用户名: 密码: 验证码:
B型烟粉虱诱导的烟草防御对B型烟粉虱和温室白粉虱种间竞争及解毒代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
B型烟粉虱是一种世界性的入侵性害虫,对多种土著昆虫具有明显的竞争取代优势。本研究以B型烟粉虱-烟草-温室白粉虱为研究体系,在明确B型烟粉虱在烟草上对温室白粉虱具有明显的种间竞争优势的基础上,通过本研究明确了B型烟粉虱取食诱导的烟草防御反应在对温室白粉虱的种间竞争优势中起重要作用;探讨了B型烟粉虱诱导的烟草防御反应与烟草生长和次生物质含量变化的关系;研究了烟粉虱和温室白粉虱体内解毒代谢酶活性的差异在两者种间竞争中的作用。其研究结果对于揭示B型烟粉虱对温室白粉虱的竞争取代机制,进一步深入探讨B型烟粉虱的入侵机制具有重要的意义。主要研究结果如下:
     1. B型烟粉虱在烟草上对温室白粉虱具有明显的种间竞争优势,B型烟粉虱取食诱导的烟草防御反应在B型烟粉虱对温室白粉虱的种间竞争优势中起重要的作用。
     (1) B型烟粉虱和温室白粉虱在盆栽烟草上的自然竞争结果表明,B型烟粉虱和温室白粉虱以1:1混合种群处理,经2代后,温室白粉虱成虫的数量明显下降,仅是单一种群温室白粉虱处理成虫数量的38.2%,占混合种群中粉虱总数量的24.4%;而混合种群中B型烟粉虱成虫的数量与单一种群烟粉虱处理,差异不显著,占混合种群粉虱种群总数的75.6%。温室白粉虱喜分布在烟草的上部叶位,B型烟粉虱主要分布在中部叶位,若虫存活率试验证明,在烟草上部叶位,第二代混合种群中温室白粉虱与单独温室白粉虱种群处理相比,若虫存活率下降了30.4%,而混合种群中B型烟粉虱存活率与单独烟粉虱种群处理相比存活率没有明显的差异。
     (2)利用小叶笼方法,分别测定了B型烟粉虱和温室白粉虱取食后的烟草叶片对后侵染的B型烟粉虱和温室白粉虱的影响。结果发现,B型烟粉虱为害的烟草系统叶对后侵染的温室白粉虱的存活率、生长发育和繁殖有明显的不利影响,而对后为害的B型烟粉虱自身没有明显的不利影响。取食B型烟粉虱为害后的烟草系统叶后,温室白粉虱若虫期平均存活率比对照下降了38.6%,总的发育历期比对照显著延长了2.6d,雌成虫5d和10d产卵量分别比对照降低了46.3%和30.1%。温室白粉虱为害后的烟草系统叶对后为害的B型烟粉虱和温室白粉虱生长发育和繁殖均没有明显的不利影响。由此说明,在烟草上B型烟粉虱与温室白粉虱的相互影响存在明显的不对称性,是B型烟粉虱对温室白粉虱具有竞争取代优势的重要原因之一。
     2.在诱导寄主防御的虫口密度下,B型烟粉虱和温室白粉虱对烟草生长特性的影响存在差异。B型烟粉虱为害的烟草对其生长有明显的不利影响,为害后的烟草株高比对照植株降低了6.9cm,第一、二节间距分别较对照缩短了55.4%和47.0%,叶片数量比对照降低了13.0%,系统叶叶面积明显增大,叶片变薄,但其单位面积干重比对照降低了47.6%;而温室白粉虱在供试虫量密度下对烟草生长指标却与对照植株没有明显的差异。B型烟粉虱危害烟草后产生了不同于温室白粉虱为害的对烟草植株的特异性抑制反应,这可能与B型烟粉虱诱导烟草表达的特异性防御反应对自身资源的消耗有关。
     3. B型烟粉虱为害烟草后其系统叶中绿原酸和芸香苷2种主要酚类物质的含量明显升高,分别为对照的3.95和3.93倍;而槲皮素、咖啡酸和山奈酚含量没有明显变化。在处理虫体叶上酚类物质含量变化均不明显。绿原酸和芸香苷含量的升高与诱导的烟草对温室白粉虱的防御有关。
     4. B型烟粉虱取食其自身为害的烟草系统叶,其成虫体内羧酸酯酶、谷胱甘肽-s转移酶以及细胞色素P450含量都明显升高,其中羧酸酯酶活性和细胞色素P450含量从取食6h-48h都明显升高,持续性较好,分别为对照的1.15-1.68和1.48-2.60倍,处理成虫酯酶同工酶在谱带数目上与对照无明显差异,但第二和第三条处理谱带颜色明显深于对照,处理成虫P450氧脱甲基酶活性除取食48h后与对照无差异外,其他取食时间酶活性都明显升高;烟粉虱若虫体内三种解毒酶活性变化趋势与成虫相似,但羧酸酯酶和谷胱甘肽-s-转移酶活性仅在1龄和2龄期显著升高,细胞色素P450氧脱甲基酶活性仅在1龄期显著升高。但温室白粉虱成虫取食B型烟粉虱为害后的烟草系统叶,其体内三种解毒酶活性却均被显著抑制,其中羧酸酯酶活性除取食后48h与对照无差异外,其他取食时间活性被显著抑制,活性抑制最大是,为取食的12h,其酶活仅为对照的0.58倍。细胞色素P450含量从6-72h整个时间段都被显著抑制,其活力仅为对照的40-63%。另外,处理成虫体内酯酶同工酶两条谱带颜色要明显浅于对照谱带颜色,P450氧脱甲基酶活性也被显著抑制,其中取食6h后的酶活性仅为对照的0.53倍;温室白粉虱若虫体内三种解毒酶活性在1龄期均受到抑制最强,其中又以羧酸酯酶活性被抑制程度最高,且在1-3龄期羧酸酯酶的活性可持续被抑制。而在B型烟粉虱诱导烟草植株的虫体叶上,两种粉虱成虫和若虫体内解毒酶的变化均不明显。表明两种粉虱代谢酶活性的差异也是B型烟粉虱对温室白粉虱竞争取代的重要原因之一。
Bemisia tabaci biotype-B is one of the important agricultural pests worldwide and candisplace an indigenous non-B population B. tabaci. We chose B. tabaci-tobacco-T.vaporariorum as a research system, as based on B. tabaci has interspecific competitiveadvantage to T. vaporariorum, we further proved that the effect of tobacco defense responseinduced by B. tabaci play a very important role in the interspecific competitive advantage to T.vaporariorum. We explored the effect of tobacco defense response induced by B. tabaci onplant growth and secondary metabolites. We studied the effect of tobacco's defense responseinduced by B. tabaci and T. vaporariorum, respectively, on development and reproduction ofT. vaporariorum and B. tabaci. Meanwhile, we explored the difference of detoxificationmetaboilsm adaptability of the two insects to defense response of tobacco induced by B.tabaci. This research had important academic meaning for showing competitive replacementmechanism of B. tabaci to T. vaporariorum, and implementing sustainable control effectively.Major results as follows:
     1. B. tabaci has obvious interspecific competition advatanges to T. vaporariorum ontobacco and tobacco defense induced by B. tabaci play a very important role in theseadvantages.
     (1) The competition between B. tabaci and T. vaporariorum on tobacco was studied. Theresults showed that the T. vaporariorum numbers in mixed populations were only38.2%ofisolated populations numbers, were only24.4%of the sum of mixed populations. B. tabacinumbers in mixed populations were75.6%of the sum of mixed populations. T. vaporariorumprefer feeding on the upper leaves, bu B. tabaci was like to feeding on the middle leaves. Inthe upper leaves, the livability of T. vaporariorum nymphs in mixed populations wasdecreased by30.4%compared with the livability of nymphs of isolated populations.However, the livability of B. tabaci was no significantly changes. It indicated that the tobaccodefense response induced by whitefly to T. vaporariorum, but had no effects to B. tabaci.
     (2) We determined that the effect of tobacco plants infested by B. tabaci on B. tabaci andT. vaporariorum. The results showed that the tobacco plants after infested by B. tabacibiotype B had negative effects on the growth, development and fecundity of T. vaporariorum,but had no significantly effects of B. tabaci. After feeding on the systematic leaves of tobaccoinfested by B. tabaci, the average livability of T. vaporariorum was decreased38.6%, thedevelopmental periods was prolong2.6d, and the5days and10days fecundity decreased 46.3%and30.1%, respectively, compared with those in the control. The tobacco plants afterinfested by T. vaporariorum had no effects on growth, development and fecundity of T.vaporariorum and B. tabaci. The results indicated that the interspecific competition betweenT. vaporariorum and B. tabaci exist obvious asymmetry that was one of the reason of B.tabaci competitive displacement advantages to T. vaporariorum.
     2. The difference of tobacco growth after feeding by B. tabaci and T. vaporariorum,respectively, based on the whitefly population density of reached plant induce defense. Thetaobacco plants infested by B. tabaci had negative effects on plant growth, but had no effectson plant growth after feeding by T. vaporariorum. The plant height was decreased6.9cm,and the1stinternode and2ndinternode of tobacco preinfested by B. tabaci were decreased by55.4%and47.0%, respectively. The leaf number of tobacco plants preinfested by B. tabaciwas decreased by13.0%, and the dry weight per unit area was decreased by47.6%comparedwith control. B. tabaci feeding can induce chemical defense responses in plants, B. tabaci-elicited declines in growth may result from the re-allocation of resources from growth todefense.
     3. The contents of chlorogenic acid and rutin of systematic leaves preinfested by B.tabaci were increased by3.95-and3.93-fold compared with control. The contents of phenoliccompound of damaged leaves were no change. Our results showed that the increasedchlorogenic acid and rutin were correlation with plant defense to T. vaporariorum.
     4. After feeding on the tobacco systematic leaves preinfested by B. tabaci, the activitiesof CarE、GST and the CyP450of B. tabaci adults were increased. The activities of CarE andthe CyP450content of B. tabaci were increased by1.15-1.68and1.48-2.60fold from6h to48h, respectively. Through esterase isozyme electrophoresis and determine the activity ofCyP450oxygen demethylase, we also found that the activities with two enzymes of B. tabaciadult were increased. The nymphs had the same result, but the activities of CarE and GSTwere increased in1stand2ndinstar, the activity of CyP450oxygen demethylase was onlyincreased in1stinstar. However, the activities with three enzymes in adults of T.vaporariorum were inhibited. The activity of CarE significantly inhibited except fo that atr48h, and the maximum activity was decreased by0.58fold compared with those in thecontrol. The content of CyP450was significantly inhibited by0.4-0.63fold from6h to72h.Through esterase isozyme electrophoresis and determine the activity of CyP450oxygendemethylase, we also found that the activities of two enzymes in adults of T. vaporariorumwere significantly inhibited. The enzymes activities with three were inhibited in1stinstar, butthe activity of CarE was the most inhibited compared with other enzyme activity. After feeding on the damaged leaves of tobacco infested by B. tabaci, the activity of detoxifyingenzymes in adults and nymphs of T. vaporariorum and B. tabaci have no significantlychange. The detoxifying enzyme activity changes of two insects have significantlydifferences, and it might play an important role in B. tabaci displacing T. vaporariorum.
引文
安志兰,褚栋,郭笃发,范仲学,陶云荔,刘国霞,张友军.寄主植物对B型烟粉虱(Bemisiatabaci)几种主要解毒酶活性的影响.生态学报.2008,4:1536-1543.
    毕明娟. B型烟粉虱诱导的烟草防御信号途径及B型烟粉虱和烟蚜对烟草防御反应的生理适应性差异[D],山东农业大学博士学位论文.2010.
    陈巨莲,倪汉祥,孙京瑞,程登发.小麦几种主要次生物质对麦长管蚜几种酶活力的影响.昆虫学报.2003,46(2):144-149.
    褚栋,周洪旭,王斌,陶云荔,刘国霞,朱国仁,张友军.山东省烟粉虱与温室白粉虱种群动态及其地理分布调查.山东农业科学.2007,(2):64-66.
    褚栋,张友军,丛斌,徐宝云,吴青君.世界性重要害虫B型烟粉虱的入侵机制.昆虫学报.2004,47(3):400-406.
    崔旭红.2007. B型烟粉虱和温室粉虱热胁迫适应性及其分子生态机制[D]:博士学位论文.
    崔旭红,谢明,万方浩.短时高温暴露对B型烟粉虱和温室白粉虱存活以及生殖适应性的影响.中国农业科学.2008,41(2):424-430.
    高庆刚,罗晨,郭晓军,墨铁路,张芝利.烟粉虱和温室粉虱在甘蓝上的刺探取食行为比较.昆虫知识.2006,43(6):802-805.
    郭线茹,罗梅浩.烟蚜危害对烟草生理及生长发育的影响.华北农学报.1995,10(2):95-99.
    贺彩霞,崔华,孙玉刚,赵化章,邵学广,赵贵文.高效液相色谱化学发光抑制检测法测定烟草中的绿原酸和芸香苷.分析化学.1999,27(9):1110-1114.
    姜涛,褚栋,姜德锋,周洪旭,刘国霞,陶云荔.转Bt+CpTI基因棉对烟粉虱种群动态影响及其几丁质酶和β-1,3-葡聚糖酶活性变化.山东农业科学.2009,942-947.
    李军,赵惠燕, HEIMBACH, U., THIEME, T.两种麦蚜取食诱导小麦抗性品种后对后来取食蚜生物学特性的影响.昆虫学报.2007,50(2):197-201.
    李庆亮. B型烟粉虱为害对烟草生理生化的影响及其诱导的防御反应[D]:山东农业大学硕士学位论文.2009.
    李庆亮. B型烟粉虱为害后烟草的生理响应[D]:山东农业大学博士学位论文.2012.
    刘金燕. B型烟粉虱与温室粉虱解毒酶系在寄主转换中的动态变化[D]:西南大学硕士学位论文.2008.
    娄永根,程家安.植物的诱导抗虫性.昆虫学报.1997,40(3):320-331.
    罗晨,向玉勇,郭晓军,张帆,张芝利.寄主植物对B型烟粉虱(Bemisia tabaci)和温室粉虱(Trialeurodes vaporariorum)个体发育和种群繁殖的影响.生态学报.2007,3:1035-1040.
    程璐.苜蓿生理生化抗蚜机制初步研究[D]:甘肃农业大学硕士学位论文.2008.
    牟少飞,梁沛,高希武.槲皮素对B型烟粉虱羧酸酯酶和谷胱甘肽-S-转移酶活性的影响.昆虫知识.2006,43(4):491-495.
    秦秋菊,高希武.昆虫取食诱导的植物防御反应.昆虫学报.2005,48(1):125-134.
    阮雪莲.2006.二化螟不同类群之间的关系及其RAPD的研究[D]:华中农业大学.
    孙亚萍.烟粉虱为害对番茄品质及生理生化的影响[D]:扬州大学硕士学位论文.2008.
    吴海军,李友莲,裴淑芳.烟碱对桃蚜存活率和生长速率的影响.山西农业大学学报(自然科学版).2003,3:230-232.
    万方浩,郑小波,郭建英.重要农林外来入侵物种的生物学与控制:科学出版社.2005.
    王承香. B型烟粉虱取食烟草对烟蚜的影响及生理机制探讨[D]:山东农业大学博士论文.2009.
    王洪涛. B型烟粉虱取食烟草对斜纹夜蛾生长发育和繁殖的影响及机制探讨[D]:山东农业大学博士论文.2011.
    王红,王冬生,杨益众,李琳一.寄主植物对烟粉虱后代种群抗性相关酶活性的影响.植物保护.2007,33(3):36-39.
    周福才,李传明,周桂生,顾爱祥,王萍.烟粉虱体内几种抗性酶对寄主转换的响应.生态学报.2010,30(7):1806-1811.
    周海霞.2002.转CrylAc和CrylA+CpTI基因棉花对甜菜夜蛾生长发育的影响及生理生化机制研究[D]:山东农业大学硕士学位论文.
    姚洪渭,叶恭银,程家安.寄主植物影响害虫药剂敏感性的研究进展.昆虫学报.2002,45(2):253-264.
    臧连生,傅荣幸,刘树生,李俊敏,刘银泉. B型与浙江非B型烟粉虱药剂敏感性的比较.昆虫知识.2006,43(2):207-210.
    张帆.2009.棉花防御与烟粉虱反防御的交互作用[D]:新疆农业大学硕士学位论文.
    张海静.2012. B型烟粉虱唾液诱导的植物抗性效应[D]:中国农业科学院硕士学位论文.
    张芝利.关于烟粉虱大发生的思考.北京农业科学.2000,18(1):1-3.
    张瑛,严福顺.虫害诱导的植物挥发性次生物质及其在植物防御中的作用.昆虫学报.1998,41(2):204-214.
    Agrawal, A. A., Strauss, S. Y., Stout, M. J. Costs of induced responses and tolerance toherbivory in male and female fitness components of wild radish. Evolution.1999,1093-1104.
    Ahmad, S., Brattsten, L., Mullin, C., Yu, S. Enzymes involved in the metabolism of plantallelochemicals.1986,73-151.
    Alon, M., Alon, F., Nauen, R., Morin, S. Organophosphates' resistance in the B-biotype ofBemisia tabaci (Hemiptera: Aleyrodidae) is associated with a point mutation in anace1-type acetylcholinesterase and overexpression of carboxylesterase. Insectbiochemistry and molecular biology.2008,38(10):940-949.
    Alon, M., Elbaz, M., Ben-Zvi, M. M., Feldmesser, E., Vainstein, A., Morin, S. Insights intothe transcriptomics of polyphagy: Bemisia tabaci adaptability to phenylpropanoidsinvolves coordinated expression of defense and metabolic genes. Insect biochemistryand molecular biology.2012,42(4):251-263.
    Argandona, V., Chaman, M., Cardemil, L., Munoz, O., Zuniga, G., Corcuera, L. Ethyleneproduction and peroxidase activity in aphid-infested barley. Journal of chemicalecology.2001,27(1):53-68.
    Arnó, J., Albajes, R., Gabarra, R. Within-plant distribution and sampling of single and mixedinfestations of Bemisia tabaci and Trialeurodes vaporariorum (Homoptera:Aleyrodidae) in winter tomato crops. Journal of Economic Entomology.2006,99(2):331-340.
    Bakshi, A. K., Usha-Chauhan, K. C. Sharma, Gupta, Y. C. Hosts range of the greenhousewhitefly, Trialeurodes vaporariorum (Westwood)(Homoptera: Aleyrodidae) in mid-hill regions of Himachal Pradesh. Insect environment.2003,9:55-56.
    Bedford, I., Briddon, R., Brown, J., Rosell, R., Markham, P. Geminivirus transmission andbiological characterisation of Bemisia tabaci (Gennadius) biotypes from differentgeographic regions. Annals of Applied Biology.1994,125(2):311-325.
    Berner, J. M., Westhuizen, A. The selective induction of the phenylalanine ammonia-lyasepathway in the resistance response of wheat to the Russian wheat aphid. CerealResearch Communications.2010,38(4):506-513.
    Bezemer, T. M., Jones, T. H. Plant-insect herbivore interactions in elevated atmospheric CO2:quantitative analyses and guild effects. Oikos.1998,212-222.
    Bowling, S. A., Guo, A., Cao, H., Gordon, A. S., Klessig, D. F., Dong, X. A mutation inArabidopsis that leads to constitutive expression of systematic acquired resistance.The Plant Cell Online.1994,6(12):1845-1857.
    Brown, G. C., Cooper, C. E. Nanomolar concentrations of nitric oxide reversibly inhibitsynaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBSletters.1994,356(2):295-298.
    Cabrera-Brandt, M. A., Fuentes-Contreras, E., Figueroa, C. C. Differences in thedetoxification metabolism between two clonal lineages of the aphid Myzus persicae(Sulzer)(Hemiptera: Aphididae) reared on tobacco (Nicotiana tabacum L.). ChileanJournal of Agricultural Research.2010,70(4):567-575.
    Cahill, M., Gorman, K., Day, S., Denholm, I., Elbert, A., Nauen, R. Baseline determinationand detection of resistance to imidacloprid in Bemisia tabaci (Homoptera:Aleyrodidae). Bulletin of Entomological Research.1996,86(4):343-350.
    Calatayud, P. A., Rahbé, Y., Delobel, B., Khuong‐Huu, F., Tertuliano, M., Rü, B. Influenceof secondary compounds in the phloem sap of cassava on expression of antibiosistowards the mealybug Phenacoccus manihoti. Entomologia experimentalis etapplicata.1994,72(1):47-57.
    Cardoza, Y. J., Mcauslane, H. J., Webb, S. E. Effect of leaf age and silverleaf symptoms onoviposition site selection and development of Bemisia argentifolii (Homoptera:Aleyrodidae) on zucchini. Environmental entomology.2000,29(2):220-225.
    Cooper, W., Jia, L., Goggin, F. Acquired and R-gene-mediated resistance against the potatoaphid in tomato. Journal of chemical ecology.2004,30(12):2527-2542.
    Costa, H., Brown, J., Sivasupramaniam, S., Bird, J. Regional distribution, insecticideresistance, and reciprocal crosses between the A and B biotypes of Bemisia tabaci.Insect Science and its Application.1993,14(2):255.
    Crowder, D. W., Horowitz, A. R., De Barro, P. J., Liu, S. S., Showalter, A. M., Kontsedalov,S., Khasdan, V., Shargal, A., Liu, J., Carrière, Y. Mating behaviour, life history andadaptation to insecticides determine species exclusion between whiteflies. Journal ofAnimal Ecology.2010,79(3):563-570.
    Damman, H., Stamp, N., Casey, T. Patterns of interaction among herbivore species.Caterpillars: ecological and evolutionary constraints on foraging.1993,132-169.
    De Barro, P., Bourne, A., Khan, S., Brancatini, V. Host plant and biotype densityinteractions–their role in the establishment of the invasive B biotype of Bemisia tabaci.Biological Invasions.2006,8(2):287-294.
    De Vos, M., Van Oosten, V. R., Van Poecke, R. M., Van Pelt, J. A., Pozo, M. J., Mueller, M.J., Buchala, A. J., Métraux, J.-P., Van Loon, L., Dicke, M. Signal signature andtranscriptome changes of Arabidopsis during pathogen and insect attack. MolecularPlant-Microbe Interactions.2005,18(9):923-937.
    Denno, R. F., Kaplan, I. Plant-mediated interactions in herbivorous insects: mechanisms,symmetry, and challenging the paradigms of competition past. Ecologicalcommunities: plant mediation in indirect interaction webs.2007,19-50.
    Denno, R. F., McClure, M. S., Ott, J. R. Interspecific interactions in phytophagous insects:competition reexamined and resurrected. Annual review of entomology.1995,40(1):297-331.
    Denno, R. F., Peterson, M. A., Gratton, C., Cheng, J., Langellotto, G. A., Huberty, A. F.,Finke, D. L. Feeding-induced changes in plant quality mediate interspecificcompetition between sap-feeding herbivores. Ecology.2000,81(7):1814-1827.INH, S. T., Gális, I., Baldwin, I. T. UVB radiation and17-hydroxygeranyllinalool diterpeneglycosides provide durable resistance against mirid (Tupiocoris notatus) attack infield-grown Nicotiana attenuata plants. Plant, Cell&Environment.2012,36:590-606.
    Dinsdale, A., Cook, L., Riginos, C., Buckley, Y., Barro, P. D. Refined global analysis ofBemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae)mitochondrial cytochrome oxidase1to identify species level genetic boundaries.Annals of the Entomological Society of America.2010,103(2):196-208.
    Donovan, M. P., Nabity, P. D., DeLucia, E. H. Salicylic acid-mediated reductions in yield inNicotiana attenuata challenged by aphid herbivory. Arthropod-Plant Interactions.2013,7(1):45-52.
    Dugravot, S., Brunissen, L., Létocart, E., Tjallingii, W. F., Vincent, C., Giordanengo, P.,Cherqui, A. Local and systematic responses induced by aphids in Solanum tuberosumplants. Entomologia experimentalis et applicata.2007,123(3):271-277.
    Feinstein, L., Hannan, J, P. Effect of Green Peach Aphid Damage on the Nicotine Content ofTobacco. Journal of Economic Entomology.1951,44(2):267-267.
    Feyereisen, R. Evolution of insect P450. Biochemical Society Transactions.2006,34(6):1252-1255.
    Feyereisen, R. Insect P450enzymes. Annual review of entomology.1999,44(1):507-533.
    Fidantsef, A., Stout, M., Thaler, J., Duffey, S., Bostock, R. Signal interactions in pathogenand insect attack: expression of lipoxygenase, proteinase inhibitor II, andpathogenesis-related protein P4in the tomato, Lycopersicon esculentum. Physiologicaland Molecular Plant Pathology.1999,54(3):97-114.
    Field, L., Devonshire, A. Esterase genes conferring insecticide resistance in aphids. In ACSSymposium Series.1992,(505),209-209: ACS Publications.
    Francis, F., Vanhaelen, N., Haubruge, E. Glutathione S-transferases in the adaptation to plantsecondary metabolites in the Myzus persicae aphid. Archives of insect biochemistryand physiology.2005,58(3):166-174.
    Fu, X., Ye, L., Kang, L., Ge, F. Elevated CO2shifts the focus of tobacco plant defences fromcucumber mosaic virus to the green peach aphid. Plant, Cell&Environment.2010,33(12):2056-2064.
    Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophicpathogens. Annu. Rev. Phytopathol.2005,43:205-227.
    González‐Megías, A., Gómez, J. M. Consequences of removing a keystone herbivore for theabundance and diversity of arthropods associated with a cruciferous shrub. EcologicalEntomology.2003,28(3):299-308.
    Han, Y., Wang, Y., Bi, J. L., Yang, X. Q., Huang, Y., Zhao, X., Hu, Y., Cai, Q. N.Constitutive and induced activities of defense-related enzymes in aphid-resistant andaphid-susceptible cultivars of wheat. Journal of Chemical Ecology.2009,35(2):176-182.
    Haukioja, E., Ruohom ki, K., Senn, J., Suomela, J., Walls, M. Consequences of herbivory inthe mountain birch (Betula pubescens ssp tortuosa): importance of the functionalorganization of the tree. Oecologia.1990,82(2):238-247.
    Heidel, A., Baldwin, I. Microarray analysis of salicylic acid-and jasmonic acid-signalling inresponses of Nicotiana attenuata to attack by insects from multiple feeding guilds.Plant, Cell&Environment.2004,27(11):1362-1373.
    Heil, M., Fiala, B., Baumann, B., Linsenmair, K. Temporal, spatial and biotic variations inextrafloral nectar secretion by Macaranga tanarius. Functional Ecology.2000,749-757.
    Herms, D. A., Mattson, W. J. The dilemma of plants: to grow or defend. Quarterly Review ofBiology.1992,67(3):283-335.
    Hong, L., Rumei, X. Studies on honeydew excretion by greenhouse whitefly, Trialeurodesvaporariorum (Westw.) on its host plant, Cucumis sativus. Journal of AppliedEntomology.1993,115(1-5):43-51.
    Horowitz, A. R., Kontsedalov, S., Denholm, I., Ishaaya, I. Dynamics of insecticide resistancein Bemisia tabaci: a case study with the insect growth regulator pyriproxyfen. Pestmanagement science.2002,58(11):1096-1100.
    Hung, C. F., Berenbaum, M. R., Schuler, M. A. Isolation and characterization of CYP6B4, afuranocoumarin-inducible cytochrome P450from a polyphagous caterpillar(Lepidoptera: Papilionidae). Insect biochemistry and molecular biology.1997,27(5):377-385.
    Hunter, M. D. Interactions within herbivore communities mediated by the host plant: thekeystone herbivore concept.1992.
    Inbar, M., Doostdar, H., Sonoda, R. M., Leibee, G. L., Mayer, R. T. Elicitors of plantdefensive systems reduce insect densities and disease incidence. Journal of chemicalecology.1999a,24(1):135-149.
    Inbar, M., Eshel, A., Wool, D. Interspecific competition among phloem-feeding insectsmediated by induced host-plant sinks. Ecology.1995,76(5):1506-1515.
    Inbar, M., Gerling, D. Plant-mediated interactions between whiteflies, herbivores, and naturalenemies. Annu. Rev. Entomol.2008,53:431-448.
    Jiu, M., Zhou, X. P., Tong, L., Xu, J., Yang, X., Wan, F.-H., Liu, S. S. Vector-virusmutualism accelerates population increase of an invasive whitefly. PLoS One.2007,2(1): e182.
    Kaloshian, I. Gene-for-gene disease resistance: bridging insect pest and pathogen defense.Journal of chemical ecology.2004,30(12):2419-2438.
    Karban, R., Baldwin, I. T. Induced responses to herbivory: University of Chicago Press.1997.
    Karunker, I., Benting, J., Lueke, B., Ponge, T., Nauen, R., Roditakis, E., Vontas, J., Gorman,K., Denholm, I., Morin, S. Over-expression of cytochrome P450CYP6CM1isassociated with high resistance to imidacloprid in the B and Q biotypes of Bemisiatabaci (Hemiptera: Aleyrodidae). Insect biochemistry and molecular biology.2008,38(6):634-644.
    Kempema, L. A., Cui, X., Holzer, F. M., Walling, L. L. Arabidopsis transcriptome changes inresponse to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions inresponses to aphids. Plant Physiology.2007,143(2):849-865.
    Kessler, A., Baldwin, I. T. Defensive function of herbivore-induced plant volatile emissionsin nature. Science.2001,291(5511):2141-2144.
    Kessler, A., T Baldwin, I. Herbivore‐induced plant vaccination. Part I. The orchestration ofplant defenses in nature and their fitness consequences in the wild tobacco Nicotianaattenuata. The Plant Journal.2004,38(4):639-649.
    Kieckhefer, R., Kantack, B. Losses in Yield in Spring Wheat in South Dakota caused byCereal Aphidst. Journal of Economic Entomology.1980,73(4):582-585.
    Kopp, A., Barmina, O., Hamilton, A. M., Higgins, L., McIntyre, L. M., Jones, C. D.Evolution of gene expression in the Drosophila olfactory system. Molecular biologyand evolution.2008,25(6):1081-1092.
    Leiss, K. A., Maltese, F., Choi, Y. H., Verpoorte, R., Klinkhamer, P. G. Identification ofchlorogenic acid as a resistance factor for thrips in chrysanthemum. Plant Physiology.2009,150(3):1567-1575.
    Leszczynski, B., Tjallingii, W., Dixon, A., Swiderski, R. Effect of methoxyphenols on grainaphid feeding behaviour. Entomologia experimentalis et applicata.1995,76(2):157-162.
    Li, X., Baudry, J., Berenbaum, M. R., Schuler, M. A. Structural and functional divergence ofinsect CYP6B proteins: From specialist to generalist cytochrome P450. Proceedingsof the National Academy of Sciences of the United States of America.2004,101(9):2939-2944.
    Li, X., Schuler, M. A., Berenbaum, M. R. Molecular mechanisms of metabolic resistance tosynthetic and natural xenobiotics. Annu. Rev. Entomol.2007,5(2):231-253.
    Liang, P., Cui, J. Z., Yang, X. Q., Gao, X. W. Effects of host plants on insecticidesusceptibility and carboxylesterase activity in Bemisia tabaci biotype B andgreenhouse whitefly, Trialeurodes vaporariorum. Pest management science.2007,63(4):365-371.
    Liu, S. S., De Barro, P., Xu, J., Luan, J. B., Zang, L. S., Ruan, Y. M., Wan, F. H. Asymmetricmating interactions drive widespread invasion and displacement in a whitefly. Science.2007,318(5857):1769-1772.
    Liu, T. X., Oetting, R., Buntin, G. Evidence of interspecific competition betweenTrialeurodes vaporariorum (Westwood) and Bemisia tabaci (Gennadius)(Homoptera:Aleyrodidae) on some greenhouse-grown plants. Journal of entomological science.1994,29(1):55-65.
    Liu, Z., Williamson, M. S., Lansdell, S. J., Denholm, I., Han, Z., Millar, N. S. A nicotinicacetylcholine receptor mutation conferring target-site resistance to imidacloprid inNilaparvata lugens (brown planthopper). Proceedings of the National Academy ofSciences of the United States of America.2005,102(24):8420-8425.
    Luan, J. B., Yao, D. M., Zhang, T., Walling, L. L., Yang, M., Wang, Y. J., Liu, S. S.Suppression of terpenoid synthesis in plants by a virus promotes its mutualism withvectors. Ecology letters.2013,16(3):390-398.
    Luo, C., Jones, C., Devine, G., Zhang, F., Denholm, I., Gorman, K. Insecticide resistance inBemisia tabaci biotype Q (Hemiptera: Aleyrodidae) from China. Crop Protection.2010,29(5):429-434.
    Luo, C., Wang, S., Zhang, Z., Li, D., Wu, Y., Wu, C., Yang, G., Zhang, J. Populationdynamics of whiteflies and natural enemies in the suburbs of Beijing. ContemporaryEntomology Research, Proceedings of Entomology Society of China for Establishment.2004,60:465-468.
    Ma bèche-Coisne, M., Nikonov, A. A., Ishida, Y., Jacquin-Joly, E., Leal, W. S. Pheromoneanosmia in a scarab beetle induced by in vivo inhibition of a pheromone-degradingenzyme. Proceedings of the National Academy of Sciences of the United States ofAmerica.2004,101(31):11459-11464.
    Ma, W., Li, X., Dennehy, T., Lei, C., Wang, M., Degain, B., Nichols, R. Pyriproxyfenresistance of Bemisia tabaci (Homoptera: Aleyrodidae) biotype B: metabolicmechanism. Journal of Economic Entomology.2010,103(1):158-165.
    Macedo, T., Bastos, C., Higley, L., Ostlie, K., Madhavan, S. Photosynthetic responses ofsoybean to soybean aphid (Homoptera: Aphididae) injury. Journal of EconomicEntomology.2003,96(1):188-193.
    Macleod, N. J., Pridham, J. Observations on the translocation of phenolic compounds.Phytochemistry.1966,5(4):777-781.
    Mao, W., Berhow, M. A., Zangerl, A. R., Mcgovern, J., Berenbaum, M. R. CytochromeP450-mediated metabolism of xanthotoxin by Papilio multicaudatus. Journal ofchemical ecology.2006,32(3):523-536.
    Matsumura, M. The current status of occurrence and forecasting system of rice planthoppersin Japan. Journal of Asia-Pacific Entomology.2001,4(2):195-199.
    Matsumura, M., Suzuki, Y. Direct and feeding-induced interactions between two riceplanthoppers, Sogatella furcifera and Nilaparvata lugens: effects on dispersalcapability and performance. Ecological Entomology.2003,28(2):174-182.
    Mayer, R. T., Inbar, M., McKenzie, C., Shatters, R., Borowicz, V., Albrecht, U., Powell, C.A., Doostdar, H. Multitrophic interactions of the silverleaf whitefly, host plants,competing herbivores, and phytopathogens. Archives of insect biochemistry andphysiology.2002,51(4):151-169.
    McAuslane, H. J., Chen, J., Carle, R. B., Schmalstig, J. Influence of Bemisia argentifolii(Homoptera: Aleyrodidae) infestation and squash silverleaf disorder on zucchiniseedling growth. Journal of Economic Entomology.2004,97(3):1096-1105.
    McKenzie, C. Effect of tomato mottle virus (ToMoV) on Bemisia tabaci biotype B(Homoptera: Aleyrodidae) oviposition and adult survivorship on healthy tomato.Florida Entomologist.2002,85(2):367-368.
    Miller, H., Neese, P., Ketring, D., Dillwith, J. Involvement of ethylene in aphid infestation ofbarley. Journal of Plant Growth Regulation.1994,13(4):167-171.
    MILLER‐PIERCE, M. R., PREISSER, E. L. Asymmetric priority effects influence thesuccess of invasive forest insects. Ecological Entomology.2012,37(5):350-358.
    Mistric, W., Clark, G. Green peach aphid injury to flue-cured tobacco leaves. Tob. Sci.1979,23:23-24.
    Moran, N. A., Whitham, T. G. Interspecific competition between root-feeding and leaf-gallingaphids mediated by host-plant resistance. Ecology.1990,1050-1058.
    Morin S, F, A., M., A. The involvement of glutathione s-transferases from Bemisia tabaci(Hemiptera: Aleyrodidae) in plant–insect interactions. Fourth International BemisiaWorkshop InternationalWhitefly Genomics Workshop. Journal of insect Science.2008,8(Article4):33.
    Nelson, D. R. The cytochrome P450homepage. Hum Genomics.2009,4(1):59-65.
    Nombela, G., Garzo, E., Duque, M., Mu iz, M. Preinfestations of tomato plants by whiteflies(Bemisia tabaci) or aphids (Macrosiphum euphorbiae) induce variable resistance orsusceptibility responses. Bulletin of Entomological Research.2009,99(2):183-191.
    Ohnmeiss, T. E., Baldwin, I. T. The allometry of nitrogen to growth and an inducible defenseunder nitrogen-limited growth. Ecology.1994,995-1002.
    Oliveira, M., Henneberry, T., Anderson, P. History, current status, and collaborative researchprojects fo Bemisia tabaci. Crop Protection.2001,20(9):709-723.
    Olson, M. M., Roseland, C. R. Induction of the coumarins scopoletin and ayapin in sunflowerby insectfeeding stress and effects of coumarins on the feeding of sunflower beetle(Coleoptera: Chrysomelidae). Environmental entomology.1991,20(4):1166-1172.
    Pascual, S. Short communication. Mechanisms in competition, under laboratory conditions,between Spanish biotypes B and Q of Bemisia tabaci (Gennadius). Spanish Journal ofAgricultural Research.2006,4(4):351-354.
    Pascual, S., Callejas, C. Intra-and interspecific competition between biotypes B and Q ofBemisia tabaci (Hemiptera: Aleyrodidae) from Spain. Bulletin of EntomologicalResearch.2004,94(4):369-375.
    Perring, T. Biological differences of two species of Bemisia tabaci that contribute to adaptiveadvantage. Bemisia.1995,3-16.
    Petersen, M., Sandstr m, J. Outcome of indirect competition between two aphid speciesmediated by responses in their common host plant. Functional Ecology.2001,15(4):525-534.
    Puthoff, D. P., Holzer, F. M., Perring, T. M., Walling, L. L. Tomato pathogenesis-relatedprotein genes are expressed in response to Trialeurodes vaporariorum and Bemisiatabaci biotype B feeding. Journal of chemical ecology.2010,36(11):1271-1285.
    Rabbinge, R., Drees, E., Van der Graaf, M., Verberne, F., Wesselo, A. Damage effects ofcereal aphids in wheat. Netherlands Journal of Plant Pathology.1981,87(6):217-232.
    Ramos, N., Neto, A., Arsénio, S., Mangerico, E., Stigter, L., Fortunato, E., Fernandes, J.,Lavadinho, A., Louro, D. Situation of the whiteflies Bemisia tabaci and Trialeurodesvaporariorum in protected tomato crops in Algarve (Portugal). EPPO Bulletin.2002,32(1):11-15.
    Rausher, M. D., Iwao, K., Simms, E. L., Ohsaki, N., Hall, D. Induced resistance in Ipomoeapurpurea. Ecology.1993,74(1):20-29.
    Reitz, S. R., Trumble, J. T. Competitive Displacement Among Insects and Arachnids1.Annual review of entomology.2002,47(1):435-465.
    Rekha, A., Maruthi, M., Muniyappa, V., Colvin, J. Occurrence of three genotypic clusters ofBemisia tabaci and the rapid spread of the B biotype in south India. Entomologiaexperimentalis et applicata.2005,117(3):221-233.
    Rojo, E., Solano, R., Sánchez-Serrano, J. J. Interactions between signaling compoundsinvolved in plant defense. Journal of Plant Growth Regulation.2003,22(1):82-98.
    Rosenthal, G. A., Berenbaum, M. R. Herbivores: Their interactions with secondary plantmetabolites: Ecological and Evolutionary Processes: Academic Press.1992.
    Ryan, J. D., Johnson, R., Eikenbary, R., Dorschner, K. Drought/greebug interactions:photosynthesis of greenbug resistant and susceptible wheat. Crop science.1987,27(2):283-288.
    Sandstr m, J., Telang, A., Moran, N. Nutritional enhancement of host plants by aphids-acomparison of three aphid species on grasses. Journal of Insect Physiology.2000,46(1):33-40.
    Sauge, M. H., Lacroze, J. P., Po ssel, J. L., Pascal, T., Kervella, J. Induced resistance byMyzus persicae in the peach cultivar ‘Rubira’. Entomologia experimentalis etapplicata.2002,102(1):29-37.
    Sauge, M. H., Mus, F., Lacroze, J. P., Pascal, T., Kervella, J., Po ssel, J. L. Genotypicvariation in induced resistance and induced susceptibility in the peach-Myzus persicaeaphid system. Oikos.2006,113(2):305-313.
    Scott, J. G. Cytochromes P450and insecticide resistance. Insect biochemistry and molecularbiology.1999,29(9):757-777.
    Snook, M. E., Johnson, A. W., Severson, R. F., Teng, Q., White, R. A., Sisson, V. A., Jackson,D. M. Hydroxygeranyllinalool glycosides from tobacco exhibit antibiosis activity inthe tobacco budworm [Heliothis virescens (F.)]. Journal of agricultural and foodchemistry.1997,45(6):2299-2308.
    Snyder, M., Glendinning, J. Causal connection between detoxification enzyme activity andconsumption of a toxic plant compound. Journal of Comparative Physiology A.1996,179(2):255-261.
    Srinivasan, R., Uthamasamy, S. Feeding induced changes in phenolics and pathogenesis-related proteins: Implications in host resistance to Bemisia tabaci Genn. andHelicoverpa armigera Hub. in tomato accessions. Pest Manag. Hortic. Ecosyst.2004,10(2):95-106.
    Stotz, H. U., Pittendrigh, B. R., Kroymann, J., Weniger, K., Fritsche, J., Bauke, A., Mitchell-Olds, T. Induced plant defense responses against chewing insects. Ethylene signalingreduces resistance of Arabidopsis against Egyptian cotton worm but not diamondbackmoth. Plant Physiology.2000,124(3):1007-1018.
    Stout, M. J., Workman, K. V., Bostock, R. M., Duffey, S. S. Specificity of induced resistancein the tomato, Lycopersicon esculentum. Oecologia.1997,113(1):74-81.
    Tan, W. J., Riley, D. G. Effects on reproduction of silverleaf whitefly, Bemisia argentifoliidue to Bifenthrin resistance. Resistant Pest Management.2000,11(1):19-21.
    Tertuliano, M., Calatayud, P., Le Rü, B. Seasonal changes of secondary compounds in thephloem sap of cassava in relation to fertilisation and to infestation by the cassavaMealybug. International Journal of Tropical Insect Science.1999,19(1):91-98.
    Thompson, G. A., Goggin, F. L. Transcriptomics and functional genomics of plant defenceinduction by phloem-feeding insects. Journal of Experimental Botany.2006,57(4):755-766.
    Todd, G. W., Getahun, A., Cress, D. C. Resistance in barley to the greenbug, Schizaphisgraminum.1. Toxicity of phenolic and flavonoid compounds and related substances.Annals of the Entomological Society of America.1971,64(3):718-722.
    Tsueda, H., Tsuchida, K. Differences in spatial distribution and life history parameters of twosympatric whiteflies, the greenhouse whitefly Trialeurodes vaporariorum (Westwood)and the silverleaf whitefly Bemisia argentifolii (Bellows&Perring), under greenhouseand laborator conditions. Applied entomology and zoology.1998,33(3):379-383.
    van de Ven, W. T., LeVesque, C. S., Perring, T. M., Walling, L. L. Local and systematicchanges in squash gene expression in response to silverleaf whitefly feeding. ThePlant Cell Online.2000,12(8):1409-1423.
    Van Zandt, P. A., Agrawal, A. A. Community-wide impacts of herbivore-induced plantresponses in milkweed (Asclepias syriaca). Ecology.2004,85(9):2616-2629.
    Viswanathan, D. V., Narwani, A. J., Thaler, J. S. Specificity in induced plant responsesshapes patterns of herbivore occurrence on Solanum dulcamara. Ecology.2005,86(4):886-896.
    Voelckel, C., Weisser, W. W., Baldwin, I. T. An analysis of plant–aphid interactions bydifferent microarray hybridization strategies. Molecular Ecology.2004,13(10):3187-3195.
    Voelckel, C., Baldwin, I. T. Herbivore‐induced plant vaccination. Part II. Array‐studiesreveal the transience of herbivore‐specific transcriptional imprints and a distinctimprint from stress combinations. The Plant Journal.2004,38(4):650-663.
    Walling, L. L. The myriad plant responses to herbivores. Journal of Plant Growth Regulation.2000,19(2):195-216.
    Welter, S. C. Arthropod impact on plant gas exchange. Insect-plant interactions.1989,1135-150.
    Wheeler, G., Slansky Jr, F., Yu, S. Fall armyworm sensitivity to flavone: Limited role ofconstitutive and induced detoxifying enzyme activity. Journal of chemical ecology.1993,19(4):645-667.
    Xie, W., Wang, S., Wu, Q., Feng, Y., Pan, H., Jiao, X., Zhou, L., Yang, X., Fu, W., Teng, H.Induction effects of host plants on insecticide susceptibility and detoxificationenzymes of Bemisia tabaci (Hemiptera: Aleyrodidae). Pest management science.2011,67(1):87-93.
    Xue, M., Wang, C. X., Bi, M. J., Li, Q. L., Liu, T. X. Induced defense by Bemisia tabacibiotype B (Hemiptera: Aleyrodidae) in tobacco against Myzus persicae (Hemiptera:Aphididae). Environmental entomology.2010,39(3):883-891.
    Yu, S. Microsomal oxidation of allelochemicals in generalist (Spodoptera frugiperda) andsemispecialist (Anticarsia gemmatalis) insect. Journal of chemical ecology.1987,13(3):423-436.
    Zarate, S. I., Kempema, L. A., Walling, L. L. Silverleaf whitefly induces salicylic aciddefenses and suppresses effectual jasmonic acid defenses. Plant Physiology.2007,143(2):866-875.
    Zhang, C. N., Wu, J.-x., Dai, W., Chen, L. Activities of some isoenzymes in the leaves ofBrassica oleracea seedlings infested by peach aphid (Myzus persicae). Acta BotanicaBoreali-occidentalia Sinica.2005,25(8):1566-1569.
    Zhang, G. F., Li, D. C., Liu, T. X., Wan, F. H., Wang, J.-J. Interspecific Interactions betweenBemisia tabaci Biotype B and Trialeurodes vaporariorum (Hemiptera: Aleyrodidae).Environmental entomology.2011,40(1):140-150.
    Zhang, G. F., Wan, F. H. Suitability Changes with Host Leaf Age for Bemisia tabaci BBiotype and Trialeurodes vaporariorum. Environmental entomology.2012,41(5):1125-1130.
    Zhang, L. P., Zhang, G. Y., Zhang, Y. J., Zhang, W. J., Liu, Z. Interspecific interactionsbetween Bemisia tabaci (Hem., Aleyrodidae) and Liriomyza sativae (Dipt.,Agromyzidae). Journal of Applied Entomology.2005,129(8):443-446.
    Zhang, P. J., Zheng, S.-J., van Loon, J. J., Boland, W., David, A., Mumm, R., Dicke, M.Whiteflies interfere with indirect plant defense against spider mites in Lima bean.Proceedings of the National Academy of Sciences.2009,106(50):21202-21207.
    Zhang, S. Z., Hua, B. Z., Zhang, F. Induction of the activities of antioxidative enzymes andthe levels of malondialdehyde in cucumber seedlings as a consequence of Bemisiatabaci (Hemiptera: Aleyrodidae) infestation. Arthropod-Plant Interactions.2008b,2(4):209-213.
    Zhang, S. Z., Zhang, F., Hua, B. Z. Enhancement of Phenylalanine Ammonia Lyase,Polyphenoloxidase, and Peroxidase in Cucumber Seedlings by Bemisia tabaci(Gennadius)(Hemiptera: Aleyrodidae) Infestation. Agricultural Sciences in China.2008a,7(1):82-87.
    Zvereva, E. L., Lanta, V., Kozlov, M. V. Effects of sap-feeding insect herbivores on growthand reproduction of woody plants: a meta-analysis of experimental studies. Oecologia.2010,163(4):949-960.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700