是何首乌(Polygonum multiflorum Thunb.)的主要有效成分,具有抗炎、抗氧化、调节血脂、抗肿瘤、安神、预防和治疗阿尔茨海默症作用。目前二苯乙烯苷研究集中在提取和药理方面,对二苯乙烯苷的生物合成路径未见报道,因此二苯乙烯苷的合成路经值得研究。首先获得何首乌愈伤组织,然后建立何首乌悬浮细胞系。利用普通前体饲喂和稳定同位素前体示踪何首乌悬浮细胞,通过HPLC-MS/MS进行检测,根据检测结果推测二苯乙烯苷生物合成路径。本文主要研究结果如下:
     (1)通过正交实验获得何首乌愈伤组织的诱导培养基:含有1mg·L~(-1)2,4-D和0.4mg·L~(-1)NAA的MS培养基。在此培养基中,15天就能诱导出愈伤组织,愈伤组织的诱导率为96.7%。检测了何首乌根、茎、叶的愈伤组织诱导效果和二苯乙烯苷的含量,发现何首乌根、茎和叶都能诱导出愈伤组织,其中根诱导出的愈伤组织中二苯乙烯苷含量最高,为1.5mg·g~(-1),因此选择二苯乙烯苷含量高的根愈伤组织进行培养。何首乌愈伤组织比较致密,不能进行悬浮细胞培养。通过把何首乌愈伤组织接入液体MS培养基中培养4天,然后转接到含有不同植物生长激素的固体MS培养基中进行培养,获得了疏松易碎的愈伤组织,通过实验获得适合何首乌疏松愈伤组织生长的植物生长激素配比:0.2mg·L~(-1)6-BA和0.5mg·L~(-1)NAA。
     (2)比较了何首乌在MS、B5和N6培养基生长的效果,发现MS培养基是何首乌液体最佳生长培养基,在此培养基中生长的细胞干重和二苯乙烯苷含量分别为6.35g·L~(-1)和42.23mg·L~(-1),因此选择MS培养基作为何首乌悬浮培养基。
     (3)通过把悬浮细胞铺在平板上,培养30天后,挑选生长快的小细胞团转接到新的平板继续培养,然后每隔15天转接一次,共转接6次,检测不同细胞团的二苯乙烯苷含量,最终获得高含量二苯乙烯苷的细胞系,此高含量何首乌悬浮细胞的干重和二苯乙烯苷的含量分别达到7.46g·L~(-1)DW和56.23mg·L~(-1),而原细胞系悬浮细胞的干重和二苯乙烯苷含量分别6.55g·L~(-1)DW和43.39mg·L~(-1),此高含量细胞系悬浮培养干重比原细胞系提高了13.89%,二苯乙烯苷含量比原细胞系提高了29.59%。通过发酵条件优化,获得何首乌悬浮细胞系最佳的培养条件为100rpm、26℃暗培养16天。
     (4)为了筛选二苯乙烯苷合成路径的前体和饲喂研究,在何首乌悬浮细胞培养的第10天,在何首乌悬浮细胞MS培养基中分别加入不同浓度的苯丙氨酸,发现添加60mg·L~(-1)的苯丙氨酸时何首乌悬浮细胞中二苯乙烯苷含量最高,达到105.15mg·L~(-1),比没有加苯丙氨酸的对照组(55.23mg·L~(-1))增加了90.38%,这说明苯丙氨酸能增加二苯乙烯苷含量,可能是二苯乙烯苷的前体。在何首乌悬浮细胞培养基中分别加入不同浓度的肉桂酸,发现添加40mg·L~(-1)的肉桂酸时何首乌悬浮细胞达到最大二苯乙烯苷含量:123.03mg·L~(-1),比没有加肉桂酸的对照组(55.23mg·L~(-1))增加了122.76%,这说明肉桂酸能增加二苯乙烯苷含量,可能是二苯乙烯苷的前体。在何首乌悬浮细胞培养基中分别加入不同浓度的乙酸钠,发现添加20mg·L~(-1)的乙酸钠,何首乌悬浮细胞能达到最大二苯乙烯苷含量:89.08mg·L~(-1),比没有加乙酸钠的对照组(55.23mg·L~(-1))增加了61.29%,这说明乙酸钠能增加二苯乙烯苷含量,可能是二苯乙烯苷的前体。在液体MS培养基中分别加入不同浓度苯丙氨酸、肉桂酸和乙酸钠的混合前体,发现添加40mg·L~(-1)的肉桂酸和20mg·L~(-1)乙酸钠,何首乌悬浮细胞二苯乙烯苷含量最大:162.65mg·L~(-1),比对照组(55.23mg·L~(-1))增加了194.50%,说明混合前体效果最好。(5)在何首乌液体MS培养基中加入U~(-1)3C9苯丙氨酸示踪,通过HPLC-MS/MS检测,~(13)C标记的苯丙氨酸能结合进入二苯乙烯苷,这确证了苯丙氨酸是二苯乙烯苷的前体。在何首乌液体MS培养基中加入U~(-1)3C9肉桂酸示踪,通过HPLC-MS/MS检测,~(13)C标记的肉桂酸能结合进入二苯乙烯苷,这确证了肉桂酸也是二苯乙烯苷的前体,并且示踪实验证明了我们假定的二苯乙烯苷合成路径。
     根据以上结论,我们证明了何首乌二苯乙烯苷的生物合成路径:苯丙氨酸作为前体,在苯丙氨酸解氨作用下合成肉桂酸,再经过几步反应合成二苯乙烯苷。
THSG (2,3,5,4’-tetrahydroxystilbene-2-O-β-D-glucoside) is the main active ingredient ofPolygonum multiflorum Thunb., which posses anti-inflammatory, antioxidant, regulating lipid,anti-tumor, calming the nerves, prevention and treatment of Alzheimer's disease. At presentthe study focus on the extraction and pharmacological effect of THSG, yet THSGbiosynthetic pathway has not been reported. We are committed to the biosynthesis pathway ofTHSG. First, calli were induced, then suspension cell line was established. Normal precursorswere added and stable isotope precursor was used to tracer cells of Polygonum multiflorumThunb. THSG was speculated by HPLC-MS/MS, on the basis of results THSG biosyntheticpathway was deducted. The main results of this article are as follows:
     (1) Induction medium of Polygonum multiflorum Thunb. was obtained by orthogonalexperiments which contained1mg·L~(-1)2,4-D and0.4mg·L~(-1)NAA in MS medium. In thismedium, calli can be induced in15days, and induction rate of calli was96.7%. The inductioneffect of root, stems and leaves of Polygonum multiflorum Thunb. was evaluated and THSGcontent was examined, and found that root, stems and leaves of Polygonum multiflorumThunb. can be induced. The highest content of THSG in root calli was1.5mg·g~(-1), so rootcalli were used to transfer and culture. Calli were fine and close which can’t be suspended.Calli were transferred in liquid MS medium for4days, then transferred to solid MS mediumcontaining different plant growth hormone, at last loose and friable calli were acquired, andthe growth hormone were0.2mg·L~(-1)6-BAand0.5mg·L~(-1)NAA.
     (2) The growth effect was compared in MS, B5and N6medium, and MS medium is the bestmedium. The cell DW (dry weight) and THSG content in this medium was respectively6.35g·L~(-1)and42.23mg·L~(-1), so MS medium was selected as suspension medium.
     (3) Suspension cells were spread on the plate, and cultured for30days. Fast-growing smallcell clusters were selected and transferred on the plate, and then transferred once every15days for six times. THSG content of different small cell cluster was examined and ultimatelya high content cell line of THSG was acquired, and DW and THSG content of this high yieldcell line of Polygonum multiflorum Thunb. was7.46g·L~(-1)and56.23mg·L~(-1)respectively, yetDW and THSG content of the original cell line was respectively6.55g·L~(-1)and43.39mg·L~(-1). DW and THSG content of this high content cell line of Polygonum multiflorum Thunb.respectively increased by13.89%and29.59%than the original cell line. By optimization offermentation conditions, the best culture conditions were100rpm,26℃and dark culture for16days.
     (4) In order to screen precursors of THSG biosynthetic pathway and feeding studies,Different concentration of phenylalanine was added in suspension medium of Polygonummultiflorum Thunb. in the10thday,105.15mg·L~(-1)of THSG was acquired which increased by90.38%in60mg·L~(-1)phenylalanine than the control group (55.23mg·L~(-1)). Differentconcentrations of cinnamic acid were added in suspension cell medium. THSG can can reachthe maximum content in40mg·L~(-1)cinnamic acid:123.03mg·L~(-1)which increased by122.76%than the control group (55.23mg·L~(-1)). Different concentration of sodium acetatewas added in suspension medium.20mg·L~(-1)sodium acetate was added in suspensionmedium. The maximum production of THSG can be reached:89.08mg·L~(-1)than the controlgroup (55.23mg·L~(-1)) which increased by61.29%. Mixed precursors of differentconcentration of phenylalanine, cinnamic acid and sodium acetate were added in liquid MSmedium, and the maximum content of THSG acquired in40mg·L~(-1)cinnamic acid and20mg·L~(-1)sodium acetate was162.65mg·L~(-1)than the control group (55.23mg·L~(-1)) whichincreased by194.50%, so mixed precursor had best effect.
     (5) U~(-1)3C9phenylalanine was added in liquid MS medium of Polygonum multiflorum Thunb.Then THSG was detected by HPLC-MS/MS,~(13)C phenylalanine can be combined into THSG,which confirmed phenylalanine was precursor of THSG. U~(-1)3C9cinnamic acid was added inliquid MS medium. Then THSG was detected by HPLC-MS/MS,~(13)C cinnamic acid can becombined into THSG, which confirmed that cinnamic acid was a precursor of THSG, and thetracer experiment proved hypothetical THSG biosynthetic pathway.
     Based on the above findings, we proved THSG biosynthetic pathway: phenylalanine asprecursor under phenylalanine ammonia lyase, then synthesize cinnamic acid, after a fewsteps biosynthetic reaction further synthesize THSG.
引文
[1]李建北,林茂.何首乌化学成分的研究[J].中草药,1993,24(3):115-118.
    [2]杨秀伟,谷哲明,马超梅,等.从何首乌的根中分离得到的一个新的吲哚衍生物[J].中草药,1998,29(1):5-11.
    [3]陈万生,杨根金,张卫东,等.制首乌中两个新化合物[J].药学学报,2000,35(4):273-276.
    [4]陈万生,樊伟,杨根金,等.制首乌化学成分的研究[J].第二军医大学学报,1999,20(7):438-440.
    [5]周立新,林茂,李建北,等.何首乌乙酸乙酯不溶部分化学成分的研究[J].药学学报,1994,29(2):107-110.
    [6]许益民,任仁安.赤自首乌中游离氨基酸的定量分析[J].南京中医学院学报,1988,2:47-49.
    [7]陈万生,杨根金,张卫东,等.制首乌中一种新脂肪酮[J].中国中药杂志,2000,25(8):476-477.
    [8]王文静,薛咏梅,赵荣华,等.何首乌的化学成分和药理作用研究进展[J].云南中医学院学报,2007,30(3):60-64.
    [9]吕丽爽.何首乌中二苯乙烯苷的研究进展[J].食品科学,2007,27(10):608-612.
    [10]刘振丽,宋志前.不同地区制何首乌中二苯乙烯苷含量测定及稳定性考察[J].中成药,2002,24(9):684-685.
    [11]张纯,杨少麟,袁海龙,等.高效液相色谱法测定何首乌中二苯乙烯甙的含量及其稳定性考察[J].中国中药杂志,1999,24(6):357-383.
    [12]吕丽爽,汤坚.何首乌中二苯乙烯苷的醇提工艺[J].食品与发酵工业,2004,30(10):132-135.
    [13]戚爱棣.何首乌中二苯乙烯苷提取工艺优选及炮制对其含量的影响[J].中草药,2002,33(7):609~611.
    [14]王娟,沈平孃,沈永嘉.均匀设计优选微波辅助萃取何首乌中有效成分的研究[J].中草药,2003,34(4):314-317.
    [15]千梅,何竞旻,方红美,等.何首乌中二苯乙烯苷的超声提取工艺研究[J].中草药,2003,34(4):314-317.
    [15]千梅,何竞旻,方红美,等.何首乌中二苯乙烯苷的超声提取工艺研究[J].中草药,2003,34(4):314-317.
    [16]吕丽爽.何首乌中二苯乙烯苷的制备及抗氧化机理研究[D].江南大学博士学位论文,2006:22.
    [17]马长华,王金星.何首乌炮制前后二苯乙烯甙含量比较[J].中药材,1995,18(7):350.
    [18]李光道,孙雅星,区健俐.酶化学发光法测定何首乌中四羟基二苯乙烯葡萄糖甙的含量[J].同济医科大学学报,1995,24(4):289-291.
    [19]史国兵.炮制对何首乌中有效成分含量的影响[J].中国医院药学杂志,2003,23(2):95-97.
    [20]吴明侠,王淑美,梁生旺,等.何首乌不同炮制品中二苯乙烯苷的含量测定[J].中国药学杂志,2002,37(12):943-945.
    [21] LV LS, GU XH, TANG J, et al. Antioxidant activity of stilbene glycoside fromPolygonum multiflorum Thunb. in vivo[J]. Food Chemistry,2007,3(22):1678-1681.
    [22]相聪坤,王蕊,袁志芳.何首乌二苯乙烯苷类提取物对高脂血症大鼠血脂代谢的影响及其抗氧化作用[J].中国药业,2009,18(24):19-20.
    [23]胡存华,赵立波,王晓敏,等.二苯乙烯苷增强正常血管内皮细胞抗氧化作用研究[J].医药导报,2007,26(2):138-139.
    [24]边秀娟.电子自旋共振法测定何首乌中大黄素、二苯乙烯苷清除超氧阴离子自由基的实验研究[D].福州中医学院硕士论文,2002:54.
    [25]刘厚淳,陈万生.何首乌水溶性成分2,3,5,4'-四羟基二苯乙烯2-O-β-D葡萄糖苷体外抗氧化作用研究[J].药学实践杂志,2000,18(4):232-234.
    [26] Chen Y, Wang MF, Rosen RT, et al.2,2-Diphenyl-1-picrylhydrazyl radicalscavengingactive cmponents from polygonum multiflorum Thunb.[J]. Journal of Agricultural and FoodChemistry,1999,47(6):2226-2228.
    [27] Teguo PW, Deffieux G, Vercauteren J, et al. Isolation, identificaion and antioxidantactivity of three stilbene glucosides newly extracted from Vitis vinifera cellcultures[J].Journal of Natural Products,1998,61(5):655-657.
    [28] Ryu G, JU JH, Park WJ, et al. The radical scavenging effects of stilbene glucosides fromPolygonum multiflorum[J].Archives of Pharmacal Research,2002,25(5):636-639.
    [29]陆新.首乌降脂汤治疗高脂血症临床观察[J].浙江中医杂志,2006,41(10):588-589
    [30]才向军.化浊降脂汤治疗高脂血症80例[J].陕西中医,2004,25(2):135-136
    [31]宋士军,李芳芳,尹智玮,等.何首乌对实验性高脂血症作用的研究[J].河北中医药学报,2003,18(4):27-28.
    [32]赵玲,李雅莉,张丽,等.二苯乙烯苷对高胆固醇血症致β-淀粉样肽增高大鼠模型的影响[J].中国药理学通报,2005,21(1):49-52.
    [33]王春英,张兰桐,袁志,等.何首乌醋酸乙酯提取部位与二苯乙烯苷的调血脂作用[J].中草药,2008,39(1):79-83.
    [34]韩晓,吴成爱,王伟,等.何首乌二苯乙烯苷降血脂作用机理研究[J].中华中医药学刊,2008,26(8):1687-1689.
    [35]高瑄,胡英杰,符林春.何首乌二苯乙烯苷的调节血脂作用[J].中国中药杂志,2007,32(4):323-326.
    [36] Yang PY, Almofti MR, Lu L, et al. Reduction of atherosclerosis in cholesterol-fedrabbits and decrease of expressions of intracellular adhesion molecule-1and vascularendothelial growth factor in foam cells by a watersolution fraction of polygonum multiflorum[J]. Journal of pharmacological sciences,2005,99(3):294-300.
    [37] Quiney C, Dauzonne D, Kern C, et al. Flavones and polyphenols inhibit the NO pathwayduring apoptosis of leukemia B-cells[J]. Leukemia Research,2004,28(8):851-861.
    [38] Phlip AJ, Campbell IG, Leet C, et al. The phosphatidylinositol3’-kinase p85a gene is anoncogene in human ovarian and colon tumors[J]. Cancer Research,2001,61(70):7426-7429.
    [39] Pozo-Guisado E, Merino JM, Mulero-Navarro S, et al. Resveratrol-induced apoptosisinMCF-7human breast cancer cells involves a caspase-independent mechanism withdownregulation of Bcl-2and NF-κ B [J]. International journal of cancer,2005,115(1):74-84.
    [40] Azizm H, Reagan-shaw S, Ahmad N. Resveratrol-caused apoptosis of human prostatecarcinoma LNCaP cells is mediated via modulation of PI3K/Akt pathway and Bcl-2familyproteins [J]. Molecular Cancer Therapeutics,2006,5(5):1335-1341.
    [41] Pozo-guisado E, Lorenzo-Benayas MJ, Fernandez-Salguero PM. Resveratrol modulatesthe phosphoinositide3-kinase pathway through an estrogen receptor α-dependent mechanism:relevance in cell proliferation[J]. International journal of cancer,2004,109(2):167-173.
    [42] Benitez DA, Pozo-guisado E, Castellone A, et al. Mechanisms involved inresveratrol-induced apoptosis and cell cycle arrest in prostate cancer-derived cell lines [J].Journal ofAndrology,2007,28(2):282-293.
    [43]徐光,张礼萍,陈力芳,等.二苯乙烯苷类化合物对蛋白激酶C的抑制作用[J].药学学报,1994,29(11):818-822.
    [44] Kimura Y, Okuda H. Effects of naturally occurring stilbene glucosides from medicinalplants and wine, on tumor growth and lung metastasis in Lewis lung carcinoma-bearingmice[J]. Journal of Pharmacy and Pharmacology,2000,52(10):1287-1296.
    [45] Oh SR, Ryu SY, Park SH, et al. Anticomplementary activity of stilbenes from medicinalplants[J]. Archives of Pharmacal Research,1998,21(6):703-706.
    [46]王文权,张韶辉,赵立波,等.二苯乙烯苷抑制人乳腺癌MCF27细胞增殖及对PI3K/Akt信号通路的影响[J].肿瘤,2009,29(1):26-30.
    [47]叶翠飞,魏海峰,张丽,等.二苯乙烯苷对东莨菪碱致小鼠学习记忆障碍的改善作用[J].中国临床康复,2005,9(48):190-192.
    [48]楚晋,叶翠飞,李林,等.二苯乙烯苷对D-半乳糖致脑老化小鼠学习记忆及神经营养因子的影响[J].中国药房,2002,6(1):13-16.
    [49]楚晋,叶翠飞,李林.二苯乙烯苷对痴呆小鼠学习记忆及自由基代谢的影响[J].中国康复理论与实践,2003,9(11):643-645.
    [50]楚晋,叶翠飞,李林.二苯乙烯苷对痴呆小鼠学习记忆及大脑炎性反应的影响[J].中药新药与临床药理,2004,15(4):235-237.
    [51]侯德仁,杨期东,周琳,等.何首乌对Alzheimer病模型大鼠学习记忆的影响及其机制的研究[J].中国医师杂志,2004,6(3):347-349.
    [52]赵玲,李春阳,张丽,等.二苯乙烯苷对局灶性脑缺血大鼠脑组织细胞凋亡的影响[J].中草药,2008,39(3):394-397.
    [53]刘治军,李林,叶翠飞,等.二苯乙烯苷对脑缺血小鼠脑组织含水量及自由基代谢的影响[J].中国康复理论与实践,2003,9(11):641-642.
    [54]李雅莉,赵玲,徐艳玲,等.二苯乙烯苷对答氯酸致原代培养大鼠海马神经元损伤的保护作用[J].中国康复理论与实践.2004,10(12):751-753.
    [55]张兰,叶翠飞,褚燕琦,等.二苯乙烯苷对鹅膏蕈氨酸致痴呆大鼠模型脑内胆碱能系统的影响[J].中国药学杂志,2005,40(10):749-752.
    [56]谢文杰,李林,魏海峰,等.二苯乙烯苷对D-半乳糖拟痴呆小鼠海马基因表达的影响[J].中国药理学与毒理学杂志,2005,19(1):24-28.
    [57] Appleby SB, Ristimaki A, Neilson K, et al. Structure of the human cyclo-oxygenase-2gene [J]. Biochemical Journal,1994,302(pt3):723-727.
    [58] Hla T, Neilson K. Human Cyclooxygenase-2cDNA [J]. Proceedings of the NationalAcademy of Sciences of the United States ofAmerica,1992,89(6):7384-7388.
    [59] Wilson KT, Fu S, Ramanujam KS, et al. Increased expression of inducible nitric oxidesynthase and cyclooxygenase-2in Barrett’s esophagus and associated adenocarcinomas [J].Cancer Research,1998,58(14):2929-2934.
    [60] Altorki N. COX-2: a target for prevention and treatment of esophageal cancer [J]. TheJournal of surgical research,2004,117(1):114-120.
    [61] Boolbol SK, Dannenberg AJ, Chadburn A, et al. Cyclooxygenase-2overexpression andtumor formation are blocked by sulindac in a murine of familial adenomatous polyposis [J].Cancer Research,1996,56(11):2556-2560.
    [62] Dubois RN, Radhika A, Reddy BS, et al. Increased cyclooxygenase-2levels incarcinopen-induced rat colomic tumors [J]. Gastroenterology,1996,110(4):1259-1262.
    [63] Sheehan KM, Sheehan K, Donoghue DP, et al. The relation between cyclooxygenase-2expression and colorectal cancer [J]. The Journal of the American Medical Association,1999,282(13):1254-1257.
    [64] Hiroyuki K, Megumi B, Tuyoshi S, et al. Cyclooxygenase-2expression correlates withuPAR levels and is responsible for poor prognosis of colorectal cancer [J]. Clinical&Experimental Metastasis,2002,19(6):527-534.
    [65] Kim HS, Youm HR, Lee JS, et al. Correlation between cyclooxygenase-2and tumorangiogenesis in non-small cell lung cancer[J]. Lung Cancer,2003,42(2):163-170.
    [66] Khuri FR, Wu H, Lee JJ, et al. Cyclooxygenase-2overexpression is a marker of poorprognosis in stage I non-small cell lung cancer[J]. Clinical Cancer Research,2001,7(4):861-867.
    [67] West H, Yaziji H, Giarrita S, et al. Cyclooxygenase-2(COX-2) overexpression byImmunohistochemistry (IHC) is associated with more aggresive biological behavior ofnon-small cell lung cancer (NSCLC) tumors [J]. Proceedings of the American Society ofClinical Oncology,2002,22(309):7235.
    [68] Davies GLS, Salter J, Hills M, et al. Cyclooxygenase-2(COX-2) expressions in humanbreast cancers correlations with known biological variables and rationale for the use ofCOX-2inhibitors [J]. Proceedings of the American Society of Clinical Oncology,2002,21:4174.
    [69] Konturek PC, Konturek SJ, Pierzchalski P, et al. Cancerogenesis in Helicobacter pyloriinfected stomalch-role of growth factors, apoptosis and cyclooxygenases [J]. Medical sciencemonitor,2001,7(5):1092-1107.
    [70] MaekawaM, Sugano K, Sano H, et al. Increased of cyclooxygenase-2expression inhuman colorectal cancers and adenomas, but not in hyperplastic polyps [J]. Japanese journalof clinical oncology,1998,28(7):421-425.
    [71] Weaver SA, Russo MP, Wright KJ, et al. Regulatory role of phosphatidylinnositol3-kinase on TNF-alpha-induced cycloxygenase-2expression in coloniz epithelial cells [J].Gastroenrology,2001,120(5):1117-1127.
    [72] Madaan S, Abel PD, Chaudhary KS, et al. Cytoplasmic induction and over-expression ofcyclooxygenase-2in human prostate cancer: implications for prevention and treatment [J].BJU International,2000,86(6):736-741.
    [73] Li HX, Li XK, Cai SH. et al. Synergistic effects of nimesulide and5-fluorouracil ontumor growth and apoptosis in the implanted hepatoma in mice [J].World Journal ofGastroenterology,2003,9(5):936-940.
    [74] Li HL, Chen DD, Li XH, et al. Changes in NF-κB, p53, Bcl2and caspase on apoptosisinduced by JTE-522in human gastric adenocarcinoma cell line AGS cells: the role of reactiveoxygen species[J]. World Journal of Gastroenterology,2002,8(3):431-435.
    [75] Elder DJ, Halton DE, Playle LC, et al. The MEK/ERK pathway mediates COX-2selective NSAID induced apoptosis and induced COX-2protein expression in colorectalcarcinoma cells[J]. International journal of cancer,2002,99(2):323-7.
    [76] Gilroy DW, Colville-Nash PR. New insights into the role of COX-2in inflammation [J].Journal of Molecular Medicine,2000,78(1):121-129.
    [77] Choy H, Milas L. Enhancing radiotherapy with cyclooxygenase-2enzyme inhibitors: Arational advance[J]. Journal of the National Cancer Institute,2003,95(19):1440-1452.
    [78] Totzke G, Schulze-Osthoff K, Janicke RU. Cyclooxygenase-2(COX-2) inhibitorssensitize tumor cells specifically to death receptor induced apoptosis independently of COX-2inhibition[J]. Oncogene,2003,22(39):8021-8030.
    [79] Ozes ON, Mayo LD. NF-κB activation by tumour necrosis factor requires the Aktserine-threonine kinase[J]. Nature,1999,401(1):82-85.
    [80] Goetze S, Bungestock A, Crupalla C, et al. Leptin induces endothelial cell migrationthroughAkt, which is inhibited by PPARγ-ligands [J]. Hypertension,2002,40(5):748-54.
    [81] Van Der, Woude CJ, Kleibeuker JH, et al. Chronic inflammation, apoptosis and (pre2)malignant lesions in the gastro-intestinal tract[J]. Apoptosis,2004,9(2):123-130.
    [82]柯小龙,李红良,陈丹丹,等.NF-κB,AP-1及Caspase-3在SC58125诱导的HepG2细胞凋亡中的作用[J].中国病理生理杂志,2001,17(12):1188-1192.
    [83] Straus DS, Glass CK. Cyclopentenone prostaglandins: New insights on biologicalactivities and cellular targets[J]. Medicinal Research Reviews,2001,21(3):185-210.
    [84] Lennon AM, Ramauge M, Dessouroux A, et al. MAP kinase cascades are activated inastrocytes and preadipocytes by15-deoxy-Delta (12-14)-prostaglandin J2and thethiazolidinedione ciglitazone through peroxisome proliferator activator receptorγ-independent mechanisms involving reactive oxygenated species[J]. Journal of BiologicalChemistry,2002,277(33):29681-29685.
    [85]柯小龙,李红良,陈丹丹,等.SC58125对HepG2细胞增殖和凋亡的影响[J].中国病理生理杂志,2002,18(1):51-54.
    [86] Andrzej S, Michael K. Inhibition of angiogenesis by NSAIDs: Molecular mechanismsand clinical implications [J]. Journal of molecular medicine,2003,81(1):27-37.
    [87]梅俏,于皆平.非甾体类抗炎药与大肠癌化学预防[J].中国药理学通报,2001,17(5):499-502.
    [88] Kim HS, Youm HR, Lee JS, et al. Correlation between cyclooxygenase-2and tumorangiogenesis in non-small cell lung cancer[J]. Lung Cancer,2003,42(2):163-170.
    [89] Horowitz JC, Limper AH. Stress in the ER (endoplasmic reticulum) a matter of life anddeath for epithelial cells [J]. American Journal of Respiratory and Critical Care Medicine,2008,178(8):782-783.
    [90] Nakagawa T, Yuan JY. Cross-talk between two cysteine protease families activation ofcaspase-12by calpain in apoptosis[J]. Journal of Cell Biology,2000,150(4):887-894.
    [91] Hitomi J, Katayama T, Taniguchi M, et al. Apoptosis induced by endoplasmic reticulumstress depends on activation of caspase-3via caspase-12[J]. Neuroscience Letters,2004,357(2):127-130.
    [92]刘蓉蓉.植物次生代谢途径的遗传修饰研究进展[J].生物技术通报,2008,6:10-13.
    [93]陆震呜,陶文沂,许泓瑜,等.樟芝菌粉三萜类化合物含量的测定[J].中成药,2008,30(3):402-405.
    [94]姚松君,黄生权,陈壮耀,等.超声辅助提取灵芝三萜的工艺研究[J].现代食品科技,2009,25(10):1220-1223.
    [95]肖娜,周贤梅.中草药生物碱对呼吸系统作用研究进展[J].临床肺科杂志,2012,17(3):515-517.
    [96]钟巍然,柴友荣,张凯,等.苯丙烷代谢途径中细胞色素P450的研究[J].安徽农业科学,2008,36(13):5285-5289.
    [97] Ohe Y, Ohashi Y, Kubota K, et a1. Randomized phase Ш study of cisplatin plusirinotecan versus carboplatin plus paclitaxel, cisplatin plus gemcitabine,and cisplatin plusvinorelbine for advanced non-small-cell lung cancer Four Arm Cooperative Study in Japan[J]. Annals of oncology,2007,18(2):317-323.
    [98] Ramlau R, Gervais R, Krzakowski M, et al. Phase Ⅲ study comparing oral topotecanto intravenous docetaxel in patients with pretreated advanced non-small-cell lung cancer [J].Journal of clinical oncology,2006,24(18):2800-2807.
    [99]王莉,史玲玲,刘玉军.不同光质对长鞭红景天悬浮细胞生长及苯丙氨酸解氨酶活性的影响[J].林业科学,2007,43(6):53-55.
    [100] Hatano K, Akiyama S, Asai M, et al. Biosynthetic origin of aminobenzenoid nucleus(C7N-unit) of ansamitocin, a group of novel maytansinoid antibiotics[J]. Journal ofantibiotics,1982,35(10):1415-1417.
    [101] Woerdenbag HJ, Uden W, Frijlink HW, et al. Increased podophyllotoxin production inPodophyllum hexandrum cell suspension cultures after feeding coniferyl alcohol as aβ-cyclodextrin complex[J]. Plant Cell Reports,1990,9(2):97-100.
    [102] Rahimi S, Hasanloo T, Najafi F, et al. Enhancement of silymarin accumulation usingprecursor feeding in Silybum marianum hairy root cultures[J]. Plant Omics Journal,2011,4(1):34-39.
    [103] Katarzyna SB, Agnieszka P, Anna K, et al. Enhancement of taxane production in hairyroot culture of Taxus×media var. Hicksii[J]. Journal of Plant Physiology,2009,166(17):1950-1954.
    [104] Liu JY, Guo ZG, Zeng ZL. Improved accumulation of phenylethanoid glycosides byprecursor feeding to suspension culture of Cistanche salsa[J]. Biochemical EngineeringJournal,2007,33(1):88-93.
    [105] Expósitol O, Bonfill M, Onrubia M, et al. Effect of taxol feeding on taxol and relatedtaxane production Taxus baccata suspension cultures [J]. New Biotechnology,2009,25(4):252-259.
    [106] Sch nheimer R, Rittenberg D. Deuterium as an indicator in the study of intermediarymetabolism[J]. Science,1935,8:156-157.
    [107] Wani MC, Taylor HL, Wall ME, et al. Plant antitumor agents. VI. The isolation andstructure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia[J]. Journalof theAmerican Chemical Society,1971,93(9):2325-2327.
    [108] Lansing A, Haertel M, Gordon M, et al. Biosynthetic studies on taxol[J]. Planta Medica,1991,57:83.
    [109] Zamir LO, Nedea ME, Belair S, et al. Biosynthetic building blocks of Taxuscanadiensis taxanes[J]. Tetrahedron Letters,1992,33(36):5235-5236.
    [110] Eisenreich W, Menhard B, Hylands PJ, et al. Studies on the biosynthesis of taxol: Thetaxane carbon skeleton is not of mevalonoid origin[J]. Proceedings of the National Academyof Sciences of the United States of America,1996,93(13):6431-6436.
    [111] Koepp AE, Hezari M, Croteau RJ. Cyclization of geranylgeranyl diphosphate to taxa-4(5),11(12)-diene is the committed step of taxol biosynthesis in Pacific Yew[J]. The Journalof Biological Chemistry,1995,270:8686-8690.
    [112] Croteau R, Hezari M, Hefner J, et al. Paclit axel Biosynthesis: The Early Steps inTaxane Anticancer Agents: Basic Science and Current Status, Geory GI, Chen TT, Ojima I,Vyas DM. Eds. American Chemical Society: Washington, DC,1995:72.
    [113] Leete E, Bodem GB. The biosynthesis of3-dimethlamino-3-phenylpropanoic acid inyew[J]. Tetrahedron Letters,1966,33:3925-3927.
    [114] Platt RV, Opie CT, Haslam, E. Biosynthesis of flavan-3-ols and other secondary plantproducts from (2S) phenylalanine[J]. Phytochemistry,1984,23(10),2211-2217.
    [115] Strobel GA, Stierle A, van Kuijk FJGM. Factors influencing the in vitro production ofradiolabeled taxol by Pacific yew, Taxus brevifolia[J]. Plant Science,1992,84(1):65-74.
    [116] Stierle A, Strobel G, Stierle D. Taxol and taxane production by Taxomyces andreanae,an endophytic fungus of Pacific yew[J]. Science,1993,260(5105):214-216.
    [117]梅林,石开云.青蒿素生物合成研究进展[J].中国药业,2006,15(19):27-28.
    [118]汪猷,夏志强,周凤仪,等.青蒿素生物合成研究Ⅲ青篙素和青篙素(生物合成中的关键性中间体-青篙酸[J].化学学报,1988,46(11):1152-1153.
    [119] Sangwan RS, Agarwal K, Luthra R, et al. Biotransformation of arteannuic acid intoartemnnuin-B and artemisinin in Artemisia annua[J]. Phytochemistry,1993,34(5):1031-1032.
    [120] Akhila A, Thakurr S, Poplis P. Biosynthesis of artemisinin in Artemisia annua[J].Phytochemistry,1987,26(7):1927-1930.
    [121] Kerby GW. Biosynthesis of the Morphine Alkaloids[J]. Science,1967,155(3759):170-173.
    [122] Yang ZY, Sakai M, Sayama H, et al. Elucidation of the biochemical pathway of2-phenylethanol from shikimic acid using isolated protoplasts of rose flowers[J]. Journal ofPlant Physiology,2009,166(8):887-891.
    [123] Watanabe S, Hayashi K, Yagi K, et al. Biogenesis of2-phenylethanol in Rose Flowers:Incorporation of [2H8]L-Phenylalanine into2-phenylethanol and its β-D-Glucopyranosideduring the Flower Opening of Rosa “Hoh-Jun” and Rosa damascena Mill[J]. Bioscience,biotechnology, and biochemistry,2002,66(5):943-947.
    [124] Hayashi S, Yagi K, Ishikawa T, et al. Emission of2-phenylethanol from itsβ-D-glucopyranoside and the biogenesis of these compounds from [2H8] L-phenylalanine inrose flowers [J]. Tetrahedron,2004,60(3):7005-7013.
    [125] Takanori I, Masaki N, Kazuhiko F. Evidence for involvement of the phenylpropanoidpathway in the biosynthesis of the norligan agatharesinol[J]. Journal of plant physiology,2006,163(5):483-487.
    [126] Poeaknapo C, Fisinger U, Zenk M, et al. Evaluation of the mass spectrometricfragmentation of codeine and morphine after13C-isotope biosynthetic labeling [J].Phytochemistry,2004,65(10):1413-1420.
    [127] Krisa S, Larronde F, Budzinski H, et al. Stilbene Production by Vitis vinifera CellSuspension Cultures: Methyl Jasmonate Induction and13C Biolabeling [J]. Journal of naturalproducts,1999,62(12):1688-1690.
    [128] Muljono RAB, Scheffer JJC, Verpoorte R. Isochorismate is an intermediate in2,3-dihydroxybenzoic acid biosynthesis in Catharanthus roseus cell cultures [J]. PlantPhysiology Biochemistry,2002,40(3):231-234.
    [129] Krisa S, Larronde F, Budzinski H, et al. Production of13C-labelled anthocyanins byVitis vinifera cell suspension cultures[J]. Phytochemistry,1999,51(5):651-656.
    [130] WANG CZ, Maier UH, Keil M, et al. Phenylalanine-independent biosynthesis of1,3,5,8-tetrahydroxyxanthone [J]. European Journal of Biochemistry,2003,270(14):2950-2958.
    [131] Steliopoulos P, Wust M, Adam KP, et al. Biosynthesis of the sesquiterpene germacreneD in Solidago Canadensis:13C and2H labeling studies [J]. Phytochemistry,2002,60(1):13-20.
    [132] Eisenreich W, Strauss G, Werz U, et al. Retrobiosynthetic analysis of carbon fixation inthe phototrophic eubacterium Chloroflexus aurantiacus[J]. European Journal of Biochemistry,1993,215(3):619-632.
    [133] Werner I, Bacher A, Eisenreich W. Retrobiosynthetic NMR studies with13C-labeledglucose Formation of gallic acid in plants and fungi[J]. The Journal of biological chemistry.,1997,272(41):25474-25482.
    [134] Bacher A, Christoph R, Eichinger D, et al. Elucidation of novel biosynthetic pathwaysand metabolite flux patterns by retrobiosynthetic NMR analysis[J]. FEMS MicrobiologyReviews,1998,22(5):567-598.
    [135]Ye XD, AI-Babili S, Kl ti A, et al. Engineering the Provitamin A (13-Carotene)Biosynthetic Pathway into (Carotenoid-Free) Rice Endosperm[J]. Science,2000,287(14):303-305.
    [136] Canell C, Lopes-Cardoso Ml, Whitmer S, et al. Effects of over-expression ofstrictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures ofCatharanthus roseus[J]. Planta,1998,205(3):414-419.
    [137] Fan C H, Pu N, Wang XP, et al. Agrobacterium-mediated genetic transformation ofgrapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitispseudoreticulata[J]. Plant Cell, Tissue and Organ Culture,2008,92(2):197-206.
    [138] Zhang L, Ding R, Chai Y, et al. Engineering tropane biosynthetic pathway inHyoscyamus niger hairy root cultures[J]. Proceedings of the National Academy Sciences ofthe United States of America,2004,101(17):6786-6791.
    [139] Canel C, Lopes-Cardoso MI, Whitmer S, et al. Effects of over-expression ofstrictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures ofCatharanthus roseus[J]. Planta,1998,205(3):414-419.
    [140]廖志华.紫杉醇前体生物合成的分子生物学及抗癌萜类吲哚生物碱的代谢工程[D].复旦大学,2004:62-63.
    [141] Regierer B, Femie A, Kossmann J, et al. Starch content and yield increase as a result ofalter adenylate pools in transgenic plants[J]. Nature biotechnology,2002,20(12):1256-1260.
    [142]寇晓虹,罗云波,田慧琴,等.多聚半乳糖醛酸酶(PG)反义基因转化加工番茄[J].食品科学,2007,28(3):187-191.
    [143]周苏玫,张冉,尹钧,等.转反义基因小麦品系00T89农艺性状分析[J].河南农业科学,2007,3:29-31.
    [144] Ogita S, Uefuji H, Yamaguchi Y, et al. RNA interference: Producing decaffeinatedcoffee plants[J]. Nature,2003,423(6942):823.
    [145] Dubouzet JG, Morishige T, Fujii N, et al. Transient RNA silencing of scoulerine9-O-methyltransferase expression by double stranded RNA in Coptis japonica protoplasts [J].Bioscience, biotechnology, and biochemistry,2005,69(1):63-70.
    [146] Zhang YZ, Shen JF, Xu JY, et al. Inhibitory effects of2,3,5,4′-tetrahydroxystilbene-2-O-β-d-glucoside on experimental inflammation and cyclooxygenase2activity[J]. Journal ofAsian National Products Research,2007,9(4):355–363.
    [147] Wang YD, Wu JC, Yuan YJ. Salicylic acid-induced taxol production and isopentenylpyrophosphate biosynthesis in suspension cultures of taxus chinensis var. mairei[J]. Cellbiology international,2007,31(10):1179-1183.
    [148] Zeng C, Xiao JH, Chang MJ, et al. Beneficial Effects of THSG on Acetic Acid-InducedExperimental Colitis: Involvement of Upregulation of PPAR-γ and Inhibition of the Nf-ΚbInflammatory Pathway[J]. Molecules,2011,16(10):8552-8568.
    [149] Liu QL, Xiao JH, Ma R, et al. Effect of2,3,5,4’-tetrahydroxystilbene-2-O-beta-d-glucoside on lipoprotein oxidation and proliferation of coronary arterial smooth cells[J].Journal ofAsian Natural Products Research,2007,9(8):689–697.
    [150] Lv LS, Gu XH, Tang J, et al. Stilbene glycoside from the roots of Polygonummultiflorum Thunb and their in vitro Antioxidant activities[J]. Journal of Food Lipids,2007,13(2):131–144.
    [151] Chiang YC, Huang GH, Ho YL, et al. Influence of gamma irradiation on microbial loadand antioxidative characteristics of Polygoni Multiflori Radix[J]. Process Biochemistry,2011,46(3):777-782.
    [152] Um MY, Choi WH, Aan JY, et al. Protective effect of Polygonum multiflorum Thunbon amyloid β-peptide25-35induced cognitive deficits in mice[J]. Journal ofEthnopharmacology,2006,104(1-2):144–148.
    [153] Wang YD, Yuan YJ, Wu JC. Induction studies of methyl jasmonate and salicylic acid ontaxane production in suspension cultures of Taxus chinensis var. mairei[J]. BiochemicalEngineering Journal,2004,19(3):259–265.
    [154] Luo AX, Fan YJ and Luo AS. In vitro free radicals scavenging activities ofpolysaccharide from Polygonum Multiflorum Thunb[J]. Journal of Medicinal Plants Research,2011,5(6):966-972.
    [155] Guan SY, Su WW, Wang N, et al. A potent tyrosinase activator from Radix Polygonimultiflori and its melanogenesis stimulatory effect in B16melanoma cells[J]. PhytotherapyResearch,2008,22(5):660–663.
    [156] Jiang ZQ, Xu JM, Long MH, et al.2,3,5,4’-tetrahydroxystilbene-2-O-β-D-glucoside(THSG) induces melanogenesis in B16cells by MAP kinase activation and tyrosinaseupregulation[J]. Life Sciences,2009,85(9-10):345-350.
    [157] Park HJ, Zhang NN, Park DK. Topical application of Polygonum multiflorum extractinduces hair growth of resting hair follicles through upregulating Shh and β-cateninexpression in C57BL/6mice[J]. Journal of Ethnopharmacology,2011,135(2):369–375.
    [158]郭勇,崔堂兵,谢秀祯.植物细胞培养技术与应用[M].北京:化学工业出版社,1995:132-139.
    [159]Llamoca-Zárate RM, Studart-Guimaráes C, Landsmann J, et al. Establishment of callusand cell suspension cultures of Opunitia ficus-indica[J]. Plant Cell, Tissue and Organ Culture,1999,58(2):155-157.
    [160] Toker G, Memiso lu M, Toker MC, et al. Callus formation and cucurbitacin Baccumulation in Ecballium elaterium callus cultures[J]. Fitoterapia,2003,74(7-8):618-623.
    [161] Mischenko NP, Fedoreyev SA, Glazunov VP, et al. Anthraquinone production by calluscultures of Rubia cordifolia[J]. Fitoterapia,1999,70(6):552-557.
    [162]于荣敏,张辉,陈家琪,等.何首乌愈伤组织培养和蕙醒类成分的产生[J].中国药物化学杂志,1995,5(2):132-139.
    [163]邱奉同.何首乌愈伤组织诱导和植株再生[J].植物生理学通讯,2000,36(4):335-336.
    [164]龚玉莲,张玉葵,张雪云,等.何首乌块根愈伤组织培养[J].生物技术,2004,14(4):59-60.
    [165]袁红霞,王金虎,陈德燕.何首乌块根愈伤组织培养[J].苏州大学学报(自然科学版),2005,21(3):86-88.
    [166]李凤华,汤绍虎,孙一铭,等.降低何首乌愈伤组织褐化研究[J].西南师范大学学报(自然科学版),2005,30(2):338-340.
    [167]张秀省,张荣涛,曹岚,等.EMS诱变的长春花细胞系突变研究[J].中草药,2004,35(11):1293-1296.
    [168]梅兴国,潘学武,董妍玲,等.高产紫杉醇红豆杉细胞系的紫外诱变筛选[J].华中科技大学学报,2001,29(1):49-51.
    [169]李斌.剑麻愈伤组织细胞Co60-γ射线辐射诱变的研究[J].食品工业科技,2000,21(6):14.
    [170]郭斌,尉亚辉,曹炜. He-N e激光诱变选育高产白藜芦醇细胞系[J].光子学报,2002,31(3):278-280.
    [171] Rao SR, Ravishankar GA. Plant cell culture: Chemical factories of secondarymetabolites [J]. BiotechnologyAdvances,2002,20(2):101-153.
    [172] Bulgakov VP, Tchernoded GK, Mischenko NP, et al. Effect of salicylic acid, methyljasmonate, ethephon and cantharidin on anthraquinone production by Rubia cordifolia calluscultures transformed with the rolB and rolC genes [J]. Journal of Biotechnology,2002,97(3):213–221.
    [173] Conceic o LFR, Ferreres F, Tavares RM, et al. Induction of phenolic compounds inHypericum perforatum L. cells by Colletotrichum gloeosporioides elicitation [J].Phytochemistry,2006,67(2):149-155.
    [174] Kang SM, Jung HY, Kang YM, et al. Effects of methyl jasmonate and salicylic acid onthe production of tropane alkaloids and the expression of PMT and H6H in adventitious rootcultures of Scopolia parviflora [J]. Plant Science,2004,166(3):745–751.
    [175] Pen elas J, LlusiàJ, Filella I. Methyl salicylate fumigation increases monoterpeneemission rates [J]. Biologia Plantarum,2007,51(2):372–376.
    [176] Mikkelsen MD, Petersen BL, Glawischnig E, et al. Modulation of CYP79genes andglucosinolate profiles in Arabidopsis by defense signaling pathways [J]. Plant Physiology,2003,131(1):298–308.
    [177] Sirvent T, Gibson D. Induction of hypericins and hyperforin in Hypericum peforatum L.in response to biotic and chemical elicitors [J]. Physiological and Molecular Plant Pathology,2002,60(6):311~320.
    [178] Conceicao LFR, Ferreres F, Tavares RM, et al. Induction of phenolic compounds inHypericum peforatum L. cell by Colletotrichum gloeosporioides elicitation [J].Phytochemistry,2006,67(2):149~155.
    [179]林忠平,胡鸢雷,植物抗逆性与水杨酸介导的信号传导途径的关系[J].植物学报,1997,39(2):185-188.
    [180] Srivastava S, Dwivedi UN. Plant regeneration from callus of Cuscuta reflexa-anangiospermic parasite-and modulation of catalase and peroxidase activity by salicylic acidand naphthalene acetic acid [J]. Plant Physiology and Biochemistry,2001,39(6):529-538.
    [181]梅兴国,张舟宁,苏湘鄂,等.水杨酸对红豆杉细胞的诱导作用[J].生物技术,2000,10(6):18-20.
    [182]郭勇,崔堂兵,谢秀祯.植物细胞培养技术与应用[M].北京:化学工业出版杜,2004:146.
    [183]张伦,谭凯丽,廖海民,等.何首乌生长过程中二苯乙烯苷的含量变化[J].西北植物学报,2010,30(7):1481-1484.
    [184]于荣敏,陈敏青,赵昱.转基因何首乌毛状根的二苯乙烯苷含量[J].中药材,2006,29(4):321-322.
    [185] Yamamoto Y, Rmizuguch I. Selection of a high and stable pigment-producing strain incultured Euphorbia millii cells[J]. Theoretical and Applied Genetics,1982,61(2):113-116.
    [186]梅兴国.红豆杉细胞培养生产紫杉醇[M].武汉:华中科技大学出版社,2003:132-135.
    [187]颜谦,毛堂芬,方周伯,等.黄连培养细胞中高产小檗碱细胞系的筛选[J].贵州农业科学,1997,25(2):9-11.
    [188]赵德修,乔传令,汪沂.水母雪莲的细胞培养和高产黄酮细胞系的筛选[J].植物学报,1998,40(6):515-520.
    [189] Donald K, Dougall J, Joghson M, et al. A clonal analysis of anthocyanin accumulationby cell cultures of wild corrat[J]. Planta,1980,149(3):292-297.
    [190]杜金华,郭勇.高产花色苷玫瑰茄细胞系的筛选[J].生物工程学报,1997,13(4):437-439.
    [191]杜金华,张开利,郭勇.玫瑰茄愈伤组织产花青素的诱导[J].郑州粮食学院学报,1997,18(4):89-93.
    [192]刘佳佳,李晓如,郭勇,等.缺氧胁迫法选育高产银杏内酯悬浮细胞系研究[J].天然产物研究与开发,2001,13(2):1-4.
    [193]刘佳佳,郭勇,郑穗平,等.缺氧胁迫小细胞团法选育高产黄酮苷悬浮细胞系[J].中南工业大学学报,2001,32(1):41-45.
    [194]吴蕴祺,朱蔚华,陆俭,等.红豆杉愈伤组织中sinenxans高产细胞系的选择及其培养[J].中国药学杂志,1998,33(1):15-18.
    [195] Fumihiko S, Yasuyuki Y. High berberine-producing cultures of Coptis Japonica cells[J].Phytochemistry,1984,23(2):281-285.
    [196]梅兴国,董妍玲,潘学武.红豆杉抗苯丙氨酸细胞系的筛选及悬浮培养特性[J].天然产物研究与开发,2001,13(5):9-12.
    [197]许莉萍,林俊芳,陈如凯.甘蔗高产高糖细胞系筛选研究Ⅰ—甘蔗抗磷酸盐变异系的筛选[J].福建农业大学学报,1997,26(2):143-146.
    [198]查宏波,李启任,王东,等.粉叶小檗愈伤组织单细胞克隆[J].生物技术通报,2004,1:43-46.
    [199]甘烦远,郑光植,彭丽萍.红豆杉细胞培养的研究[J].云南植物研究,1996,18(2):134-138.
    [200] Stafford HA. The Metabolism of Aromatic Compounds[J]. Annual Review of PlantPhysiology,1974,25:459-486.
    [201] Yue XG, Zhang W, Deng MC. Hyper-production of13C-labeled trans-resveratrol in Vitisvinifera suspension cell culture by elicitation and in situ adsorption[J]. BiochemicalEngineering Journal,2011,53(3):292-296.
    [202] Ellis BE, Tbwers GH. The biosynthesis of rosmarinic acid[J]. Biochemical Journal,1970,118(2):291-294.
    [203] Leete E, Muir A, Towers NGH. Biosynthesis of psilotin from [2’,3’-13C2,1’-14C,4-3H]phenylalanine studied with13C-NMR[J]. Tetrahedron Letters,1982,23(26):2635-2638.
    [204] Singh K, Kumar S, Rani A, et al. Phenylalanine ammonia-lyase (PAL) and cinnamate4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea[J]. Functional&Integrative Genomics,2009,9(1):125-134.
    [205] Kuroban I, vining LC, Cinnes AG, et al. Use of13C in biosynthetic studies. The labelingpattern in dihydrofusarubin enriched from [13C]-and [13C,2H] acetate in cultures of Fusariumsolani[J]. Canadian Journal of Chemistry,1980,58(13):1380-1385.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700