用户名: 密码: 验证码:
基于ARM的超声波液位计的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液位是工业生产中常见的测量参数,化工、石油、污水处理等各类工厂企业都要进行液位测量。目前,液位检测技术飞速发展,新的液位测量仪表量程大、精度高、功能全,我国新型液位仪表大多依靠进口。由于超声波测量液位具有非接触测量、可测低温介质、能够定点和连续测量等优点,近年来,超声液位测量技术取得了长足的进步,已成功应用于江河水位、化学和制药工业、食品加工、罐装液位等多种领域。
     本文研制的是基于ARM的超声波液位计。传统的超声波液位计一般使用8位的单片机作处理器,采用电子元件捕捉到超声波回波信号后产生中断,判断超声波的传播时间。本文提出了使用32位ARM芯片做处理器,采用数字信号处理的方法来判断超声波传播时间的设计方案。
     本文使用高性能的ARM7TDMI-S内核的芯片LPC2119作为系统的运算控制器,加强了系统对超声波回波信号的处理能力;使用A/D转换器将回波信号转换为数字信号,采用数字滤波处理信号,利用数值处理来判断超声波回波信号的起始点,提高了液位的测量精度;采用单换能器收发一体式电路设计,简化了液位的计算;利用LPC2119芯片内部的CAN总线控制器设计了CAN总线通信接口;选用一线式数字温度传感器DS18B20进行温度补偿,避免了由于环境温度的变化而产生的测量误差。ARM芯片丰富的内部资源和I/O口线有利于今后扩展功能,升级系统。本超声波液位计使用方便,精度高,能满足工业生产中的要求。
The liquid Level is the common survey parameter in the industrial production, the chemical industry, the petroleum, the sewage treatment and so on each kind of Manufacturing division must measure liquid Level. At present, the technology of liquid Level Measurement is developing at very fast speed, Large measure, high precision and complete function are characteristic of the new liquid Level meters, our country new liquid Level meters mostly depends upon the import. The ultrasonic liquid level measurement has many merits such as non-contact measurement, low temperature medium measurement, fixed point and continuous measurement. In recent years, the ultrasonic liquid level measuring technique made the considerable progress, it has succeeded applies in the rivers and streams water level, chemistry and the drugs manufacture industry, the food processing, the canned liquid level and so on many kinds of domains.
     A design of Ultrasonic Liquid Level meter based on ARM is introduced in this thesis. The 8-bit singlechip is used to be processor in conventional ultrasonic liquid Level meters. Generally, the judge of ultrasonic propagation time depend on intermit that ultrasonic echo signal is catched by the electronic component. This thesis bring forward a blue print that using 32-bit ARM chip to make the processor and using the digital signal processing to judge the ultrasonic propagation time.
     In this thesis, the high-powered LPC2119 chip with ARM7TDMI-S inner core is chosed as the system's CPU, the handling ability of the ultrasonic echo signal is strengthened; ultrasonic echo signal is transformed to digital signal by A/D conversion device, judge the initial station of ultrasonic echo signal depend on digital filter and numerical value process, the precision of liquid level measure is improved; the single transducer monolithic transmit and receive circuit is devised, the liquid Level's computation expressions is predigested; CANBus communication interface is devised by CANBus control unit in LPC2119; digital temperature sensor DS18B20 is adopted as temperature compensation device, the measuring error which produces as a result of ambient temperature's change is avoided. Abundant inner resource and I/O ports in ARM chip are propitious to expand new function and upgrade system. This ultrasonic liquid Level meter can be used conveniently, with high precision. In a word, this Ultrasonic Liquid Level meter can satisfy the need of industrial production.
引文
[1]雷建龙.基于单片机的超声波液位测量仪[J].仪表技术与传感器.2004(6):8-9.
    [2]李敏哲,赵继印,李建坡.基于超声波传感器的无线液位测量系统[J].仪表技术与传感器.2005(11):35-36.
    [3]李丽宏,谢克明.液位自动检测的现状与发展[J].太原理工大学学报.Vol.32,No.4,July,2001:418-420.
    [4]李冬梅.国内外液位计量仪表技术发展动向[J].仪器仪表用户.2002(9):5-7.
    [5]同济大学声学研究室.超声工业测量技术[M].上海:人民出版社,1997.
    [6]Marek zielinski,Dariusz Chaberski,Slawomir Grzelak.High-resolution time-interval measuring system implemented in single FPGA divice[J].Measurement,2004,35,311-317.
    [7]袁易全.近代超声原理及应用[M].南京:南京大学出版社,1996.
    [8]李冬梅,高建华.罐区自动计量技术国内外发展综述[J].第四届全国冶金电力石油和化工行业自动化技术交流论文集,中国工控网.
    [9]刘艳艳.超声波液位计的研究[D].北京:北京化工大学,2007.6.
    [10]马大猷.现代声学理论基础[M].北京:科学出版社,2004.
    [11]P.M.Morse,VibrationandSound.MeGraw-HillIne.1948.
    [12]冯诺.超声手册[M].南京:南京大学出版社,1999.
    [13]罗翼,张宏伟.51单片机应用系统开发典型实例[M].北京:中国电力出版社,2005.
    [14]李建华.超声波传感器的特性及应用[J].电子世界.1990(4):12-14.
    [15]周立功等.ARM嵌入式系统基础教程[M].北京:北京航空航天大学出版社,2005.
    [16]ARM公司.ARM Architecture Reference Manual.2000.
    [17]LPC2119 Series Datasheet.Philips Semiconductors,2005.
    [18]LM7805 Series Datasheet.http://www.ic37.com.2006.
    [19]SPX1117 Series Datasheet.Philips Semiconductors,2005.
    [20]MAX708 Series Datasheet.http://www.ic37.com.2006.
    [21]唐慧强,黄惟一,李萍,等.基于DSP的超声风速测量[J].东南大学学报(英文版).2005(01):20-23.
    [22]杨振江,蔡德芳.新型集成电路使用指南与典型应用[M].西安:西安电子科技大学出 版社,2000.
    [23]ADS930 Series Datasheet.http://www.ic37.com.2007.
    [24]DS18B20 Uatasheet.http://www.dzkf.cn.2006.
    [25]明德刚.DS18820在单片机温控系统中的应用[J].贵州大学学报.2006(2):106-110.
    [26]PCM0802A Series Datasheet.http://gqgylcd.cn.nowec.com.2006.
    [27]周立功等.ARM嵌入式系统实验教程(一)[M].北京:北京航空航天大学出版社,2004.
    [28]SP3232E Datasheet.http://www.bdtic.com.2006.
    [29]李正军.现场总线及其应用技术[M].北京:机械工业出版社,2005.
    [30]史久根,张培仁,陈真勇.CAN现场总线系统设计技术[M].北京:国防工业出版社,2004.
    [31]PCA82C250 CAN controller interface Datasheet.Philips Semiconductors,2000.
    [32]周立功等.ARM微控制器基础与实战(第2版)[M].北京:北京航空航天大学出版社,2005.
    [33]孙娟.基于DSP的超声波液位计的研制[D].南京:南京信息工程大学,2005.5.
    [34]陈后金,薛健,胡健.数字信号处理[M].北京:高等教育出版社,2004.
    [35]Sanjit K.Mitra.Digital Signal Processing A Computer-Based Approach Third Edition.Publishing House of Electronics Industry,2006.
    [36]飞思科技产品研发中心.MATLAB7辅助信号处理技术与应用[M].北京:电子工业出版社,2005.
    [37]邹鲲,袁俊泉,龚享铱.MATLAB6信号处理[M].北京:清华大学出版社,2002.
    [38]焦冰,唐慧强.基于ARM的一体式超声液位计的设计[J].仪表技术与传感器.已录用.
    [39]古松林.突变理论及其应用[M].兰州:甘肃教育出版社出版社,1993.
    [40]沈洪矗,傅建中,陈子辰.基于ARM和DS18820的数字测温系统[J].机电工程.2005(11):50-53.
    [41]沈红卫.基于单片机的智能系统设计与实现[M].北京:电子工业出版社,2005.
    [42]饶云涛,邹继军,郑勇芸.现场总线原理与应用技术[M].北京:北京航空航天大学出版社,2003.
    [43]高红玉,徐建城,曾成奇.基于ARM的CAN总线智能节点的设计[J].电子技术应用.2005(4):24-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700