用户名: 密码: 验证码:
基于LCA理论的白云石煅烧过程及炼镁新工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合生命周期评价(LCA)理论对金属镁从矿石开采直至形成镁合金产品废弃整个生命周期内能耗与环境影响进行分析。针对长白山地区丰富的白云石矿产资源,对其矿物组成、微观组织形貌、热分解机理、分解产物等进行了研究,并结合生命周期理论提出了一套以白云石原料制备金属镁的新工艺,为长白山地区白云石合理开采、有效开发、可持续利用及金属镁冶炼行业提供了一定的参考依据。
     本文遵循生命周期评价(LCA)的原则和框架,将白云石从矿石开采、制备金属镁、镁合金产品生产、使用、废弃到再生过程中的制造技术和生命周期环境影响、能耗分析、经济成本结合起来进行评价,提出了绿色设计决策模型和热还原煅烧白云石制备金属镁工艺的LCA总体模型。在镁及镁合金生产领域引入工业生态学思想,把资源综合利用和工业领域生态修复与生态重建纳入LCA理论框架体系,提出了相关的评价指标体系。形成绿色材料金属镁从矿石开采→金属镁生产→镁合金加工→镁合金材料回收再生的良性循环,从而建立起节能、环保、高效的镁及镁合金生产体系,实现经济效益和环境效益的良好结合。在现有基础上,从新型镁合金材料与工艺装备、再生理论与技术和绿色设计软件系统三个方向阐述今后绿色设计与绿色制造的工作中心,以推动我国镁及镁合金生产进程的产业化。
     长白山地区白云石矿中C、O、Mg和Ca的质量分数分别为14.8%、50.1%、12.0%和22.5%,平均含镁量为13.18%,白云石中的镁钙比基本上是1:1,含有少量的以SiO2、Al2O3为主的杂质。矿石为典型的菱面体晶形,隐晶质组成,晶粒间结构致密,菱面体完全,解理平行,大部分为自形晶菱形,晶面呈冰糖状构造,是硅热法冶炼金属镁的理想原料。
     在白云石煅烧过程中,随着温度的升高,主要生成物MgO晶粒生长速度加快,形成较大晶粒,同时由于分子间的热运动,煅烧温度升高,分子间动能逐渐增大,从而导致MgO晶粒的排列规则受到影响,当煅烧温度超过750℃后,煅烧温度对MgO产物的形貌影响较为敏感,在930℃下恒温煅烧3h开始形成团聚结构,造成白云石表面过烧,从而降低了白云石转化为MgO的反应活性。通过对白云石煅烧实验过程中煅烧温度和时间参数的控制,确定煅烧温度为700℃,恒温时间为3h是得到活性MgO和CaCO3的最佳煅烧参数,即长白山地区白云石煅烧的最佳参数是:煅烧温度700℃,恒温时间为3h。
     通过对白云石矿石显微结构和不同煅烧参数下的煅烧实验研究,得出长白山地区白云石的显微组织与其煅烧质量和冶金性能等存在一定关系。隐晶质颗粒组成的白云石矿石,晶粒细小,且尺寸均匀,由于优先沿解理缝分解所需能量低的缘故,在煅烧分解过程中表现平稳。而显晶质组成的白云石矿石,晶体晶粒尺寸不均匀,取向各异,由于晶粒间受热不均匀,使得热分解反应过程进行缓慢,煅烧性能表现较差,煅烧时间较长,煅烧后产物易于破碎和粉化。
     文本对长白山地区白云石热分解机理进行了研究,确立了分解动力学方程参数值,研究结果表明:低温阶段(570~730℃),发生反应式CaMg(CO3)2=CaCO3+MgO+CO2,反应是界面收缩机理,CO2-3是迁移扩散的控速步骤;中温阶段(730~750℃),反应式CaMg(CO3)2=CaCO3+MgO+CO2和CaCO3=CaO+CO2协同发生,即界面收缩机理和三维扩散机理同时存在,反应的控速步骤由Mg2+、O2-、CO2-3、Ca2+和生成物CO2决定;高温阶段(750~930℃),发生反应式CaCO3=CaO+CO2,反应是三维扩散机理,CO2是扩散迁移的控速步骤。
     本文结合生命周期理论,提出了一种白云石炼镁新工艺方法,旨在克服现存工艺镁还原效率低、能耗大、生产周期长和污染严重等问题。该方法包括白云石破碎、真空低温轻煅与CO2回收利用、冷却并回收热量、混合配料球磨、混合料制团、真空高温热还原和取镁块及炉渣利用。真空低温轻煅是利用连续式真空煅烧炉将经过破碎的白云石在煅烧温度范分别为600~700℃和900~1000℃和炉内压力为10000~60000Pa的条件下轻煅1~3h,白云石中的MgCO3与CaCO3依次分解,反应式为:CaMg(CO3)2=CaCO3+MgO+CO2↑和CaCO3=CaO+CO2↑,热分解后得到CO2与MgO和CaO的混合物(煅白)。在炉内流动并加热白云石的CO2被回收利用,高温煅白从连续式真空煅烧炉出料后,直接进入充满非氧化性保护气氛的热交换器中冷却,冷却后将室温状态的煅白与还原剂、熔剂直接放入充满非氧化性保护气氛的混料机中混合成料,对混合料进行研磨后制团。将混合料装入还原装置中与还原剂(硅铁)发生还原反应产生镁蒸气。反应式为:2(MgO·CaO)+Si(Fe)=2Mg↑+2CaO·SiO2+(Fe),镁蒸汽进入冷凝器冷凝,收集得到金属镁块,还原罐内的残渣可粉磨后制成硅酸钙肥和铸型硬化剂。
This article using life cycle assessment (LCA) evaluated the energy consumption and theimpact on environmental in the entire life cycle of magnesium from ore mining to productionabandonment. Aimed at the abundant dolomite mineral resources in changbai mountainarea,this paper investigated the mineral composition, microstructure, thermal decompositionand the decomposition products. A new process for producing magnesium from dolomite isdesigned based on the existing thermal reduction magnesium method. Combined with lifecycle assessment (LCA), both the energy consumption and environmental impact on theentire life cycle from ore mining to abandonment is reasonably analyzed. These resultsprovide a certain valuably reference for the reasonable exploitation of dolomite, effectivedevelopment, sustainable utilization and magnesium metal smelting industry.
     Following the principles and framework of life cycle assessment (LCA), this paper putforward a green design decision-making model and an LCA general model for heatingmethod to extract magnesium, based on the valuation of the producing technology, the lifecycle of environmental impact during the process from ore extraction to preparing,producing, using, disposing and reproducing magnesium and magnesium alloy, energyconsumption analysis and economic cost. Introducing the idea of industrial ecology into themanufacture of magnesium and its alloy, this paper proposes the related assessment indicatorsystem, bringing integrated use of natural resources, ecological restoration andreconstruction in industry into LCA theoretical framework. In this system, a virtuous circleof green material-green processing-green recycling is formed; an energy efficient,environmentally friendly and highly efficient magnesium alloy producing system isestablished; the combination of economic and social benefits is well achieved. Based on theexisting basis, we expounded the work centers future of green design and greenmanufacturing from the points of new magnesium alloy materials and process equipment,regeneration theory and technology and green design software design, which will promotethe industrialization of the production of magnesium and magnesium alloy in our country.
     the dolomite mine from Changbai the mass fraction of C, O, Mg and Ca were14.8%,50.1%,12%and22.5%, respectively, average magnesium content is13.18%, calcium and magnesium ratio of dolomite is essentially1:1, containing a small amount of impuritieswhich is mainly composed of SiO2and Al2O3. which is an ideal material for silicon thermalmethod of metallurgy of magnesium metal. Ore belongs to crystalline dolomite type,Itappears to be crystal rhombohedral, dense-particle structure, parallel, and completerhombohedral. Most of the diamond crystal surface appears to be rock candy structure,visible cleavage crack mutually interlaced structure formation. Owing to lower energy areneeded for priority decomposition along cleavages, the process of calcination are stable atdifferent temperatures. As a result, dolomite from Changbai Mountain area is an idealmaterial for silicon thermal method of metallurgy of magnesium metal.
     In the dolomite calcination process, with the increase of temperature, the grains of themain product MgO grow rapidly, and finally forming large grains. At the same time, becauseof the thermal motion of molecules, the calcination temperature and the intermolecularkinetic energy increase, which affects the distribution rule of the grains of MgO. When thecalcination temperature is over750℃, the formation of MgO is sensitive to the calcinationtemperature. After calcined for3hours constantly under930℃, the dolomite formed intoaggregate structure, resulting in the surface overburned, thereby reducing the reactingactivity of the transformation from the dolomite into MgO.Through the control of thecalcination temperature and the calcination time during the dolomite calcining experiment,the optimal calcining parameters, which will obtain active MgO and CaCO3, are: calcinationtemperature700℃, constant temperature time3h.
     Through research on the microstructure of dolomite,combined with calcinedexperimental result at different calcining parameters,show that there is a certain relationshipbetween the microstructure of dolomite and calcined quality,metallurgicalproperties.dolomite minerals which is mainly composed of aphanitic particles calcined atdifferent temperature parameters, calcination are stable at different temperatures mainlybecause of Lower energy are needed for priority decomposition along cleavages.Otherwise,significant crystalline, especially dolomite mineral which is composed by large particles, hasa poor calcined performance, difficult in calcination process comparied with hidden crystalwhichis composed of small particles, the required calcination time is relatively long.Becausein the process of calcination of dense great grain dolomite, the diffusion prcess of CO2iscarried in the interior of crystals slowly, due to the uneven heating of rooms inside thecrystal grains, the different orientation lead to that the process of hermal decomposition goon slowly and significant crystalline dolomite which is composed of large grains is easy to crushing and pulverizing after calcined.
     Based on the study of the thermal decomposition mechanism of the dolomite inChangbai Mountain area, we found that in the low temperature stage(570~730℃), thereaction equation is CaMg(CO3)2=CaCO3+MgO+CO2and the reaction mechanism isinterface contraction mechanism. The CO32-is the rate-controlling step in the relocationdiffusion. In the intermediate temperature stage (730~750℃), the reaction equation isCaMg(CO3)2=CaCO3+MgO+CO2and CaCO3=CaO+CO2. The two reactions happencollaboratively. Namely, interface contraction mechanism and diffusion control mechanismsexist at the same time. The speed control step of the reaction is determined by Mg2+, O2-,CO32-, Ca2+and CO2. In the high temperature stage (750~930℃), the reaction equation isCaCO3=CaO+CO2. The reaction mechanism is diffusion control mechanism. CO2is therate-controlling step of the diffusion.
     This article using life cycle assessment, invented a new process using dolomite meltingmagnesium, aiming to overcome the disadvantages existing in magnesium preparation,which are low efficiency, high energy consumption, long production cycle and pollute theenvironment. The method includes crushing dolomite, vacuum light calcined at lowtemperature, recycling of carbon dioxide, cooling and heat recovery, mixing milling, hot mixbriquetting at high temperature, vacuum reduction and magnesium block and slag utilization.Vacuum low temperature light calcination is to calcinate the crushed dolomite lightly for1~3hours under calcination temperature600~700℃and900~1000℃and the pressure10000~60000Pa in the furnace by using continuous vacuum furnace. The MgCO3andCaCO3in dolomite will break down successively. The reaction equation is CaMg(CO3)2=CaCO3+MgO+CO2↑and CaCO3=CaO+CO2↑, obtaining a mixture of CO2, MgO and CaO.The CO2from floated in the furnace by heating dolomite is recycled. After coming out of thecontinuous vacuum furnace,the mixture were directely poured into heat exchanger whichwas filled with non-oxidizing protective gas for cooling. After cooling process, the calcineddolomite,reducing agent and flux were directly put into the mixing machine which wasfilled with non-oxidizing protective gas at room temperature to get mixture. The mixture wasbriqueted after grinding. Then put the Mixture into reduction device to react with thereducing agent (ferrosilicon). After reduction reaction we will get magnesium vapor. Thereaction equation is2(MgO·CaO)+Si(Fe)=2Mg↑+2CaO·SiO2+(Fe), magnesium vapor willbecome collectable metal magnesium after coming into the condenser condensate. The residue in the reduction tank can be made into calcium silicate fertilizer and mold hardenerby grinding.
引文
[1]马鸿文,曹瑛,蒋运,等.中国金属镁工业的环境效应与可持续发展[J],现代地质,2008,22(5):829~837.
    [2] Mordike B L,Eber T.Magnesium properties application potential[J].Materials Science Engineering A,2001,302:37~45.
    [3]吴刚.材料结构与表征[M].北京:化学工业出版社,2004.2.
    [4]邓南圣,王小兵主编.生命周期评价[M],北京:化学工业出版社,2003.
    [5]黄春林,张建强,沈淞涛,生命周期评价综论[J].环境技术,2004(1):29~31.
    [6] ISO14044Environment al management Life cycle assessment-Requirementsand guidelines,2006.
    [7] Guinee J.Handbook on life cycle assessment:Operational guide to the ISOstandards M.Dordrecht:Kluwer Academic Publishers,2002.
    [8] ISO14044Environmental management Life cycle assessment-Requirements andguidelines,2006.
    [9]樊庆锌,敖红光,孟超.生命周期评价[J],环境科学与管理,2007,32(6):177~180
    [10]袁宝荣,聂诈仁,狄向华,等.乙烯生产的生命周期评价(II)[J],化工进展,2006,25(4):432~435.
    [11]杨建新,徐成,王如松.产品生命周期评价方法及应用[M],北京:北京气象出版社,2002,51~74.
    [12]贾小平,项曙光,韩方煜.生命周期评价及其在过程系统工程中的应用[J].现代化工,2007(1):355~356.
    [13]刘治国,池顺都.化工行业中白云石的深加工及应用[J].化工矿物与加工,2003(1):4~7.
    [14]柳一鸣,喻新平.白云石的综合开发利用[J].云南化工,2003,30(1):5~7.
    [15]刘治国,池顺都,朱建东.白云石矿系列产品开发及应用[J].矿产综合利用,2003(2):27~33.
    [16]杨重愚,轻金属冶金学[M],北京:冶金工业出版社,1991:225~226.
    [17] Gregg J M,Sibley D F.Epigenetic dolomitization and the origin of xenotopicdolomite texture[J].Journal of Sedimentary Petrology,1984,54:908~931.
    [18] Sibley D F,Gregg J M.Classification of dolomite rock textures[J].Journalof Sedimentary Petrology,1987,57(6):967~975.
    [19]袁聪,赵惠忠,张寒,等.工艺因素对轻烧白云石活性度的影响[J].耐火材料,2012,46(1):48~50.
    [20]白丽梅,韩跃新.菱镁矿制备优质活性镁技术研究[J].中国非金属矿工业导刊,2005,7(21),47~48.
    [21]全跃,菱镁行业如何应对入世挑战[J].国土资源,2002,l:22~23.
    [22]陈肇友,李红霞.镁资源的综合利用及镁质耐火材料的发展[J].耐火材料,2005,39(l):6~15.
    [23]邸素梅,我国菱镁矿资源及市场[J].非金属矿,2001,24(l):5~6.
    [24]徐日瑶编著.镁冶金学(修订版)[M].北京:冶金工业出版社,1993.11.
    [25]杨保俊,于少明,单承湘.蛇纹石综合利用新工艺[J].矿冶工程,2003,23(l):47~49.
    [26]万朴.中国蛇纹石纤维资源及其资源环境[J].中国非金属矿工业导刊,2005,1:50~52.
    [27]马培华,中国盐湖资源的开发利用与科技问题[J].地球科学进展,2000,15(4):365~375.
    [28]黄西平,张琦,郭淑元,王功伟.我国镁资源利用现状及开发前景[J].海湖盐与化工,2004,33(6):l~6.
    [29]蒋启,江鸿,我国采矿业走向有序轨道任重道远[J].中国非金属矿业导刊,2005,2(46):59~61.
    [30]王宇菲,陈艺锋.察尔汗盐湖镁资源利用途径分析[J].世界有色金属,2000,12:14~15.
    [31] A.Ghosh*,T.K.Bhattacharya,B.Mukherjee,S.K.Das The effect of CuO additionon the sintering of lime[J].Ceramics International2001(27):201~204.
    [32] YANG X J,JIANGWJ,HUA X,et al.Preparation of lamellar magnesium hydroxidenanopartieles via precipitation method[J].Powder Teehnology,2009(191):227~230.
    [33] P.R.Homsby,C.L.Watson.Interfaeial modifieation of polypropylene compos-ites filled with magnesium hydroxide[J].Journal of Materials Scienee,1995,30,(21).
    [34] Xu J C.Ecodesign for wear resistant ductile iron with medium manganesecontent [J].Materials&Desi-gn,2003(24):63~68.
    [35]王君,徐国财.采用白云石制备碱式碳酸镁的实验研究[J].中国非金属矿工业导刊,2004(3):20~21.
    [36]张黎黎,刘家祥,李敏.轻烧白云石粉料制备碱式碳酸镁碳化工艺研究[J].金属矿山,2008,381:83~86.
    [37]谢英惠,何予基,高长虹.以白云石为原料制备球状碳酸镁的研究[J].化学工程师,2001,87(6):15~16.
    [38] MareeloB.MouraoandD.T.J.CaPoeehi.RateofReduetionoflronoxide in Carbon-bearingPellets[J].Trans Instn Min Metals,1996(105):9~12.
    [39]胡庆福,胡晓湘,胡晓波,等.白云石碳化法生产活性氧化镁新工艺[J].无机盐工业,2004,34(6):36~38.
    [40]胡庆福,宋丽英,胡晓湘.卤水—碳酸铵法制取活性氧化镁工艺研究[J].盐业与化工,2007,36(6):17~21.
    [41] SUN Y G,XIE Y N.Large-seale synthesis of uniform silver nanowires througha soft,self-seeding,polyolproeess[J].Advaneed Materials,2002(14):833.
    [42] Boril Chernev,Martin Olbrieh,peterZipper.Siteresolved X-ray investiga-tions on injeetionmolded polypropylene filled with magnesium hydroxide[J].Composite Interfaees,2005,12:(3~4).
    [43] A.G.Tomba Martineza*,M.A.Camerucci a,A.L. Cavalieri a,L.Martorello b,P.G.Galliano b Sintering behavior of periclase–doloma refractorymixes[J].Journal of the European Ceramic Society,2009(29):581~586.
    [44] S.Paul and S.Mukherjee.Non-Isothermal and Isothermal reduetion of Ironore agglomerates[J].Ironmaking and Steelmaking,1992,19(3):190~193.
    [45] M.Gilbert,1.Sutherland,A.Guest.Characte rizationo feoated partieulatefillers[J].Joumalof MaterialsScienee,2000,35:(2~3).
    [46]谢晓丽,严云,胡志华.白云石煅烧制备水泥基胶凝材料的实验研究[J].非金属矿,2011(2)32~35.
    [47]黄从运,柯劲松,张明飞等.利用镁渣作混合材生产复合硅酸盐水泥试验研究[J].水泥技术,2005(5):21~22.
    [48]叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002.
    [49] MOORE J J.Chemical metallurgy[M].London: Butterworths,1981:61~67.
    [50]刘红湘,戴永年,马文会,李一夫.中国镁工业研究方向探讨[J].轻金属,2007(1):46~49.
    [51] BROOKS G,TRANG S,WITT P,KHAN M N H,NAGLE M.The carbothermic route tomagnesium[J].JOM,2006,58(5):51~55.
    [52]彭建平,陈世栋,武小雷,等.碳化钙热法炼镁试验研究[J].轻金属,2009(3):47~49.
    [53] YANG J,KUWABARA M,LIU Z Z,ASANO T,SANO M.In situ observation ofaluminothermic reduction of MgO with high temperature opticalmicroscope[J]. The Iron and Steel Institute of Japan,2006,46:202~209.
    [54]徐日瑶.金属镁生产工艺学[M].长沙:中南大学出版社,2003.12.
    [55]徐日瑶.硅热法炼镁生产工艺学[M].长沙:中南大学出版社,2003.
    [56] Projjal basu,S.B.Sarkar and H.S.Ray.Isothermal reduetion of coal mixediron oxide pellets[J].Transaetions of the Indian Institute of Metals.1989,42(2):165~172.
    [57]蒋汉祥,赵齐强,郭红.白云石生产金属镁的工艺技术[J].重庆大学学报(自然科学版),2006,29(9):64~67.
    [58] Ramakrishnan S,Koltun P.Global warming impact of the magnesium producedin china using the pidgeon process[J],Resources,Conservation andRecycling,2004,42(1):49~64.
    [59] Manik Chandra Goswami,Swatantra prakash and Samar Bi joy Sarkar.K1netiesof Smelting Reduetion of Fluxed Compositeiron and pellets[J].Steel Res-eareh,1999,70(2):41~46.
    [60] ISO140401—19971S2.Environment al management life cycle assessmentprinciple and f rame work.
    [61]王天明.生态环境学[M].天津:天津大学出版社.2000.
    [62] Xu J C.Ecodesign for wear resist ant duct ile iron with medium manganesecontent[J].Mat erials&Design,2003(24):63~68.
    [63] Ross,EVANSD.Use of life cycle assessment in environment al management[J].Environment al Management,2002,29(1):132~142.
    [64]王冲,陈永弟.生命周期评价理论在汽车用镁合金材料中的应用[J].长春师范学院学报(自然科学版),2011(5):25~28.
    [65] WARDLOW G D.Recycling must be carefully controlled[J].Foundry TradeJournal,1999(2):18~21.
    [66]李冬,司继涛,王洪涛.铬渣处理处置方法的生命周期评价[J].现代化工,2006,26(s1):298~301.
    [67] CHERUBINI Francesco,RAUGEI Marco,ULGIATI Sergio.LCA of magnesium production Technological overview and worldwide estimat ion of environmentalburdens[J].Resources,Conservation and Recycling,2008(52):1093~1100.
    [68]高峰.生命周期评价研究及其在中国镁工业中的应用[D].北京科技大学,2008:79.
    [69]李玉青,吴殿杰.汽车轻量化以及铝镁铸件的应用[J].中国铸造装备与技术,2005(4):48~50.
    [70]敖炳秋,袁序弟.镁合金材料在汽车上应用及展望,2002年中国材料研讨会论文集
    [C]2002.
    [71]陈刚,范培耕,彭晓东等.镁合金废料回收与再生技术研究现状[J].兵器材料科学与工程,2007(5):74~75.
    [72]陈士明,刘正乾.塑料与纸包装材料的生命周期评价研究[J].南昌航空工业学院学报,2002(3):82~84.
    [73]弗兰克根特.镁合金的工业化回收[J].特种铸造及有色合金,2001(3):43~44.
    [74] Riopelle L.The recycling of magnesium makes cents[J].JOM,1996(10):44~47.
    [75] Wardlow GD.Recycling must be carefully controlled[J].Foundry TradeJournal,1999(2):18~21.
    [76] S Ross,D Evans.Use of life cycle assessment in environmental management[J],Environmental Mana-gement,2002,29(1):132~142.
    [77] Francesco Cherubini,Marco Raugei,Sergio Ulgiati.LCA of magnesium prod-uction Technological overview and worldwide estimation of environmentalburdens[J],Resources,Conservation and Recycling,2008,52(8~9):1093~1100.
    [78]于克强,工程机械的绿色设计与制造技术[J].黑龙江科技信息,2008(6):241.
    [79] CHERUBINI Francesco,RAUGEI Marco,ULGIATI Sergio.LCA of magnesium produ-ction Technological overview and worldwide estimation of environmentalburdens [J].Resources,Conservation and Recycling,2008(52):1093~1100.
    [80]肖力光,盖广清,许红娟,等.利用白云石生成氯氧镁水泥及其制品的研究[J].混凝土与水泥制品,2000(2):44~46.
    [81] VUK T,TINTA V,GABROVSIEK R,et al.The effects of limestone addition,clinker type and fineness on properties of portland cement[J].Cement andConcrete Research,2001,31(1):135~139.
    [82] TSIVILIS S,SOTIRIADIS K,SKAROPOULOU A.Thaumasite form of sulfate attack(TSA)in limestone cement pastes[J].Journal of the European CeramicSociety,2007,27(2~3):1711~1714.
    [83] TSIVILIS S,BATIS G,CHANIOTAKIS E,et al.Properties and behavior oflimestone cement concrete and mortar[J].Cement and Concrete Research,2000,30(10):1679~1683.
    [84] TSIVILIS S,CHANIOTAKIS B,BATIS G,et al.The effect of clinker and limestonequality on the gas permeability,water absorption and pore structure oflimestone cement concrete[J].Cement and Concrete Composites,1999,21(2):139~146.
    [85] TSIVILIS S,CHANIOTAKIS E,KAKALIA G,et al.An analysis of the propertiesof portland limestone cements and concrete[J].Cement and ConcreteComposites,2002,24(3~4):371~378.
    [86]王超.电石渣水泥和石灰石水泥生命周期评价的比较研究[D],成都:西南交通大学,2007:38.
    [87] Guinee J B,Guinee Marieke,Heijungs Reinout,et al.Handbook on life cycleassessment-operational guide to the ISO standards[M],Kluwer AcademicPublisher,Dordrecht,2002:387.
    [88]蓝盛芳,钦佩,陆宏芳.生态经济系统能值分析[M],北京:化学工业出版社,2002:3~4.
    [89] Odum H T(蒋有绪等译).系统生态学[M],北京:科学出版社,1993:8~15.
    [90]刘伟新,王延斌,郭莉,秦建中.扫描电镜/环境扫描电镜在油气地质研究中的应用[J].电子显微学报,2006,25(sl)321~322.
    [91] J.Fermoso,C.Stevanov,B.Moghtader,et al.High-pressure gasification rea-ctivity of biomass chars produced at different temperatures[J].JournalofAnalytical and Applied Pyrolysis,2009,85(1):287~293.
    [92] Haul,R.A.W,Hevetek H.On the Heat Decomposition of dolomite[J].Am.Mineralogist,1952,35:166~172.
    [93] C.A.Sorrell,C.R.Armstrong.Reaetion and equilibrias in magnesium oxye-hloride Cements[J].J.Am.Caram.Soc,1976,59(l~2):51~54.
    [94]王佩玲.镁水泥物化基础及特征.北京:科学出版社,1990.4~10.
    [95] WU Q L,XIANG L,JIN Y.Inf1uenee of CaC12on the hydrotherma1modifieationof Mg(OH)2[J].Powder Teehnology,2006(165):100~104.
    [96] Fisher.Microstructure and properties of hercynite magnesia calciumzirconate refractory mixtures[J].Journal of the European Ceramic Society,2005,25:1499~1506.
    [97] Hashimoto H.Partial decomposition of dolomite in carbon dioxide[J].SolidState Chem,1980,33(1):181~188.
    [98] Otsuka R.Recent studies on the decomposition of dolomite group by theralanalysis[J].Therm.Acta,1986,(10):69~80.
    [99]顾长光.碳酸盐矿物热分解机理的研究[J].矿物学报,1990,10(3):266~272.
    [100]Li Mao Qing. Chloride salt effects on the decomposition of dolomite[J].Therm.Acta,1983,68(7):1~8.
    [101]M.Samtani,D.Dollimore,F.W.Wilburn,K.Alexander.Isolation and identifi-cation of the intermediate and final products in the thermal decompositionof dolomite in an atmosphere of carbon dioxide[J]. Thermochimica Acta2001(367~368):285~295.
    [102]P Engler,MW Santana,ML Mittleman and D Balazs,Non-isothermal,in situ XRDanalysis of dolomite decomposition[J].The Rigaku Journal,1988,5(2):3~8.
    [103]K Gallucci,F Paolini,L Di Felice and C Courson.SEM analysis applicationto study CO2capture by means of dolomite[J].Diffusion fadamental,2007,7(5)1~11.
    [104]Gregg J M,Sibley D F.Epigenetic dolomitization and the origin of xenotopicdolomite texture[J].Journalof Sedimentary Petrology.1984,54:908~931.
    [105]王智化,王勤辉,骆仲泱,等.新型煤气化燃烧集成制氢系统的热力学研究[J].中国电机工程学报,2005,25(12):91~97.
    [106]金达莱,岳林海,徐铸德.球形碳酸钙复合物的红外—拉曼光谱分析研究[J].无机化学学报,2004,20(6):715~720.
    [107]Linna Hu,Pengfei Dong,Guanwei Zhen.Preparation of active CaCO3nanopar-ticles and mechanical properties of the composite materials[J]. MaterialsLetters,2009,63(3):373~375.
    [108]Shimizu T,Hirama T,Hosoda H,et al.A twin fluid bed reactor for removalof CO2from combustion processes[J].Trans I Chem E.1999,77(a1):62~68.
    [109]Lopez O A,Harrision D P.Hydrogen production using sorption enhancedreaction[J].Ind Eng Chem Res,2001,40(23):5102~5109.
    [110]Abanades J C,Alvarez D.Conversion limits in the reaction of CO2with lime[J].Energy and Fuels,2003,17(2):308~315.
    [111]Sibley D F,Gregg J M.Classification of dolomite rock textures[J].Journalof Sedimentary Petrology,1987,57(6):967~975.
    [112]H.Aygul Yeprem. Effect of iron oxide addition on the hydration resistanceand bulk density of doloma[J].Journal of the European Ceramic Society,2007,27:1651~1655.
    [113]A.Ghosha*,T.K.Bhattacharya b,S.Maiti b,B.Mukherjeea,H.S.Tripathia, S.K.Das.Densification and properties of lime with V2O5additions[J]. CeramicsInternational.2004,(30):2117~2120.
    [114]冯小平,张正文,谢俊林.轻烧白云石的煅烧工艺对活度的影响[J].矿产综合利用,2007(1):13~15,25.
    [115]M.V.K k.Characterization.Correlation and kinetics of dolomite samples asoutlined by thermal methods[J].Journal of thermal analysis and calorime-try,2008,91:565~568.
    [116]Claudio Delle Piane,Luigi Burlini,Bernard Grobety.Reaction-inducedstrain localization:Torsion experiments on dolomite[J].Earth and Plane-tary Science Letters,2007,256(1/2):36~46.
    [117]金奕,周云.白云石显微结构与其冶金性能的关系[J].安徽工业大学学报,2007(7):236~238.
    [118]Galai H, Pijolat M,Nahdi K,et al.Mechanism of growth of MgO and CaCO3duringa dolomite partial decomposition[J].Solid State Ionics,2007,178(15~18):1039~1047.
    [119]D.T.Beruto,R.Vecchiattini,M.Giordani,Effect of mixtures of H2O(v) andCO2(g) on the half thermal decomposition of dolomite natural stone in highCO2pressure regime[J].Thermochim.Acta(2002).
    [120]翟学良,张越.太行山脉武安白云石热分解机理[J].矿物学报,2002,20(2):160~164.
    [121]李余增.热分析[M].北京:清华大学出版社,1987:74~128.
    [122]Beruto.D.T,Vecchiattini.R,Giordani.M,Solid products and rate-limitingstep in the thermal half decomposition of natural dolomite in a CO2(g)atmosphere,Thermochimica Acta[J].2003(405)183~194.
    [123]Lv X T,Bala H,Li M G,et al.In situ synthesis of nanolamellas of hydrophobicmagnesium hydroxide[J].Colloids and Surfaces,2007,296:97~103.
    [124]Claudio Delle Piane,Luigi Burlini,Bernard Grobety.Reaction-inducedstrain localization:Torsion experiments on dolomite[J].Earth andPlanetary Science Letters,2007,256(1/2):36~46.
    [125]A.M.Amer.A contribution to hydrometallurgical processing of low-gradeEgyptian dolomite deposits[J].Hydrometallurgy.1996(42):345~356.
    [126]《胶凝材料学》编写组.胶凝材料学[M].北京:中国建筑工业出版社,1985.
    [127]王冲,刘勇兵*,曹占义,等.白云石煅烧组织的转变过程[J].材料热处理学报,2013,34(2):23~26.
    [128]Katia Gallucci,Stefano Stendardo,Pier Ugo Foscolo.CO2capture by means ofdolomite in hydrogen production from syngas[J].International Journal ofHydrogen Energy,2008,33(12):3049~3055.
    [129]LV J,QU L Z,QU B J.Controlled growth of three morphologieal strueturesof magnesium hydroxide nanopartieles by wet preeipitation method[J].Journal of Crystal Growth,2004,267(34):676~684.
    [130]Samtani M,Dollimore D,Wilburn F W,et al.Isolation and identification ofthe intermediate and final products in the thermal decomposition ofdolomite in an atmosphere of carbon dioxide[J].Thermochimica Acta,2001,367~368:285~295.
    [131]C W,Y L,Z C.et al.Research on the structure transformation of calciningdolomite[J].Energy Education Science and Technology Part A,2012(sl):1149~1154.
    [132]WU H Q,SHAO M W,GU J S,et al.Mierowave-assistedsynthesis of fibrelikeMg(OH)2nanopartieles in aqueous solution at room temperature[J]. Mater-ials Letters,2004(58):2166~2169.
    [133]Miser D E,Sw inn ea J S,St einf ink H.TEM observations and X-ray crystalstructure refinement of a twinned dolomite with a modulated microstruc-ture[J].Amer.Miner,1987,72:188~193.
    [134]Wenk H R,Barber D J,Reeder R J Mierostuetures in carbonates,In:Reeder RJed.Carbonates:Mineralogy&Chemistry.Reviews in Mineralogy,1983,11:301~367.
    [135]曹占义,王冲,陈永弟,刘勇兵,等.以白云石为原料制备金属镁的方法:中国,ZL201010126327.5[P].2011.8.31.
    [136]王冲,刘玉华,陈永弟.以白云石为原料煅烧金属镁的工艺研究[J].长春师范学院学报(自然科学版),2011(6):42~45.
    [137]曹占义,陈永弟,庄建,王冲,等.制备纳米氧化镁和活性轻质碳酸钙的方法:中国,ZL2009100067462.4[P].2011.4.27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700