用户名: 密码: 验证码:
功率超声珩磨磨削区空化效应基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功率超声珩磨磨削过程中常采用煤油或乳化液作为切削液,在超声波作用下磨削区会出现超声空化。空化泡通常处于非稳定状态,不断地膨胀、压缩甚至溃灭,当空化泡溃灭时会在磨削区产生冲击波和微射流等一系列非线性声学现象,这些现象已经在功率超声振动加工界引起可足够重视。基于空化效应来研究功率超声珩磨技术,对于完善功率超声珩磨磨削机理具有重要的现实意义。本文从磨削区空化产发生机理、空化泡动力学、空化效应及空化声场等方面来研究功率超声珩磨磨削区的空化。
     主要研究内容及结论如下:
     (1)揭示了磨削区空化发生机理。在珩磨头体的扰动下,连续的冷却液被离散成大量微小的液滴,出现少量游移的空化泡,进而在超声振动下发生超声空化。通过求解势流动伯努利方程和拉普拉斯方程,得出油石表面超声振动声压幅值远超过切削液的空化阈值,理论上验证了油石表面必然会发生超声振动空化效应,并进行了实验验证。
     (2)通过建立磨削区单个球形空化泡的模型,计算出空化泡完全闭合所需时间、气泡表面流体径向速度以及气泡闭合释放的冲击压力。在此基础上,对油石表面半球状空化泡群动力学模型进行计算,得出在接近泡群中心无量纲半径r’=70-80处,溃灭会产生明显的局部压力脉冲现象。
     (3)研究了空化产生的噪声、空蚀和颤振对功率超声珩磨的影响。利用声波的反射、折射和镜像原理建立了油石壁面附近单、双空化泡辐射声压模型,并对溃灭产生的辐射声压进行了数值模拟。通过计算空化泡群在壁面上溃灭时压力脉冲发生几率,得出空化泡群内只有少数大尺寸空化泡溃灭释放的压力脉冲才能导致固壁空蚀,并带来材料塑性和脆性破坏。建立了功率超声珩磨再生型颤振动力学模型,得出当考虑空化泡溃灭作用时,会加剧系统颤振的频率,而对功率超声珩磨颤振振幅的基本没有影响。
     (4)利用有限元分析方法,建立了谐振系统——流体介质——刚性圆柱形吸收边界的耦合声场模型,得出油石表面声压幅值与声场分布的关系:当谐振系统处于谐振动状态时,产生的声场均匀分布在油石座及油石外轮廓线上,出现了声压幅值的集中,油石表面振动空化强烈且分布均匀,主要集中在油石中部区域。这表明谐振系统声场的分布直接影响空化效应的强弱,而且通过声场的分布还能判定谐振系统是否处于最优振动状态,为谐振系统的优化设计以及振动控制提供了一种重要的技术支持。
     (5)通过弱酸试纸法定性测量了功率超声珩磨磨削区空化声场,得到了不同超声频率下声场分布,并定量测量出油石表面最大声压幅值为1.3MPa,验证了谐振系统声场有限元分析的科学性和可靠性。
Power ultrasonic honing during grinding often uses the kerosene or emulsified liquid as the cutting fluid. When the ultrasonic wave passes the grinding zone, the cavitation effect can happen. The cavitation bubbles in the grinding area usually are unstable, constantly grow, expend, compress and even collapse. When the cavitation bubble collapsed, shock wave can be generated and a fluid microjet can be released, which attract enough attention in the power ultrasonic vibration industry. The study on the technology of power ultrasonic honing from the perspective of cavitation effect is very important for the grinding mechanism of the power ultrasonic honing. The cavitation mechanism in the grinding zone can be explained. The dynamics of cavitation bubble and the effects of cavitaiton can be also discussed.
     The work of this paper and main results are as follow:
     (1) The mechanism of cavitation in the grinding region of power ultrasonic honing was explained. The process of cavitation occurrence was explained. The continuous cooling liquid can be dispersed into a large number of tiny liquid for the perturbation of the ultrasonic honing head body, and then the cavitation can occur with the ultrasonic vibration. The cavitaion threshold value in the grinding area was calculated. The pressure of the oilstone surface was greater than the cavitaion threshold value of cutting fluid with Flow and Bernoulli equation and the Laplace's equation, which verified the cavitation effect occured on the oilstone surface, and this theoretical result fits the experiments well.
     (2) The dynamic model of an individual cavitation bubble in the grinding zone was established. The desired closed time range of the spherical cavitation bubble completely and its collapse distance were obtained. And then, the dynamics model of the hemispherical cavitation bubbles cluster on the oilstone surface can also be established. The numerical results show that the distance between the center of the bubbles cluster and its boundary of cavitation bubbles cluster was about the dimensionless radius r=70~80, which can generate significant local pressure pulse phenomenon.
     (3) The influence of the cavitation noise, cavitation erosion and chatter caused by cavitation on the power ultrasonic honing can be discussed. Taking the reflection, refraction and mirroring principle of ultrasonic in the solid surface into consideration, the radiated acoustic pressure model of single and double cavitation bubbles near the oilstone wall was studied. The occurrence probability of the pressure pulse generated by collapsing cavitation bubbles on the oilstone was calculated. The collapsed pressure released by a few large cavitation bubbles can generate cavitation erosion on a rigid wall, and even bring ductile deformation and brittle fracture.Comparing the model of power ultrasonic honing chatter with considerations of power ultrasonic cavitation noise, it is observed that the chatter time domain should be short when considering cavitation noise, but there is not obvious effect to the ultrasonic vibration amplitude.
     (4) The fluid-coupled acoustic model of resonant system, fluid medium and rigid cylindrical absorbing boundary were established. The acoustic field distribution of the renonant system and its relationship between the resonant frequency and the vibrational state can be obtained. The results show that the sound field of resonant system is uniformly distributed in the outer line of the oilstone and oilstone seat, and that the amplitude values focus on the surface of the oilstone, when the resonant system is located in the optimal vibration status. It presents that the strength of the cavitations can be determined by the distribution of the resonant system directly, and the optimal resonant state can also be evaluated. This method provides a crucial support for the designing and optimization of resonant system.
     (5) The cavitation acoustic field in the grinding area was measured qualitatively by a weak acid paper method. The acoustic distribution by different ultrasonic frequency can be obtained, and the maximum sound pressure on the oilstone surface amplitude is1.3Mpa. Compared with the experiments, the method used for acoustic field analysis of resonant system is verified reasonable and feasible.
引文
[1]徐春龙,林书玉.超声的应用及展望[J].陕西师范大学继续教育学报.2001,18(3):102-104.
    [2]冯若主.超声手册[M].南京:南京大学出版社,1999:549-550.
    [3]林书玉.超声技术的基石——超声换能器的原理及设计[J].物理.2009,38(3):141-148.
    [4]杜功焕,朱哲民,龚秀琴.声学基础[M].南京:南京大学出版社,2001:3.
    [5]袁易全.近代超声原理及应用.南京:南京大学出版社,1996:92-93.
    [6]Bogdan Niemczewski. Influence of concentration of substances used in ultrasonic cleaning in alkaline solutions on cavitation intensity [J]. Ultrasonic Sonochemistry.2009,16: 402-407.
    [7]刘国东.旋转功率超声波珩磨加工机理及工艺实验研究[D].太原:中北大学硕士学位论文.2008.
    [8]Jong-Bum Lee, Jong-Gun Lee, Sang-Su Ha, Seung-Boo Jung. Ultrasonic bonding for multi-chip packaging bonded with non-conductive film[J]. Mroelectronic Engineering. 2011,88:715-717.
    [9]Su Zhao, Sebastian Mojrzisch, Joerg Wallaschek. An ultrasonic levitation journal bearing able to control spindle center position[J]. Mechanical Systems and Signal Processing.2013, 36:168-181.
    [10]Soonho Park, Siyuan He. Standing wave brass-PZT square tubular ultrasonic motoe. Ultrasonics.2013,52:880-889.
    [11]M. Mahdi, R. Ebrahimi, M. Shams. Numerical analysis of the effects of radiation heat transfer and ionization energy loss on the cavitation bubble's dynamics [J]. Physics Letters A.2011,375:2348-2361.
    [12]Takshi Naoe, Masato Ida, Masatoshi Futakawa. Cavitaion damage reduction by microbubble injection [J]. Nuclear Instruments and Methods in Physics Research A. 2008,586:382-386.
    [13]Siah Ying Tang,Sivakumar Manickam,Tan Khang Wei,Billa Nashiru. Formulation development and optimization of a novel Cremophore EL-based nanoemulsion using ultrasound cavitation[J]. Ultrasonics Sonochemistry.2012,19:330-345.
    [14]冯平法,郑书友,张京京.功率超声加工关键技术的研究进展[J].制造技术与机床.2009,05:57-62.
    [15]王爱玲,祝锡晶,吴秀玲.功率超声振动加工技术[M].北京:国防工业出版社,2006.
    [16]隗部淳一郎.精密加工——振动切削基础和应用(中译本)[M].北京:机械工业出版社,1985.
    [17]张承龙,冯平法,张建富.光学玻璃旋转超声端面铣削表面特性[J].清华大学(自然科学版).2012,52(11):1616-1621.
    [18]王振龙,栾英艳,韦红雨等人.钛合金深小孔超声电火花加工工艺与实验研究[J].制造技术与机床.2000,07:41-47.
    [19]李勋,张德远.不分离型超声椭圆振动切削试验研究[J].机械工程学报.2010,46(19):177-182.
    [20]温任林,颜景平.压电式超声振动切削系统的研究[J].东南大学学报.1997,27(02):90-94.
    [21]史兴宽,康仁科,卢海鹏.内圆超声振动磨削装置的设计[J].磨床与磨料.1997,01:52-54.
    [22]许幸新,张晓辉,刘传绍等.SiC颗粒增强铝基复合材料的超声振动钻削试验研究[J].中国机械工程.2010,21:2573-2577.
    [23]杨继先,郭伟光,杨素梅等.陶瓷材料超声振动车削实验研究[J].兵工学报.1995,02:90-93.
    [24]祝锡晶,王爱玲,辛志杰等.超声珩磨在发动机缸套光整加工中的应用研究[J].兵工学报.2003,24(01):142-144.
    [25]Zhu, X. J, Xu, H. J, Wang, A. L, etc. Research on the cutting principle of new non-conventional technology efficiency ultrasonic honing[J]. Key Engineering Materials. 2004, (259-643):640-643.
    [26]X.J.Zhu, Q.S.Zhang, A.L.Wang, etc. The Influnce of Structural Parameter on Resonance of the Vibrationg Disk in Ultrasonic Honing SySte [J].Key Engineering Materials.2006, (304-305):417-421.
    [27]Xijing Zhu, Jianqing Wang, Quan Chen, et al. Radial Power Ultrasonic Vibration Honing Friction Analysis[J]. Solid State Phenomena.2011, (175):183-186.
    [28]Xi-jing ZHU, Zhi-meng LU, Jian-qing WANG, et al. Examination and Research of the Surface Topography of Ultrasonic Vibration Honing NdFeB[J]. Journal of Measurement Science and Instrumentation.2010,1(2):201-204.
    [29]X. S. Zhu, K. W. Xu, B.Zhao, D. Z. Ma. Experimental and theoretical research on 'local resonance'in an ultrasonic honing system [J]. Journal of Materials Processing Technology.2002,129:207-211.
    [30]Zhu XJ, Zhang QS, Wang AL, etc. The influence of structural parameter on resonance of the vibrationing disk in ultrasonic honing system [J]. Key Engineering Materials.2006, 304-305:417-421.
    [31]Zhang Yundian, Zhou Lei, Xi Changqing. Optimizaton of ultrasonic honing acoustic subsystem [J]. Advanced Materials Research.2010,139-141:857-862.
    [32]Jicai Kuai. A new ultrasonic device with ultra-precision [J]. Applied Mechanical and Meterials.2012,148-149:664-667.
    [33]邵云鹏,祝锡晶,刘猛,刘振.轴向功率超声振动珩磨颤振系统的稳定性分析[J].重庆大学学报.2013,36(5):25-30.
    [34]J. Q. Wang, X.J. Zhu, Q. Cheng, et al. Analysis of Ultrasonic Honing Chatter Vibration Trajectory[J]. Advanced Materials Research.2010,135:79-83.
    [35]成全,祝锡晶,王建青.超声平台珩磨机理分析[J].机械设计与研究.2012,28(4):90-91.
    [36]Guodong Liu, Xijing Zhu. Study on ultrasonic cavitation mechanism honing [J]. Advanced Materials Research.2011, (189-193):4149-4153.
    [37]Ce Guo, Xijing Zhu, Guodong Liu. Study on ultrasonic cavitation field of power ultrasonic honing [J]. Advanced Materials Research.2013, (690-693):3284-3288.
    [38]莫润阳,林书玉,王成会.超声空化的研究方法及进展[J].应用声学.2009,285:389-400.
    [39]W.Lauterborn, T.Kurz, R.Geisler, D.Schanz,O.Lindau. Acoustic cavitation,bubble dynamics and sonoluminescences [J]. Ultrsnonics Sonochemistry.2012,148-149:664-667.
    [40]刘诗汉,陈大融.粗糙表面的空蚀机制研究[J].润滑与密封.2009,34:6-8.
    [41]E. A. Neppiras. Acoustic cavitation thresholds and cyslic processes [J]. Ultrasonics. 1980,9:201-208.
    [42]Christian Vanhille, Cleofe Campos-Pozuelo. Acoustic cavitation mechanism:A nonlinear model [J]. Ultrsnonics Sonochemistry.2012,19:217-220.
    [43]Kyuichi Yasui, Totu Tuziuti, Judy Lee, et al. Numerical simulations of acoustic cavitation noise with the temporal fluctuation in the number bubbles [J]. Ultrasonics Sonochemistry.2010,17:460-472.
    [44]K. Yasui, Tuziuti, J. Lee, et al. The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions[J]. J. Chen. Phy.2008,128:184-705.
    [45]赵巧,许友谊.粘性液体中空泡动力学的数值模拟研究[J].中国农村水利水电.2011,4:156-158.
    [46]T. G.Leighton. Bubble population phenomena in acoustic[J]. Ultrasonics Sonochemistry. 1995,2:123-136.
    [47]Muthupandian Ashokkumar, The characterization of acoustic cavitation bubbles - An overview[J]. Ultrasonics Sonochemistry.2011,18:864-872.
    [48]Badarinath Karri, Kiran S. Pillai, Evert Klaseboer, Siew-Wan Ohl, Boo Cheong Khoo. Collapsing bubble induced pumping in a viscous fluid[J]. Sensors and Actuators.2011 A,169:151-163.
    [49]R. M. Wagterveld, L. BoelsM. J. Mayer, G. J. Witkamp. Visualization of acoustic cavitation effects on suspended calcite crystals [J]. Ultrasonics Sonochemistry.2011, 18:216-225.
    [50]BAI Li-xin, XU Wei-lin, TIAN Zhong, LI Nai-wen. A high-speed photographic study of ultrasonic cavitation near rigid boundary[J]. Journal of Hydrodynamics.2008,20:637-644.
    [51]黄继汤.空化与空蚀的原理及应用[M].北京:清华大学出版社.1989:2-3.
    [52]Harper, J. P. The motion of bubbles and drops through liquids. Adv. Appl. Mech.1972, 12:59-131.
    [53]B. E. Noltingk, E. A. Neppiras, Cavitation produced by ultrasonics[J]. Proc. Phys. Soc B.1950,63:674-685.
    [54]H. G. Flynn, The physics of acoustic cavitation[M]. Chapter 9 in Vol 1B of physical Acoustics, Edited by Mason. W. p.,Academic Press,1964.
    [55]E. A. Neppiras, Subharmonic and other low-frequency emission from bubbles in sound-irradiated liquids[J]. J. Acoust. Soc. Am.1969,45:587-601.
    [56]Zeinab Galavani, Reza Rezaei-Nasirabad, Suresh Bhattarai. On the dynamics of Moving single bubble sonoluminescence[J]. Physics Letters A.2010,374:4531-4537.
    [57]许文林,何玉芳,王雅琼.超声作用下碘化钾溶液生成碘速率的影响因素研究[J].高校化学工程学报.2006,20(03):472-475.
    [58]吴岸峰.超声破解技术在污水污泥处理中的应用研究[D].重庆:重庆大学硕士学位论文,2008.
    [59]李争彩,林书玉.超声空化影响因素的数值模拟研究[J].陕西师范大学学报(自然科学版).2008,36(01):38-42.
    [60]ZHANG Xiaodong, FU Yong, LI Zhiyi and ZHAO Zongchang. The numerical simulation of collapse pressure and boundary of the cavity cloud in venture [J]. Fluid flow and transport phenomena.2009,17 (6):896-903.
    [61]陈红,李晓静,万明习,王素品.高强度聚焦超声场中空化泡群的结构及其形成过程[J].声学学报.2006,31(6):532-535.
    [62]Takashi Naoe, Masato Ida, Masatoshi Futakawa. Cavitation damage reduction by Microbubble injection [J]. Nuclear Instruments and Methods in Physics Research A.2008,586:382-386.
    [63]Yuan Xiang Yang, Qian Xi Wang, T. S Keat. Dynamic features of a laser-induces Cavitation bubble near a solid boundary[J]. Ultrasonic Sonochemistry.2013, 20:1098-1103.
    [64]M. Ichihara, H. Ohkunitani, Y. Ida, M. Kameda. Dynamics of bubble oscillations and wave propagation in viscoelastic liquids[J]. J. Volcanol. Geotherm. Res.2004,129:37-60.
    [65]J. S. Allen, R. A. Roy, Dynamics of gas bubbles in viscoelastic fluids[J]. I. Linear Viscoelasticity. J. Acoust. Soc. Am.2000,107 (6):3167-3178.
    [66]D. B. Khismatullin, A. Nadim, Radial oscillations of encapsulated microbubbles in viscoelastic liquids[J]. Phys. Fluids 2002,14 (10):3534-3557.
    [67]J. Naude, F. Mendez, Periodic and chaotic acoustic oscillations of a bubble gas immersed in an Upper Convective Maxwell fluid[J]. J. Non-Newton. Fluid Mech.2008, 155:30-38.
    [68]Parag Kanthale, Muthupandian Ashokkumar, Franz Grieser. Sonoluminescence, Sonochemistry (H2O2 yield) and bubble dynamics:Frequency and power effects [J]. Ultrasonics Sonochemistray.2008, (15):143-150.
    [69]E. A. Brujan. A first-order model for bubble dynamics in a compressible viscoelastic liquid [J]. J. Non-Newtonian Fluid Mech.1999, (84):83-103.
    [70]I. Akhatov, N. Vakhitova, A. Topolnikov, etc. Dynamics of laser-induced cavitation bubble. Experimental Thermal and Fluid Science.2002, (26):731-737.
    [71]W. Lauterborn, T.Kurz, R. Geislesr, D. Schanz, O. Lindau. Acoustic cavitation bubble dynamics and sonoluminescence [J]. Ultrasonics Sonochemistry.2007, (14): 484-491.
    [72]E. A. Brujan, T. Ikeda, Y.Matsumoto. On the pressure of cavitation bubbles [J]. Experimen tal Thermal and Fluid Science.2008, (32):1188-1191.
    [73]彭健新,周光平,梁召锋.声场模拟方法在大功率低频超声工程中的应用[J].化学工程.2007,35(12):75-78.
    [74]Zhaofeng Liang, Guangping Zhou, Yihui Zhang, etc. Vibration analysis and sound field characteristics of a tubular ultrasonic radiator [J]. Ultrasonics.2006, (45):146-151.
    [75]Toru Osa, Ken Murakami,Yoshinari Horinouchi, etc. Application of audience-seats characteristics to the sound field analysis for large enclosures [J]. Applied Acoustic 2007, (68):939-952.
    [76]Shao-Yi Hsia, Shih-Ming Chiu, Jyin-wen Cheng. Sound field analysis and simulation for fluid machines [J]. Advances in Engineering Software.2009, (40):15-22.
    [77]Hyeon-Don Ju. Multi-Domain Structural-Acoustic coupling analysis using the finite element and boundary element techniques [J].KSME International Journal.2001,15 (50:555-561.
    [78]E.Lauer, X.Y.H.u,S.Hickel, N.A.Adams. Numerical modeling and investigation of sysmmetric and asymmetric cavitation bubbles dynamics [J]. Computers & Fluids. 2012,69:1-19.
    [79]王柏秋,王聪,黄海龙.半球头模型空化流场非定常特性的数值模拟[J].兵工学报.2012,33(9):1124-1130.
    [80]杨琼方,王永生,张志宏.改进空化模型和修正湍流模型在螺旋桨空化模拟中的评估分析[J].机械工程学报.2012,48(9):179-185.
    [81]王成会.液体介质中非线性声传播和空化动力学研究[D].王成会.陕西师范大学.2010.
    [82]唐海波.基于有限元及有限元差分法的超声空化场模拟[J].湖南文理学院学报(自然科学版).2009,21(4):30-32.
    [83]Bajram Zeqiri, Mark Hodnett, Anthony J. Carroll. Studies of a novel sensor for assessing the spatial distribution of cavitation activity within ultrasonic cleaning vessels [J]. Ultrasonics.2006,44 (01):73-82.
    [84]王萍辉.超声空化影响因素[J].河北理工学院学报.2003,4(25):154-161.
    [85]马大猷,成训仁.科学家谈物理——声学漫谈[M].长沙:湖南教育出版社,1994.
    [86]冯若,李化茂.声化学及其应用[M].合肥:安徽科学技术出版社,1992:67-100.
    [87]H.G.Flynn. PhysicalAcoustics[M]. VollB, ed·W. P. Madon, AcademicPress, New York, 1964:57.
    [88]T. J. Mason and J. P. Lorimer. Sonochemistry:Theory, Applications and Uses of Ultrasound in Chemistry[M]. Ellis Hor-wood Limited.1988.
    [89]E.N.Harvey, etal. Bubble Formation in animals. I. Physical Factors[J], Journal of Cellular and Comparative Physiology.1944,24 (1):1-22.
    [90]Johan Carlson, Par-Rrik Martinsson. A simplie scattering model for measuring Particle mass fraxtions in multiphase flows[J]. Ultrasonics.2002,39:585-590.
    [91]王献孚.空化泡和超空化泡流动理论及应用[M].北京:国防工业出版社,2009:8-10.
    [92]E. A. Neppiras. Acoustic cavitation. Physics Reports [J].1980,3 (61):159-251.
    [93]Kyuichi Yasui, Toru Tuziuti, Judy Lee, et al. Numerical simulations of acoustic cavitation noise with the temporal fluctuation in the number of bubbles [J]. Ultrasonics Snochemistry.2010,2 (17):460-472.
    [94]Vlllyichev, V. L. Koretz, N. P. Melnikov. Spectral characteristics of acoustic cavitation[J]. Ultrasonics.1989,6 (27):357-361.
    [95]F. Burdin, N. A.Tsochatzidis, P. Guiraud, A. M. Wilhelm, H.Delmas. Characterisation of the acoustic cavitation cloud by two laser techniques [J]. Ultrasonics Snochemistry.1999,2 (6):43-51.
    [96]倪汉根,刘亚坤.水工建筑学的空化与空蚀[M].大连:大连理工大学出版社.2011:49.
    [97]祝锡晶.超声光整加工及表面成型技术[M].中国科学文化出版社.2005:29.
    [98]Muthupandian Ashokkumar. The characterization of acoustic cavitation bubbles-An overview [J]. Ultrasonics Snochemistry.2011,4 (18):864-872.
    [99]B T何乃普,J W戴利,F G哈密脱.水利水电科学研究院,译.空化与空蚀[M].北京:水利出版社,1981.
    [100]K. K Jyoti, A.B Pandit. Water disinfection by acoustic and hydrodynamic cavitation [J]. Biochemical Engineering Journal.2001,3 (7):201-212
    [101]过增元.国际传热研究前沿—微尺度传热[J].力学进展.2000,1(30):1-6.
    [102]陈少华,王自强.微尺度塑性力学[M].中国科技大学出版社.2009:3-4.
    [103]Zhigang Che, Liangcai Xiong, Tielin Shi, et, al. Experimental Analysis of Microscale Laser Shock Processing on Metallic Material Using Excimer Laser [J]. Journal of Materials Science & Technology.2001,3 (7):201-212
    [104]于骏一,邹青.机械制造技术基础[M].北京:机械工业出版社.2009:50-51.
    [105]王成会,林书玉.超声场中气泡的耦合运动[J].声学学报.2011,36(3):326-331.
    [106]张鹏利,林书玉.声场作用下两空化泡相互作用的研究.物理学报.2009,58(11):7798-7801.
    [107]C. R. Heckman, S. M. Sah, R.H. Rand. Dynamics of microbubble oscillators with delay coupling. Commun Nonlinear Sci Numer Simulat.2010, (15):2735-2743.
    [108]罗贤能,赵良举,奉策强等.声空化气泡成长记破裂研究[J].工程热物理学报.2011,32(1):18-20.
    [109]Jin-Keun Choi, Arvind Jayaprakash, Georges L.Chahine. Scaling of cavitation erosion progression with cavitation intensity and cavitation source [J]. Wear.2012,8 (278-279):53-61.
    [110]Shuji Hattori, Takaaki Ogiso, Yusuke Minami, Ikuo Yamada. Formation and progression of cavitation erosion surface for long exposure [J]. Wear.2008,11 (265):1619-162
    [111]柳伟,郑玉贵,姚治铭,柯伟.金属材料的空蚀研究进展[J].中国腐蚀与防护学报.2001,4(21):250-255.
    [112]李永健.空蚀发生过程中表面形貌作用机理研究[D].清华大学博士学位论文.2008.
    [113]F. G. Hammitt, M. K. De. Cavitation erosion of aluminum considering bubble collapse, pulse height spectra and cavitation erosion efficiency [J]. Wear.1979,55 (2): 221-234.
    [114]张鹏利.超声空化多泡及其辐射声场的研究[D].陕西师范硕士学位论文.2010.
    [115]Rui Zhao, Rong-qing Xu, Zhong-hua Shen, et al. Experimental investigation of the collapse of laser-generated cavitation bubbles near a solid boundary [J]. Optics & Laser Technology.2007,5 (39):968-972
    [116]Zhou Yu-Kang, F. G. Hammitt. Cavitation erosion incubation period[J]. Wear. 1983,86 (2):299-313.
    [117]F. W. Taylor, A. Dudhia, C.D. Rodgers. Reference model for methane and nitrous oxide. Advances in Space Research[J].1996,9 (18):91-124.
    [118]S. Smith, J. Tlusty. Efficient Simulation Programs for Chatter in Milling. CIRP Annals-Manufacturing Technology [J].1993,1(42):463-466
    [119]王跃辉,王民.金属切削过程颤振控制技术的研究进展[J].机械工程学报.2010,7(46):166-174.
    [120]Shuyu Lin, Long Xu. Study on the radial vibration and acoustic field of an isotropic circular ring radiator [J]. Ultrasoncis.2012,52:103-110.
    [121]莫喜平.ANSYS软件在模拟分析声学换能器中的应用[J].声学技术.2007,26(6):1279-1290.
    [122]Amir Abdullah·Abba Pak. Correct prediction of the vibration behavior of a high power ultrasonic transducer by FEM simulation [J]. Int J Adv Manuf Technol.2008, 39:21-28.
    [123]Iula A, Vazquez F, Pappalardo M, Gallego JA. Finite element three-dimensional analysis of the vibrational behaviour of the Langevin-type transducer [J]. Ultrasonics. 2002,40 (1-8):513-517.
    [124]Yi-Chun Wang, Ming-Chung Yao. Realization of cavitation fields based on the acoustic resonance modes in an inmersion-type sonochemical reator [J]. Ulrasonics Sonochemimstry.2013,20:565-570.
    [125]怡晓玲.压电声波器件的多场耦合问题ANSYS模拟与分析[D].硕士学位论文,兰州,2009.
    [126]DA SHU, BAODE, JIAWEI, et al.A high speed imaging and modeling study of dendrite fragmentation caused by ultrasonic cavitation [J]. Metallurgical and materials transactions A.2012,43A:3755-3765.
    [127]ZHANG XiaoBin, WU Zhao, XIANG Shi Jun, et al. Modeling cavitation flow of cryogenic fluids with thermodynamic phase-change theory [J]. Chinse Science Bulletin.2013, 58 (4-5):567-576.
    [128]Fredrik Lingvall. A method of improving overall resolution in ultrasonic array imaging using spatio-temporal deconvolution[J]. Ultrasonics.2004,1 (42):961-968.
    [129]P. Calmon, Y. Serruys. Irradiation effects on the diffusion in silicate glasses [M]. Modifications Induced by Irradiation in Glasses.1992:33-38.
    [130]Kwang Oh Park, J. M Sivertsen. Infrared absorption and OH- ions in annealed BaO crystals [J]. Physics Letters A.1980,2(79):245-248.
    [131]祝锡晶,徐鸿钧,王爱玲.超声珩磨加工技术中振动系统的试验研究[J].应用基础与工程科学学报.2005,10:111-114.
    [132]祝锡晶,徐鸿钧,王爱玲等.提高发动机缸套表面质量的新工艺——超声振动珩磨[J].内燃机工程.2003,4:66-69.
    [133]Christian Vanhille, Cleofe Campos-Pozuelo. Nonlinear ultrasonic standing waves:Two-dimensional simulations in bubbly liquids [J]. Ultrasonics Sonochemistry. 2011,18 (2):679-682.
    [134]Blana A, Walter B, Rogenhofer S, et al. High-intensity focused ultrasound for the treatment of localized prostate cancer 5-year experience [J]. Urology.200,63 (2):297-300.
    [135]S. J. Lind, T. N. Phillips. Spherical bubble collapse in viscoelastic fluids [J]. Journal of Non-Newtonian Fluid Mechanics.2010,165 (1-2):56-64.
    [136]张涛,张永元,马宏伟等.染色法测量超声空化场研究[J].南京师大学报(自然科学版).2009,32(1):39-42.
    [137]M. Mahdi, R.Ebrahimi, M.Shams. Numerical analysis of the effects of radiation heat transfer and ionization energy loss on the cavitation Bubble's dynamics [J]. Physics Letters A. 2011,375 (24):2348-2361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700