用户名: 密码: 验证码:
玉米根茬收获模式及采收机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米根茬产量丰富,具有优良的理化及生物质特征,其卓越的开发应用潜力越来越为人们所重视。玉米侧根系发达,粗壮而强韧,向四周生长,与土壤紧密结合,且根系中央常常裹挟大量土壤不易分离,为根茬的机械化收获带来了困难。
     根据所参加的国家“863计划”项目,对玉米根茬采收的相关内容进行深入研究,探索了玉米根茬的采收模式,并确定科学、合理的根茬采收工艺路线;对采收过程涉及的理论问题进行了研究,建立了各关键机构的力学模型,挖掘具有模型控制功能的关键参数,并以采收性能为目标实施模型优化;同时研发了一套集铲挖、脱土、升运、集茬于一体的玉米根茬采收试验平台,通过理论模型指导平台的搭建与优化,借助机械试验平台对模型实施验证与修正;最后采用试验优化设计的方法对系统进行优化,通过优化参数确定理想的参数组合模式,以提升系统整体性能。
     研究了玉米根茬所处的田间地貌及基础物理属性,获得了与采收有关的土壤和根茬的基础数据,建立了根茬形态与力学模型,为采收系统的研制奠定了基础。采用TRIZ创新理论研究了玉米根茬收获系统的基本组成、功能模式以及关键技术,预测了根茬采收系统的主体结构形式;确定了铲挖与脱土作业的“物-场模型”;化解了机构间的矛盾冲突,为采收系统的创新设计指明了科学的方向。采用虚拟样机技术研制了具有参数可调功能的根茬收获试验平台,为相关采收理论及试验研究奠定了良好的平台基础。借助滑切动力学模型,优化并设计了具有多级滑切角的根茬铲具刃口形式;通过建立根茬在抖动平面上的动力学模型,确定了实现根茬升运及跳动的临界条件,并优化了抖动脱土系统的参数组合形式;根据摩擦自锁理论,建立了根茬喂入临界状态的受力模型,确定了影响根茬喂入性能的关键参数。通过采用理论模态与试验模态相结合的研究方法,获得了根茬采收系统的结构动力学属性,确定了模态参数及系统振型,为系统动态脱土性能的提升提供依据。
     结合理论研究对抖动脱土系统和碾压碎土机构进行了试验优化设计,将驱动转速、链条倾角、抖动轮的位置、碾辊间隙作为试验因素,以脱净率和脱土耗时作为优化目标,对抖动脱土系统和碾压碎土机构进行了试验研究并建立了相关模型;采用遗传算法对多目标非线性规划模型实施了寻优,并验证了系统在优化参数下的运行状态,同时采用高速摄影技术记录、分析了根茬抖动脱土过程;最后将收获系统的各可调参数均设置成优化值,实施整机脱土性能综合测试,试验结果表明:系统的脱土率可达86.7%,单个根茬整个处理过程的平均耗时为4.87s。
Yield of crop stubble is rich, which has excellent physical, chemical and biologicalcharacteristics. More and more attention has been paid to the outstanding developmentapplication potential. Lateral stubble system of corn is strong, growing around, andclosely combines with soil. Moreover, the soil is often enveloped in the central of thestubble, which is not easy to separate, bringing difficulty to the mechanization of cornstubble harvest.
     Consequently, According to a project supported by National Hi-tech Program, adeep research for relevant contents of corn stubble harvest was performed, exploringharvesting mode, and establishing scientific and reasonable harvesting route. Varioustheory problems, in the process of harvest were studied, and the mechanical models ofkey mechanisms were established, some key parameters which have model controllingfunction were developed, and then the model optimization was conducted aiming at theharvesting performance. Meanwhile, a corn stubble harvest test platform was developed,which set shovel-dig, scouring off soil from stubbles, hoisting and gathering stubble in abody. By means of theoretical model to guide for establishment and optimization of theplatform, the models were validated and revised with mechanical test platform. Finally,we use test optimization design method to optimize the system, through optimizingparameters to determine ideal composite mode of the structural parameters, in order toimprove system performance.
     Depend on the landform and basic physical attributes of the corn stubble field, weobtain basic data of the soil and corn stubble and the morphological and mechanicalmodel were established, which provided basis for development of harvest system. Basedon TRIZ theory and method, the basic composition of corn stubble harvest system,function mode, and key technologies were studied, the main structure form of the systemwas forecast, and the “material-field model” for shoveling-digging and scouring soilfrom the stubble was set up. Then the contradiction between mechanisms was resolved,and the scientific direction of innovative design of harvest system was point out. Usingvirtual prototype technology, corn stubble harvest experiment platform whose parametersare adjustable was developed, providing better platform fundation. Shovel blade form forcorn stubble with multi-stage shearing angle was designed and optimized based onslippery cut dynamics model. Through establishing the dynamic model of stubble in the wobble plane, the critical condition in implementing stubble hoisting and beating wasdetermined, and the combined parameter mode of wobble system for separating soil fromstubbles was optimize. Based on friction self-locking theory, the force model in criticalstate was established when stubble is feeding, the key parameters affecting theperformance of stubble feeding was determined. Through the research method ofcombining theoretical and experimental mode, the system dynamics properties of thestubble harvest structure were obtained, the modal parameters and system modes weredetermined, and the basis for the improving system dynamics for scouring was provided.
     We combines theoretical study with tests the wobble soil system and rollingpulverize optimization design, considering driving speed, chain inclination, location ofthe wobble wheel, clearance between the two rollers as experimental factors, and thecleaning rate and the efficiency of scouring soil as optimal objective. The research ofscouring soil system and rolling wobble broking soil were performed and the relevantmodel was set up. We applied genetic algorithm of multi-objective nonlinearprogramming model to search the optimization and verified the operation state when thesystem is under the optimizing parameters. Meanwhile, we employed high-speedphotography technology to record and analyze the process when the corn stubble is inwobble state for scouring soil. Finally, the adjustable parameters of the harvest system tooptimal value were set; a comprehensive test for the scouring soil performance of thewhole machine was performed. Therefore, the rate of scouring soil up to86.7%, andsingle stubble through a processing duration take an average time of4.87s.
引文
[1]中华人民共和国国家发展和改革委员会.可再生能源中长期发展规划[R].2007,9.
    [2] Jia Honglei, Ma Chenglin, Li Guangyu. Combined rototilling-stubble-breaking-planti-ng-machine[J]. Soil&Tillage Research,2007,96:73-82.
    [3]陈学森,马旭,武涛.玉米根茬挖掘机根土分离装置设计[J].广东农业科学,2011,13(6):156-159.
    [4]吴子岳.玉米秸秆与根茬切碎模型及其机具的研究[D].北京:中国农业大学博士学位论文,2000.
    [5]马丽.农户采用保护性耕作技术的行为选择及效果评价[D].沈阳:沈阳农业大学硕士学位论文,2010.
    [6]陈传琳.秸秆还田的方式及技术[J].安徽农业,2004,(6):40-41.
    [7]卜毓坚,屠乃美,刘文,廖震.我国农作物秸秆综合利用现状及其技术进展[J].作物研究,2006(5):526-529.
    [8]李艳.多功能玉米秸秆还田机的研制[D].泰安:山东农业大学硕士学位论文,2007.
    [9]邵东伟.玉米根茬收获机的仿真研究[D].佳木斯:佳木斯大学硕士学位论文,2011.
    [10]杨新义.玉米根茬根土分离装置的设计与研究[D].长春:吉林大学硕士学位论文,2011.
    [11]赵捐利.马铃薯产业化现状及发展对策[J].农业技术与装备,2007,(4):20-21.
    [12]单爱军,刘俊杰,崔冰冰.马铃薯收获机现状与发展趋势[J].农机化研究,2006,(4):19-20.
    [13]杨德秋,郝新明,贾晶霞.马铃薯机械化收获技术的发展现状[J].农业技术与装备,2007,(7):8-9.
    [14]美国LENCO公司产品介绍[EB/OL]..http://www.lenco-harvesters.com/index.html
    [15]德国GRIMME SF170GT.马铃薯联合收获机说明书[EB/OL]. http://www.grimme.dehttp://www.grimme.de/Downloadbereich/pdfProspekteEN/SF170GT_eng.pdf.
    [16]胡明,格力莫.将现代科技导入马铃薯生产[J].农业技术与装备,2007,(7)::38-39.
    [17]宋言明,王芬娥.国内外马铃薯机械的发展概况[J].农机化研究,2008,(9):224-228.
    [18] MannDL.Better technology foreeasting using systematic innovation methods[J].Technological Foreeasting and SoCial Change,2003,70(8):779一795.
    [19] Kishan Singh.Partial Mechanization of sugareane harvesting AGRICULTURALMECHANIZATIONINASIA. AFRICA and LATIN AMERICA[J].1995,(16):12-19.
    [20] Higgins A.J..Optimisting harvest in sugar produetion:A case study for the Mossmanmill region in Australia.Field Crops Researeh[J]..TRIZ-Journa,1998,(20):38~46.
    [21] Borpit Tangwongkit. Development of Walk-type Sugar Cane harvester[D].Thailand:Ka-setsart Uni.1995.
    [22] Lay Lwin.Development of a Walking Type Sugareane Harvester [J]. A.1.Tthesis forM.S.XXlll.1992.
    [23] Shukla L N. Tandon SK, Vrema S R. Development of a sugareane planter fordeveloping countries[J]. AMA,1984,15(l):18-25.
    [24]蒲明辉.小型甘蔗收获机虚拟设计及仿真[D].广西:广西大学硕士学位论文,2005.
    [25]李维华,钟波,张伟海,李小风..4GJ1生姜收获机的研制[J].农业装备与车辆工程,2009,(2):38-40.
    [26]彭宝良,吕小莲,王海鸥,胡志超.半喂入自走式大蒜联合收获机[J].农业机械学报,2011,42(1):139-141.
    [27]付威,陈海涛,坎杂.萝卜收获机振动松土铲参数的优化[J].农业工程学报,2011,27(11):46-50.
    [28]史铭儡.吉林省黑土玉米田土壤真菌区系及生态特性研究[D].长春:吉林农业大学硕士学位论文.2005.
    [29]孙剑.玉米根茬结构和力学特征及与土壤的摩擦学性能[D].长春:吉林大学硕士学位论文.2011.
    [30]中国长春概况http://www.cc.jl.gov.
    [31]长春地表形态http://changchun.jlcoop.gov.cn/class.asp?classid=28.
    [32]荆伟.长春市雨水资源可持续利用规划研究[D].长春:东北师范大学硕士学位论文,2008.
    [33]薛国东,陈文萍.长春地区降水量的区域分布规律及年内分配和年际变化[J].吉林水利,2007,(12):16-19.
    [34]李文波,郭永杰.长春市降水量变化规律分析[J].吉林水利,2008,(1):33-34.
    [35] Robert P., Durieux, Eugene, J. Kamprath, William A. Jackson, Robert H. Moll.rootdistribution of corn: The Effect of Nitrogen Fertilization[J]. Agron.1994,86:958-962.
    [36] Joseph Shalhevet, Morris G. Huck, Bryan P. Schroeder. Root and shoot growthresponses to salinity in maize and soybean.[J]. Agron.1995,87:512-516.
    [37] Ruijun Qin, Peter Stamp, Walter richner. impact of tillage and banded starterfertilizer on maize root growth in the Top25centimeters of the soil[J]. Agron.2005,97:674-683.
    [38] André Chassot, Walter Richner. Root characteristics and phosphorus uptakeof maizeseedlings in a bilayered soil[J].Agron.2002,94:118-127.
    [39] Bischetti G B, Chiaradia E A, Simonato T, Speziali B, Vitali B, Vullo P, Zocco A.Root strength and root area ratio of forest species in Lombardy (Northern Italy)[J].Plant and Soil,2005,(278):11-22.
    [40] Baets S D, Poesen J, Reubens B, Wemans K, Baerdemaeker J D, Muys B.Roottensile strength and root distribution of typical Mediterranean plant speciesandtheir contribution to soil shear strength[J]. Plant Soil,2008,(305):207-226.
    [41]汲文峰.旋耕—碎茬仿生刀片[D].长春:吉林大学博士学位论文.2011.
    [42]黄英,龚羊庆,金克盛,肖红宇.加筋土研究中的几个问题[J].云南水利发电,2005,21(4):29-33.
    [43] Schdosser F, LongN-T. Recent results in french research on reinforced earth[J].Journal of the Construction Division,1974,100(3):223-237.
    [44]张东升.长江上游暗针叶林林木根系抗拉力学特性研究[D].北京:北京林业大学硕士学位论文,2002.
    [45]朱清科,陈丽华.贡嘎山森林生态系统根系固土力学机制研究[J].北京林业大学学报,2002,24(4):64-67.
    [46]李绍才,孙海龙,杨志荣,何磊,崔保山.护坡植物根系与岩体相互作用的力学特性[J].岩石力学与工程学报,2006,25(10):2051-2057.
    [47]袁志华,苏宗伟,李祥付,花恒明.玉米根系的拉伸特性研究[J].河南农业科学,2009,(10):51-52.
    [48]陈丽华,余新晓,张东升.整株林木垂向抗拉试验研究[J].2004,26(增刊):39-43.
    [49] Min Woo See, Jun Boum Park, Inn Joon Park, Moon Kyung Chung. Modeling ofinterface shear behavior between geosynthetics[J]. Geotechnical Engineering,2003,7(1):9-16.
    [50] Deng W D, Deng C Z, Yan Q R. Study on direct shear on interface performance ofgeogrid and corase-grained soil [C]. Proceedings of the4th AsianRegionalConference on Geosynthetics,2008, pp157-160.
    [51] AltshullerG.. The innovation algorithm, TRIZ, systematie innovation and teehniealcreativity [J].Woreester:Technieal Innovation Center, INC,1999.
    [52]郑称德.现代TRIZ研究的发展TRIZ创造性问题解决理论[J].科技进步与对策,2002(2):88-90.
    [53]王亮申. TRIZ创新理论与应用原理[M].科学出版社,2010.
    [54]李恩田.基于TRIZ的机械产品创新设计模式研究[J].设计与研究,2006,33(8):18-23.
    [55〕张青华.基于TRIZ的技术进化理论研究及工程应用[D].天津:河北工业大学硕士论文,2003.
    [56] Mann D L. Fan Technology:Evolutionary Potential and EvolutionaryLimit[J].TRIZ-Journal,2004,157-160.
    [57]张卫国,张国全,何海等.运用TRIZ理论解决复杂机电产品的创新设计问题[J].机械设计与研究,2005,21(3):15-18.
    [58]戴义贵,潘凤章,景秀并.基于TRIZ的计算机辅助机械产品创新设计[J].机械设计与制造,2004,(5):50-52.
    [59]张磊,檀润华. TRIZ理论对工业设计的影响[J].艺术与设计,2009,(2):147-149.
    [60] Heather M. Smolensky. analysis of the evolution of training tools and systems usingthe TRIZ methodology[J]. TRIZ-Journal,2000,(5):123-130.
    [61]马力辉.面向多冲突问题的TRIZ关键技术研究[D].天津:河北工业大学博士论文,2007.
    [62]丁俊武,韩玉启,郑称德.创新问题解决理论-TRIZ研究综述[J].科学与科学技术管理,2004,(5):53-60.
    [63]檀润华.创新设计-TRIZ发明问题解决理论[M].北京:机械工业出版社,2002.
    [64]柴亚楠.基于TRIZ理论和工程仿生学的机械创新方法的研究[D].长春:吉林大学硕士论文,2009.
    [65]贾晶霞,张东兴,郝新明,刘汉武.马铃薯收获机参数化造型与虚拟样机关键部件仿真[J].农业机械学报,2005,3(11):23-26
    [66]李杰,阎楚良,杨方飞.基于虚拟样机技术的联合收获机切割机构的仿真[J].农业机械学报,2005,5(12):42-45
    [67]杜平安,于德江,岳萍.虚拟样机技术的技术与方法体系研究[J].系统仿真学报.2007,6(15)::23-26
    [68] Guo Yang, Song Yongzeng, Zhen Zijian. Establishment of3D standard part libraryof diesel locomotive based on Pro/Engineer[J]. Journal of northern JiaotongUniversity,2002.26(1):18-26.
    [69] Brunettia G, Golobb B. A feature-based approach towards an integrated productmodel including conceptual design information [J]. Computer-Aid Design,2000,(30):877-887.
    [70]陈晓川,张暴暴,刘晓冰.虚拟制造技术研究概况综述[J].机械制造,1998,1(12):8-10.
    [71]景仁坤.基于Pro/Engineer的三维参数化设计研究与开发[D].武汉:武汉理工大学硕士学位论文,2005.
    [72]刘宝,张东兴等. MZP H-820型单行马铃薯收获机设计[J].农业机械学报,2009,40(5): P81-86.
    [73]邵东伟,王俊发,姜东华.基于Pro/E的玉米根茬收获虚拟样机设计[J].农机化研究,2010,(7):67-70.
    [74]贾洪雷,汲文峰,韩伟峰,谭宏杰,刘昭辰,马成林.旋耕-碎茬通用刀片结构参数优化试验[J].农业机械学报,2009,40(7):45-50.
    [75]高建民,桑正中.斜置旋耕刀侧切刃曲线的理论研究[J].农业机械学报,2001,32(2):24-26.
    [76]夏萍,印松,陈黎卿,等.收获机械往复式切割器切割图的数值模拟与仿真[J].农业机械学报,2007,38(3):65-68.
    [77]倪长安,苗全生,刘玉,师清翔,高春艳,庞靖.玉米根茬破碎还田装置设计与试验[J].农业机械学报,2008,39(7):68-71.
    [78]丁为民,王耀华,彭嵩植.反转旋耕刀滑切角分析与计算[J].农业机械学报,2001,32(6):26-21.
    [79]赵新军,孙宝天.等滑切角圆盘式饲草切碎器的剪切功率[J].农业机械学报,1995,26(3):62-67.
    [80]寻怀义.滑切理论探讨[J].农业机械学报,1979,4(10):107-111.
    [81]庞声海.关于滑切理论与滑切角的选用[J].华中农学院学报,1982,6(1):64-69.
    [82]严霖元.对农业机械工作部件滑切角的探讨[J].江西农业大学学报,1991,13(1):64-68.
    [83]赵春花,张锋伟,曹致中.豆禾牧草茎秆的力学特性试验[J].农业工程学报,2009,25(9):122-126.
    [84]刘庆庭,区颖刚,卿上乐,卿上乐,宋春华.甘蔗茎秆切割力试验[J].农业工程学报,2007,23(7):90-94.
    [85]黄汉东,王玉兴,唐艳芹,赵锋,孔祥发.甘蔗切割过程的有限元仿真[J].农业工程学报,2011,27(2):161-166.
    [86]贾晶霞.马铃薯挖掘铲参数优化与性能分析[D].河北:河北农业大学硕士论文.2003.
    [87]吕金庆,陈春富,李世柱.马铃薯挖掘机挖掘铲的设计[J].农机化研究,2004,3(7):42-44.
    [88]瓦尔特·霍尔曼.物料由于阻尼和质量结合对振动槽运行状态的影响[J].曹秉忠,译.起重运输机械,1975(6)::55-63.
    [89] Ohji T, Ichiyama S, Amei M. A new conveyor system based on a passive magneticlevitation unit having repulsivetype magnetic bearings[J]. Journal of Magnetismand Magnetic Materials,2004,272-276(S1):1731-1733.
    [90] Wildeboer W J, Koppendraaier E, Litster J D. A novel nucleation apparatus forregime separated granulation [J].Powder Technology,2007,171(2):96-105.
    [91] Weingerl Ulrike, Schaflinger Uwe. Feeding of granular material on conveyer bandsor chutes [J]. Powder Technology,2000,108(1):1-5.
    [92] Piatkowski T, Sempruch J. Model of the process of load unit stream sorting bymeans of flexible active fence[J]. Mechanism and Machine Theory,2008,43(5):549-564.
    [93] Kawamoto H. Some techniques on electrostatic separation of particle size utilizingelectrostatic traveling-wave field [J]. Journal of Electrostatics,2008,66(3-4)::220~228.
    [94] Grossel Stanley S. Safety considerations in conveying of bulk solids andpowders[J]. Journal of Loss Prevention in the Process Industries,1998,1(2):62-74.
    [95]王玉杰.摩擦中的自锁现象及其在工程上的应用[J].机械工程与自动化,2006,136(3):150-153.
    [96]赵玉强,何晓鹏,师建芳,刘清,邵广,谢奇珍.鲜食玉米剥皮机的设计与试验[J].农业工程学报,2011,27(2):114-118.
    [97]王君玲,佟玲,杨玉芬.带式摩擦分选大豆的试验分析[J].沈阳农业大学学报,2006,37:238-240.
    [98]王旭东,熊平原.摩擦带传动弹性滑动的动力学分析与试验[J].机械传动2010,34(12):52-54.
    [99]周祖锷.农业物料学[M].北京:农业出版社,1994.
    [100]黄汉东,王玉兴,唐艳芹,赵锋,孔祥发.甘蔗切割过程的有限元仿真[J].农业工程学报,2011,27(2):161-166.
    [101]张立彬,蒋帆,王扬渝,张宪.基于LMS Test.Lab的小型农业作业机振动测试与分析[J].农业工程学报,2008,24(5):100-104.
    [102]闻荻江,张力,张恒.聚合物基复合材料发动机体的模态试验分析[J].农业工程学报,2005,21(2):22-24.
    [103]王忠,王小哲,袁银南,李健康.多缸柴油机机体试验模态研究[J].农业工程学报,2003,19(2):126-129.
    [104]左言言,方玉莹.中马力拖拉机发动机罩的减振研究[J].农业工程学报,2003,19(4):107-110.
    [105]朱茂桃,何志刚,徐凌,李志兵.车身模态分析与振型相关性研究[J].农业机械学报,2004,35(3):13-19.
    [106] Kroes S, Harris H D. A kinematics model of the dual base cutter of a sugarcaneharvester[J]. Journal of Agricultural Engineering Research,1995,62(3):163-172.
    [107]李青林,陈翠英,马成禛.4LYZ-2油菜收获机割台框架有限元模态分析[J].农业机械学报,2005,36(1):54-60.
    [108]蒋红旗,王繁生.起重机吊臂结构有限元模态分析[J].农业机械学报,2006,37(3):20-22.
    [109]李建平,赵匀,臧少锋,李建民.有序抛秧振动输送机构的模态分析与试验研究[J].农业工程学报,2005,21(3):115-117.
    [110] Xu B H, Bao R H. Approximation of a closely spaced mode[J]. Int J in NonlinearScience: Chaos, Soliton&Fractals,1997,8(10):1609-1621.
    [111]管迪华.模态分析技术[M].北京:清华大学出版社,1996.
    [112]赵永辉,邹经湘.利用ARMAX模型识别结构模态参数[J].振动与冲击,1998,19(1):34-36.
    [113] Skullestad A, Hallingstad O. Identification of vibration parameters in a spacecraftusing subspace methods[J]. Control Engineering Practice,1997,5(4):507-516.
    [114]钟江,乔欣,王扬渝,赵章风,张宪.快速精确获取设计中农业机械模态模型的方法[J].农业工程学报,2010,26(1):129-134.
    [115]王济. MATLAB在振动信号处理中的应用[M].北京:中国水利水电出版社,2006.
    [116] Dong Feng, Bai Xueyuan, Zha Jianwen. Feeding mechanism of belt conveyer typeseedling transplanter[J]. Transactions of the CSAE,2001,17(1):74-75.
    [117]赵作伟,陈海涛,赖庆辉,任珂珂.甜菜链式纸钵苗分离装置参数优化[J].农业工程学报,2010,26(9):154-158.
    [118]周明,孙树栋.遗传算法原理及应用(第二版)[M].北京:国防工业出版社,2002.
    [119]王金武,葛宜元,王金峰.基于遗传算法的水稻整株秸秆还田埋草弯刀的设计与试验[J].农业工程学报,2010,n26(1):166-170.
    [120]林青云.轮式小型甘蔗收获机的虚拟样机研究及其运动仿真分析[D].南宁:广西大学硕士学位论文,2004.
    [121] Goldberg D E. Genetic Algorithms in Search, Optimization and MachineLearning[M].[S.I.]: Addison-Wesley Professional,1989.
    [122]张晓霞,王彪.自适应遗传算法在机械优化设计方面的应用[J].机械管理开发,2008,23(3):32-33.
    [123]冯春,黄洪钟,谢泗淮.遗传算法在机械工程全局优化设计中的应用[J].机械设计,1997,16(1):21-24.
    [124]刘永清,桑正中.遗传算法在潜土逆转旋耕刀参数中的应用[J].农业机械学报,2001,32(1):34-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700