用户名: 密码: 验证码:
类天然杂环化合物的多样性导向合成及其生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然药物分子广泛存在于自然界,具有抗菌、抗肿瘤等多种药物活性,在药物研究中具有举足轻重的作用。以天然药物分子为导向,运用多样性导向合成策略,引入有机合成中绿色合成、手性合成等方法,设计具有潜在生物活性并常见于天然药物分子的具有分子多样性的类天然杂环化合物库,对其进行生物活性研究,是寻找优良先导化合物和候选药物分子的重要途径。
     本文采用廉价易得的原料,以简洁高效、环境友好的合成方法设计合成了五类类天然杂环化合物,较系统地研究了它们的生物活性。其中活性研究涉及抗菌、抗肿瘤、荧光及药物安全性评价等方面。这对研究开发拥有自主知识产权的类天然杂环药物具有重要意义。
     论文共分为六章:
     第一章主要对几类常见于天然产物中并具有优良生物活性的分子及其生物活性(抗肿瘤、抗菌等)研究进展进行综述。介绍了多样性导向合成方法在药物研发中的作用及采用的重要合成子。
     第二章研究多卤代吖啶酮类杂环化合物的制备与性质。探讨化合物对氢离子的荧光识别性能,结果显示化合物4a具有较好的pH荧光探针性能。抗肿瘤活性筛选显示其具有抗肿瘤活性,其中化合物4d、4o、5j、5k具有体外细胞抗肿瘤选择性(Scheme 1)。Scheme 1多卤代吖啶酮类化合物简洁制备及荧光、抗肿瘤活性
     第三章设计合成了两类多卤代间苯二甲腈类衍生物,并对其进行抗菌、抗肿瘤活性测试。结果显示化合物3.4对革兰氏阳性菌和真菌具有较好的抑制作用,其中化合物3j的MIC值达0.4-0.5μg/mL,具有与抗菌药诺氟沙星和氟康唑相当的活性;化合物8对HL60等多种肿瘤细胞株显现较强的细胞毒活性,其中化合物8o的IC50值达0.02-3.7μg/mL,活性接近或者超过抗肿瘤药顺铂(Scheme 2)。Scheme 2多卤代间苯二甲腈衍生物简洁友好制备方法及抗菌抗肿瘤活性
     第四章对简洁高效、环境友好的“无溶剂一锅法”制备的新型异喹啉酮/亚胺类化合物库进行了较系统的抗菌、抗肿瘤活性及急性毒性试验。经抗菌活性初筛发现该类化合物未表现体外抑菌活性,而大多数化合物均具有优良的体外抗肿瘤细胞毒活性。其中化合物5c的IC50值达0.005-3.4μg/ML,活性超过抗肿瘤药顺铂;化合物8j的IC50值达8.96-48.04μg/mL,代表化合物5c、6c和6h对小鼠肿瘤S180和H22显现体内抑制生长活性,而化合物6c和6h表现较低的急性毒性(Scheme 3)。Scheme 3多卤代异喹啉酮/亚胺一锅法平行制备及体内体外抗肿瘤活性
     第五章发展了一种手性Evans助剂控制的手性双环吡啶酮立体选择性合成的新方法,该方法具有简洁高效、对映选择性高的特点,ee值高达83.7%-99.1%(Scheme 4)。Scheme 4 Evans手性助剂控制的手性双环吡啶酮选择性合成
     第六章探索了以葡萄糖为原料制备具有两个固有手性中心侧链的嘧啶类化合物的方法,提出了该方法的反应过程模型(Scheme 5)。Scheme 5以葡萄糖为原料制备具有两个固有手性中心侧链的嘧啶化合物
Natural drug molecules are commonly found in nature, exhibit various biological and medicinal activities, including antibacterial, antitumour, and so on. Natural drugs research has a decisive function in drug discovery. This dissertation conducts research on natural drug molecules. The product-like heterocyclic molecules were designed and synthesed based on the excellent bioactive molecules skeleton which commonly in natural products. Diversity-Oriented Synthesis strategy and modern synthetic methods were applied such as the green chemistry, chiral synthesis, and so on. The physicochemical and biological characters of the highly functional natural product-like heterocyclic molecules libraries were evaluated. And thus, it is an important way to find lead compound and drug candidate.
     Five types of natural product-like heterocyclic libraries were been designed and synthesed by cheap and easily available raw materials, green and brief chemical process. Meanwhile, biological actives were evaluated. The biological assessment refers to antibacterial, the in vitro and in vivo antitumour activities, fluorescence activity, drug safety evaluation, and so on. Consequently, this concise process presented herein has great potential to be applied to parallel synthesis and biological studies in drug discovery.
     This dissertation is composed of six chapters.
     In Chapters 1, a review of several excellent bioactive molecules which commonly in natural products molecules and their biological activity research progress (such as antitumor, antibacterial, etc.) were presented. Diversity-Oriented Synthesis strategy and the adopted synthons were described.
     In Chapters 2, the preparation and characterization of polyhalo acridone was researched. The pH-sensitive fluorescence probe results show that compound 4a have good pH fluorescence probes properties. These compounds showed stronger cytotoxicity, and compounds 4d,4o,5j,5k have anti-tumor selectivity (Scheme 1). Scheme 1 Synthesis and fluorescence, antibacterial, antitumor activities of polyhalo acridone derivatives
     In Chapters 3, two kinds of polyhalo isophthalonitrile derivatives were designed and synthesized, their bioactivities were screened. Compounds 3,4 showed stronger inhibition of gram-positive bacteria and fungi growth, and the antimicrobial ability of compound 3j was close to nofloxacin and fluconazole (MIC 0.4-0.5μg/mL). Compounds 8 showed stronger cytotoxicity against HL60 etc. cells, and the cytotoxicity of compound 8o approached or surpassed cisplatin (IC50 0.02-3.7μg/mL) (Scheme 2). Scheme 2 Synthesis and antibacterial, antitumor activities of polyhalo isophthalonitrile derivatives
     In Chapters 4, the antibacterial, in vitro and in vivo antitumour activities of isoquinolin-1(2H)-one derivatives which prepared under solvent-free one-pot conditions and their acute toxicity were evaluated. The antibacterial was not found through preliminary screening. But the majority of compounds displayed superiorcytotoxicity compared to cisplatin. Compound 5c was found to be the most potent against the human tumor cell lines (IC50 0.005-3.4μg/mL), being 25-2000-fold more active than cisplatin except against the A431 and HepG2 cell lines. Compound 8j also showed good cytotoxic activity (IC50 8.96-48.04μg/mL). The representative compounds 5c,6c and 6h were also performed in mice bearing S180 go and H22 tumours. The results indicated that these three compounds inhibit S180 and H22 growth. In addition, compounds 6c and 6h have very low acute toxicities (Scheme 3). Scheme 3 Synthesis and in vitro and in vivo antitumour activity of isoquinolin-1(2H)-one derivatives
     In Chapters 5, a succinct, efficient, high enantioselectivity process for stereoselective synthesis of bicyclic pyridone derivatives by chiral Evans auxiliary controlled were developed. The enantiomeric excess ratio reach 83.7%-99.1% (Scheme 4). Scheme 4 Synthesis of chiral bicyclic pyridone
     In Chapters 6, a procedure for synthesis of chiral pyrimidine analogues was developed. The reaction process model of the methods was put forward (Scheme 5). Scheme 5 Synthesis of chiral pyrimidine analogues
引文
[1]Hinterding, K.; Alonso-Diaz, D.; Waldmann, H. Organic SyntcHung, D. T.; Jamison, T. F.; Schreiber, S. L. Understanding and controlling the cell cycle with natural products [J]. Chem. Biol.1996,3,623-639.
    [2]Newman, D. J.; Cragg, G. M.; Snader, K. M. Natural products as sources of new drugs over the period 1981-2002 [J]. J. Nat. Prod.2003,66,1022-1037.
    [3]卫生部卫生统计中心.我国卫生事业发展统计公报[EB/01]. http://www.moh.gov.cn/publicfiles/business/htmlfiles/zwgkzt/pgb/index.htm,2010-06-13.
    [4]赵肖玉.新型抗菌药利奈哇胺及其类似物的合成初探[D].成都:四川大学,2007:5.
    [5]薛伟,刘玉梅,宋宝安,胡德禹,杨松,卢平.具有抗菌活性的杂环天然产物的研究进展[J].农药 2007,46,721-726.
    [6]张前军,杨小生,郝小江.我国天然抗菌药物研究进展[J].中草药2008,39,304-308.
    [7](a) Newman, D. J.; Cragg, G. M.; Snader, K. M. The influence of natural products upon drug discovery [J]. Nat. Prod. Rep.2000,17,215-234; (b) Harvey, A. Strategies for discovering drugs from previously unexplored natural products [J]. Drug Discovery Today 2000,5, 294-300.
    [8]Bleicher, K. H.; Bohm, H. J.; Muller, K.; Alanine, A. I. Hit and lead generation: beyond high-throughput screening [J]. Nat. Rev. Drug Discovery 2003,2,369-378.
    [9](a) Bergstrom, F. W. Heterocyclic nitrogen compounds, part IIA. Hexacyclic compounds: pyridine, quinoline, and isoquinoline [J] Chem. Rev.1944,55,77-277; (b) De La Mare, P. B. D. Nitrogen heterocyclic chemistry [J]. Nature 1962,195,441-443; (c) Arnold, P. L.; Casely, I. J. F-block N-heterocyclic carbene complexes [J]. Chem. Rev.2009,109,3599-3611; (d) Lin, J. C. Y.; Huang, R. T. W.; Lee, C. S.; Bhattacharyya, A.; Hwang, W. S.; Lin, I. J. B. Coinage metal-N-heterocyclic carbene complexes [J]. Chem. Rev.2009,109,3561-3598.
    [10]Wu, T. S.; Kuoh, C. S.; Furukawa, H. Acridone alkaloids. VI. The constituents of Citrus depressa. Isolation and structure elucidation of new acridone alkaloids from Citrus genus [J]. Chem.Pharm. Bull.1983,31,895-900.
    [11]Su, T. L.; Kohler, B.; Chou, T. C.; Chun, M. W.; Watanabet, K. A. Synthesis of the acridone alkaloids glyfoline and congeners. Structure-activity relationship studies of cytotoxic acridones [J]. J. Med. Chem.1992,35,2703-2710.
    [12]Su, T. L.; Dziewiszek, K.; Wu, T. S. Synthesis of glyfoline, a constituent of glycosmis citrifolia (Willd.) Lindl. and a potential anticancer agent [J]. Tetrahedron Lett.1991,32,1541-1544.
    [13]Costes, N.; Deit, H. L.; Michel, S.; Tillequin, F.; Koch, M.; Pfeiffer, B.; Renard, P.; Leonce, S.; Guilbaud, N.; Kraus-Berthier, L.; Pierre, A.; Atassi, G. Synthesis and cytotoxic and antitumor activity of benzo[b]pyrano[3,2-h] acridin-7-one analogues of acronycine [J]. J. Med. Chem. 2000,43,2395-2402.
    [14]Guilbaud, N.; Leonce, S.; Tillequin, F.; Koch, M.; Hickman, J.; Pierre, A. Acronycine derivatives as promising antitumor agents [J]. Anti-Cancer Drugs 2002,13,445-449.
    [15]Kupchan, S. M.; Streelman, D. R.; Sneden, A. T. Psorospermin, a new antileukemic xanthone from Psorospermum febrifugum [J]. J. Nat. Prod.1980,43,296-301.
    [16]Boutefnouchet, S.; Gaboriaud-Kolar, N.; Minh, N. T.; Depauw, S.; David-Cordonnier, M. H.; Pfeiffer, B.; Leonce, S.; Pierre, A.; Tillequin, F.; Lallemand, M. C.; Michel, S. Synthesis, cytotoxic activity, and mechanism of action of furo[2,3-c]acridin-6-one and benzo[b]furo[3,2-h]acridin-6-one analogues of psorospermin and acronycine [J]. J. Med. Chem. 2008,51,7287-7297.
    [17]Kawaii, S.; Tomono, Y.; Katase, E.; Ogawa, K.; Yano, M.; Takemura, Y.; Ju-ichi, M.; Ito, C.; Furukawa, H. The antiproliferative effect of acridone alkaloids on several cancer cell lines [J]. J. Nat. Prod.1999,62,587-589.
    [18]Drechsel, E. Contribution to the chemistry of a sea animal [J]. Zeitschrift fur Biologie 1896,33, 85-107.
    [19]Marumo, S.; Hattori, H.; Abe H., Munakata K. Isolation of 4-chloroindolyl-3-acetic acid from immature seeds of Pisum sativum [J]. Nature 1968,219,959-960.
    [20]Gribble, G. W. Naturally occurring organohalogen compounds [J]. Acc. Chem. Res.1998,31, 141-152.
    [21]Gribble, G. W. Naturally occurring organohalogen compounds-a comprehensive update [M]. New York:Springer.2010:1.
    [22]耿召良,王浩鑫,赵沛基,郝小江,曾英.卤代酶与生物卤化反应进展[J].云南植物研究2009,31,269-278.
    [23]Burkholder, P. R.; Pfister, R. M.; Leitz, F. P. Production of a pyrrole antibiotic by a marine bacterium [J].Appl. Microbiol.1966,14,649-653.
    [24](a) Bergman, R. G. V. Reactive 1,4-dehydroaromatics [J]. Acc. Chem. Res.1973,6,25-32; (b) Fukuzawa, A.; Kurosawa, E. Laurallene, new bromoallene from the marine red alga Laurencia nipponica Yamada [J]. Tetrahedron Lett.1979,30,2797-2800.
    [25]Xu, N. J.; Fan, X.; Yan, X. J.; Li, X. C.; Niu, R. L.; Tseng, C. K. Antibacterial bromophenols from the marine red alga Rhodomela confervoides [J]. Phytochemistry 2003,62,1221-1224.
    [26]Gribble, G. W. Naturally occurring organofluorines [A], see: The Handbook of Environmental Chemistry [M]. New York:springer,2002,3N,121-136.
    [27]刘长令.含氟农药的创制途径[J].农药1998,37,1-5.
    [28]赵玉芬,赵国辉.元素有机化学[M].北京:清华大学出版社,1998:263-264.
    [29]Fleming, Fraser F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C. Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore [J]. J. Med. Chem.2010,53, 7902-7917.
    [30]Fleming, F. F. Nitrile-containing natural products [J]. Nat. Prod. Rep.1999,16,597-606.
    [31]Konig, G. M.; Wright, A. D.; Linden, A. Antiplasmodial and cytotoxic metabolites from the Maltese sponge Agelas oroides [J]. Planta Med.1998,64,443-447.
    [32]Kato, Y.; Fusetani, N.; Matsunaga, S.; Hashimoto, K. Bioactive marine metabolites IX. Mycalisines A and B, novel nucleosides which inhibit cell division of fertilized starfish eggs, from the marine sponge mycale sp. [J]. Tetrahedron Lett.1985,26,3483-3486.
    [33]Ohkuma, K. J. Antibiot. Ser. A 1961,14,343-352.
    [34](a) Kraemer, G.; Spilker, A. Synthese des chrysens und verwandter kohlenwasserstoffe [J]. Berichte der deutschen chemischen Gesellschaft 1890,23,84-87; (b) Marion, J. P.; Muggler-Chavan, F.; Viani, R.; Bricout, J.; Reymond, D.; Egli, R. H. Surla composition de l'arome de cacao [J]. Helvetica Chimica Acta 1967,50,1509-1516.
    [35]Johnson, S. M.; Petrassi, H. M.; Palaninathan, S. K.; Mohamedmohaideen, N. N.; Purkey, H. E.; Nichols, C.; Chiang, K. P.; Walkup, T.; Sacchettini, J. C.; Sharpless, K. B.; Kelly, J. W. Bisaryloxime ethers as potent inhibitors of transthyretin amyloid fibril formation [J]. J. Med. Chem.2005,48,1576-1587.
    [36]Toogood, H. S.; Brown, R. C.; Line, K.; Keene, P. A.; Taylor, S. J. C.; McCague, R.; Littlechild, J. A. The Use of a thermostable signature amidase in the resolution of the bicyclic synthon (rac)-y-Lactam [J]. Tetrahedron 2004,60,711-716.
    [37]Mussinan, C. J.; Walradt, J. P. Volatile constituents of pressure cooked pork liver [J]. J. Agric. Food Chem.1974,22,827-831.
    [38](a) Kanegae, M. P. P.; Fonseca, L. M. D.; Brunetti, I. L.; Silva, S. D. O.; Ximenes, V. F. The reactivity of ortho-methoxy-substituted catechol radicals with sulfhydryl groups: Contribution for the comprehension of the mechanism of inhibition of NADPH oxidase by apocynin [J]. Biochem. Pharmacol.2007,74,457-464; (b) Ley, J. P.; Bertram, H. J. Hydroxy-or methoxy-substituted benzaldoximes and benzaldehyde-O-alkyloximes as tyrosinase inhibitors [J]. Bioorg. Med. Chem.2001,9,1879-1886.
    [39]Guo, S.; Tipparaju, S. K.; Mo, S.; Orjala, J.; Mesecar, A. D.; Kozikowski, A. P.; Pegan, S. D.; Wan, B.; Franzblau, S. G. Natural product leads for drug discovery:Isolation, synthesis and biological evaluation of 6-cyano-5-methoxyindolo[2,3-a]carbazole based ligands as antibacterial agents [J]. Bioorg. Med. Chem.2009,17,7126-7130.
    [40](a) Ziehl, M.; He, J.; Dahse, H. M.; Hertweck, C. Mutasynthesis of aureonitrile, an aureothin derivative with significantly improved cytostatic effect [J]. Angew. Chem. Int. Ed.2005,44, 1202-1205; (b) Werneburg, M.; Busch, B.; He, J.; Richter, M. E. A.; Roth, M.; Dahse, H. M.; Hertweck, C.; Xiang, L.; Moore, B. S. Exploiting enzymatic promiscuity to engineer a focused library of highly selective antifungal and antiproliferative aureothin analogues [J]. J. Am. Chem. Soc.2010,132,10407-10413.
    [41](a) Furet, P.; Batzl, C.; Bhatnagar, A.; Francotte, E.; Rihs, G.; Lang, M. Aromatase inhibitors: synthesis, biological activity, and binding mode of azoletype compounds [J]. J. Med. Chem. 1993,36,1393-1400; (b) Kelloff, G. J.; Lubet, R. A.; Lieberman, R.; Eisenhauer, K.; Steele, V. E.; Crowell, J. A.; Hawk, E. T.; Boone, C. W.; Sigman, C. C. Aromatase inhibitors as potential cancer chemopreventives [J]. Cancer Epidemiol., Biomarkers Prev.1998,7,65-78.
    [42]Martin, N. E.; Brunner, T. B.; Kiel, K. D.; DeLaney, T. F.; Regine, W. F.; Mohiuddin, M.; Rosato, E. F.; Haller, D. G.; Stevenson, J. P.; Smith, D.; Pramanik, B.; Tepper, J.; Tanaka, W. K.; Morrison, B.; Deutsch, P.; Gupta, A. K.; Muschel, R. J.; McKenna, W. G.; Bernhard, E. J.; Hahn, S. M. A phase I trial of the dual farnesyltransferase and geranylgeranyltransferase inhibitor L-778,123 and radiotherapy for locally advanced pancreatic cancer [J]. Clin. Cancer Res.2004,10,5447-5454.
    [43]Puchler, K.; Sasahara, K.; Plenker, A.; Nitanai, T.; Witte, P. U. The pharmacokinetic profile of RS-8359 [J]. Int. Clin. Psychopharmacol.1997,12, S11-S16.
    [44]Hughes, C. A.; Robinson, L.; Tseng, A.; MacArthur, R. D. New antiretroviral drugs:a review of the efficacy, safety, pharmacokinetics, and resistance profile of tipranavir, darunavir, etravirine, rilpivirine, maraviroc, and raltegravir [J]. Expert Opin. Pharmacother.2009,10,2445-2466.
    [45](a) Murphy, S. T.; Case, H. L.; Ellsworth, E.; Hagen, S.; Huband, M.; Joannides, T.; Limberakis, C.; Marotti, K. R.; Ottolini, A.M.; Rauckhorst, M.; Starr, J.; Stier, M.; Taylor, C.; Zhu, T.; Blaser, A.; Denny, W. A.; Lu, G. L.; Smaill, J. B.; Rivault, F. The synthesis and biological evaluation of novel series of nitrilecontaining fluoroquinolones as antibacterial agents [J]. Bioorg. Med. Chem. Lett.2007,17,2150-2155; (b) Markus, B.; Kwon, C. H. In vitro metabolism of aromatic nitriles [J]. J. Pharm. Sci.1994,83,1729-1734.
    [46]Jones, L. H.; Summerhill, N. W.; Swain, N. A.; Mills, J. E. Aromatic chloride to nitrile transformation:medicinal and synthetic chemistry [J]. Med. Chem. Commun.2010,1,309-318.
    [47](a) Ukita, T.; Nakamura, Y.; Kubo, A.; Yamamoto, Y.; Moritani, Y.; Saruta, K.; Higashijima, T.; Kotera, J.; Takagi, M.; Kikkawa, K.; Omori, K. Novel, potent, and selectivephosphodiesterase 5 inhibitors:synthesis and biological activities of a series of 4-aryl-l-isoquinolinone derivatives [J]. J. Med. Chem.2001,44,2204-2218; (b) Roth, J.; Madoux, F.; Hodder, P.; Roush, W. R. Synthesis of small molecule inhibitors of the orphan nuclear receptor steroidogenic factor-1 (NR5A1) based on isoquinolinone scaffolds [J]. Bioorg. Med. Chem. Lett.2008,18,2628-2632; (c) Bollini, M.; Boiani, M.; Asis, S. E.; Gonzalez, M.; Vega, D. R.; Gonzalez, M.; Cerecetto, H.; Bruno, A. M. Synthesis and theoretical study of the reactivity of the heterocycle 2,3-dihydroimidazo[1,2-b]isoquinolin-5(H)-one [J]. Molecular Medicinal Chemistry 2007,12, 46-50; (d) Bollini, M.; Casal, J. J.; Alvarez, D. E.; Boiani, L.; Gonzalez, M.; Cerecetto, H.; Bruno, A. M. New potent imidazoisoquinolinone derivatives as anti-Trypanosoma cruzi agents: Biological evaluation and structure-activity relationships [J]. Bioorg. Med. Chem.2009,17, 1437-1444.
    [48]Coelho, F.; Veronese, D.; Lopes, E. C. S.; Rossi, R. C. An approach to substituted dihydroisoquinolin-1(2H)-ones from Baylis-Hillman adducts [J]. Tetrahedron Lett.2003,44, 5731-5735.
    [49]Chern, M. S.; Li, W. R. Solid-phase synthesis of isoquinolinones using Bischler-Napieralski cyclization [J]. Tetrahedron Lett.2004,45,8323-8326.
    [50]Pettit, G. R.; Meng, Y.; Herald, D. L.; Graham, N. K. A.; Pettit, R. K.; Doubek, D. L. Isolation and structure of ruprechstyril from Ruprechtia tangarana [J]. J. Nat. Prod.2003,66, 1065-1069.
    [51]Shamma, M.; Foy, J. E. A controlled oxidation of bisbenzylisoquinolines [J]. Tetrahedron Lett. 1975,16,2249-2252.
    [52]Gonzalez, D.; Martinot, T.; Hudlicky, T. A short chemoenzymatic synthesis of (+)-narciclasine [J]. Tetrahedron Lett.1999,40,3077-3080.
    [53]Thompson, R. C.; Kallmerten, J. An annulative, carbohydrate-based approach to pancratistatin and structurally-related phenanthridone alkaloids. Synthesis of (+)-tetrabenzyllycoricidine [J]. J. Org. Chem.1990,55,6076-6078.
    [54]Vennerstrom, J. L.; Klayman, D. L. Protoberberine alkaloids as antimalarials [J]. J. Med. Chem. 1988,31,1084-1087.
    [55](a) Abel, U.; Simon, W.; Eckardb P.; Hansske, F. G. Design and semisynthesis of novel fredericamycin a derivatives with an improved antitumor profile [J]. Bioorg. Med. Chem. Lett. 2006,16,3292-3297; (b) Boger, D. L.; Hueter, O.; Mbiya, K.; Zhang, M. Total synthesis of natural and ent-fredericamycin A [J]. J. Am. Chem. Soc.1995,117,11839-11849.
    [56]Xiao, X. S.; Antony, S.; Pommier, Y.; Cushman, M. Total synthesis and biological evaluation of 22-hydroxyacuminatine [J]. J. Med. Chem.2006,49,1408-1412.
    [57]Cinelli, M. A.; Morrell, A.; Dexheimer, T. S.; Scher, E. S.; Pommier, Y.; Cushman, M. Design, synthesis and biological evaluation of 14-substituted aromathecins as topoisomerase I inhibitors [J]. J. Med. Chem.2008,51,4609-4619.
    [58]Ratnayake, R.; Lacey, E.; Tennant, S.; Gill, J. H.; Capon, R. J. Kibdelones:Novel anticancer polyketides from a rare australian actinomycete [J]. Chem. Eur. J.2007,13,1610-1619.
    [59](a) Gorobets, N. Y.; Yousefi, B. H.; Belaj, F.; Kappe, C. O. Rapid microwave-assisted solution phase synthesis of substituted 2-pyridone libraries [J]. Tetrahedron 2004,60,8633-8644; (b) Liehr, J.; Giovanella, B. C.; erschraegen, C. F.; Ann. N. Y. The camptothecins: Unfolding their anticancer potential. Proceedings of a conference. March 17-20,2000, Arlington, Virginia, USA [J]. Acad. Sci.2000,922,1-363; (c) Jiang, H.; Luo, X.; Bai, D. Progress in clinical, pharmacological, chemical and structural biological studies of huperzine a:a drug of traditional chinese medicine origin for the treatment of Alzheimer's disease [J]. Curr. Med. Chem.2003,10, 2231-2252; (d) Goldman M. E.; Nunberg J. H.; O'Brien J. A.; Quintero J. C.; Schleif W. A.; Freund K. F.; Gaul S. L.; Saari W. S.; Wai J. S.; Hoffrnan J. M.; et al. Pyridinone derivatives: specific human immunodeficiency virus type 1 reverse transcriptase inhibitors with antiviral activity [J]. Proc. Natl. Acad. Sci. U. S. A.1991,88,6863-6867.
    [60](a) Mynderse, J. S.; Samlaska, S. K.; Fukuda, D. S.; Du Bus, R. H.; Baker, P. J. Isolation of A58365A and A58365B, angiotensin converting enzyme inhibitors [J]. J. Antibiot 1985,38, 1003-1007; (b) Hunt, A. A.; Mynderse, J. S.; Samlaska, S. K.; Fukuda, D. S.; Maciak, G. M.; Kirst, H. A.; Occolowitz, J. L.; Swartendruber, J. K.; Jones, N. D. Structure elucidation of A58365A and A58365B, angiotensin converting enzyme [J]. J. Antibiot,1988,41,111-119; (c) O'Connor, S.; Somers, P. Methods for the detection and quantitation of angiotensin converting enzyme [J]. J. Antibiot,1985,38,993-996.
    [61](a) Li, Q.; Claibome, A.; et al.35th Interscience Conference on Antimicrobial agents and chemotherapy [C]. Washington DC; American Society for Microbiology,1995, F8; (b) Armiger, Y. L.; Chu, D. T. W.; Fung, A. K. L, et al.38th Interscience Conference on Antimicrobial Agents anf Chemotherapy [C]. Washington DC; American Society for Microbiology,1998, F86.
    [62](a) Elopoulos, G. M.; Wennetsten, C. B.; Cole, G.; Chu, D.; Pizzuti, D.; Moellering Jr, R. C. In vitro activity of A-86719.1, a novel 2-pyridone antimicrobial agent [J]. Antimicrobial Agents and Chemotherapy 1995,39,850-853; (b) Flamm, R. K.; Vojtko, C.; Chu, D. T. W.; Beyer, Q. L. J.; Hensey, D.; Ramer, N.; Clement, J. J.; Tanaka, S. K. In vitro evaluation of ABT-719, a novel DNA gyrase inhibitor [J]. Antimicrob Agents Chemother,1995,4,964-970; (c) Alder, J; Clement, J; Meulbroek, J; Shipkowitz, N.; Mitten, M.; Jarvis, K.; Oleksijew, A.; Hutch T, Sr.; Paige, L.; Flamm, B. Efficacies of ABT-719 and related 2-pyridones, members of a new class of antibacterial agents, against experimental bacterial infections [J]. Antimicrob Agents Chemother, 1995,39,971-975.
    [63](a) Gmelin, R.; Hoppe-Seyler's, Z. The free amino acids in the seeds of Acacia willardiana (Mimosaceae). Isolation of willardiin, a new plant amino acid which is probably L-beta-(3-uracil)-alpha-aminopropionic acid [J]. Physiol. Chem.1959,316,164-169; (b) Bell, E. A.; Foster, R. G. Structure of lathyrine [J]. Nature 1962,194,91-92.
    [64]Jansen B. C. P.; Donath W. F. Chem. Weekblad.1926,23,201.
    [65]Tanaka F.; Takeuchi S.; Tanaka N.; Yonehara H.; Umezawa H.; Sumiki Y. J. Bacimethrin [J]. J. Antibiotics (Tokyo), Ser. A.1961,14,161-162.
    [66](a) Lin Y. L.; Huang R. L.; Chang C. M.; Kuo Y. H. Two new puriniums and three new pyrimidines from Heterostemma brwnii [J]. J. Nat. Prod.1997,60,982-985; (b) Gerlinck R. G. S.; Braekman J. C.; Daloze D.; Bruno I.; Riccio R.; Rogeau D.; Amade P. Crambines C1 and C2: Two further ichthyotoxic guanidine alkaloids from the sponge Crambe crambe [J]. J. Nat. Prod. 1992,55,528-532.
    [67]Lee, K. H. Current developments in the discovery and design of new drug candidates from plant natural product leads [J]. J. Nat. Prod.2004,67,273-283.
    [68]Burke, M. D.; Schreiber, S. L. A planning strategy for diversityoriented synthesis [J]. Angew. Chem. Int. Ed.2004,43,46-58.
    [69]Khersonsky, S. M.; Chang, Y. T. Strategies for facilitated forward chemical genetics [J]. Chembiochem.2004,5,903-908.
    [70]Corey, E. J.; Cheng, X. M. The logic of chemical synthesis [M]. New York:Wiley,1995:3.
    [71]Schreiber, S. L. Target-oriented and diversity-oriented organic synthesis in drug discovery [J]. Science 2000,287,1964-1969.
    [72]吴磊,肖定军,叶和珏.目标导向合成及差异导向合成在药物合成中的应用[J].化学世界2004,11,603-609.
    [73]Reayi, A.; Arya, P. Natural product-like chemical space:search for chemical dissectors of macromolecular interactions [J]. Curr. Opin. Chem. Biol.2005,9,240-247.
    [74]Spring, D. R. Diversity-oriented synthesis; a challenge for synthetic chemists [J]. Org. biomol. Chem.2003,1,3867-3870.
    [75]FDA. Is it true FDA is approving fewer new drugs lately? [EB/01]. http://www.moh.gov.cn/publicfiles/business/htmlfiles/zwgkzt/pgb/index.htm,2011-03-14.
    [76]Arya, P.; Joseph, R.; Gan, Z. G.; Rakic, B. Exploring new chemical space by stereocontrolled diversity-oriented synthesis [J]. Chemistry & Biology 2005,12,163-180.
    [77]Clardy, J.; Walsh, C. Lessons from natural molecules [J]. Nature 2004,432,829-837.
    [78]张城,李伟章,恽榴红.用组合化学建立天然产物类似物库[J].化学进展2003,115,194-203.
    [79]Shang, S. Y.; Tan, D. S. Advancing chemistry and biology through diversity-oriented synthesis of natural product-like libraries [J]. Curr. Opin. Chem. Biol.2005,9,248-258.
    [80]张礼和,王梅祥.化学生物学进展[M].北京:化学工业出版社,2005:129-130.
    [81](a) Ortholand, J. Y.; Ganesan A. Natural products and combinatorial chemistry: back to the future [J]. Curr. Opin. Chem. Biol.2004,8,271-280; (b) Borman, S. Rescuing Combichem diversity-oriented synthesis aims to pick up where traditional combinatorial chemistry left off[J]. Chem. Eng. News 2004,82,32-40.
    [82]Fergus, S.; Bender, A.; Spring, D. R. Assessment of structural diversity in combinatorial synthesis [J]. Curr. Opin. Chem. Biol.2005,9,304-309.
    [83]Messer, R.; Fuhrer, C. A.; Haner, R. Natural product-like libraries based on non-aromatic, polycyclic motifs [J]. Curr. Opin. Chem. Biol.2005,9,259-265.
    [84](a) Breinbauer, R.; Vetter, I. R.; Waldmann, H. From protein domains to drug candidates- Natural products as guiding principles in the design and synthesis of compound libraries [J]. Angew. Chem., Int. Ed. Engl.2002,41,2879-2890; (b) Boldi, A. M. Libraries from natural product-like scaffolds [J]. Curr. Opin. Chem. Biol.2004,8,281-286; (c) Nielsen, J. Combinatorial synthesis of natural products [J]. Curr. Opin. Chem. Biol.2002,6,297-305; (d) Liao, Y.; Hu, Y. H.; Wu, H.; Zhu, Q.; Donovan, M.; Fathi, R.; Yang, Z. Diversity oriented synthesis and branching reaction pathway to generate natural product-like compounds [J]. Curr. Med. Chem.2003,10,2285-2316.
    [85](a)刘钢,李裕林,南发俊.多样性导向的“类天然产物”化合物库合成[J].化学进展2006,18,734-742.(b)杨震.活性天然产物和结构多样性类天然产物的合成[J].化学进展2009,21,47-54.
    [86]Piggott, A. M.; Karuso, P. Quality, not quantity: The role of natural products and chemical proteomics in modern drug discovery [J]. Comb. Chem. High Throughput Screening 2004,7, 607-630.
    [87]杜灿屏,陈拥军,梁文平,韩晓东.天然产物化学研究的挑战和机遇[J].化学进展2002,14,405-407.
    [88](a) Yan, S. J.; Huang, C.; Zeng, X. H.; Huang, R.; Lin, J. Solvent-free, microwave assisted synthesis of polyhalo heterocyclic ketene aminals as novel anti-cancer agents [J]. Bioorg. Med. Chem. Lett.2010,20,48-51; (b) Yan, S. J.; Zhen, H.; Huang, C; Yan, Y. Y.; J. Lin. Synthesis of highly functionalized 2,4-diaminoquinazolines as anticancer and anti-HIV agents [J]. Bioorg. Med. Chem. Lett.2010,2,4432-4435; (c) Yan, S. J.; Liu, Y. J.; Chen, Y. L.; Liu, L.; Lin, J. An efficient one-pot synthesis of heterocycle-fused 1,2,3-triazole derivatives as anti-cancer agents [J]. Bioorg. Med. Chem. Lett.2010,20,5225-5228.
    [89]Heilman, W. P.; Battershell, R. D.; Pyne, W. J.; Goble, P. H.; Magee, T. A.; Matthews, R. J. Synthesis and antiinflammatory evaluation of substituted isophthalo-nitriles, trimesonitriles, benzonitriles, and terephthalo-nitriles [J]. J. Med. Chem.1978,21,906-913.
    [90]Lin, J.; Yan, S. J.; Yang, L. J.; Li, J. F.; Liu, F. C. Synthesis and insecticidal activities of novel polyhalo benzoylphenylurea derivatives [J]. Chin. J. Org. Chem.2005,25,304-307.
    [91]Huang, C.; Yan, S. J.; Li, Y. M.; Huang, R.; Lin, J. Synthesis of polyhalo acridones as pH-sensitive fluorescence probes [J]. Bioorg. Med. Chem. Lett.2010,20,4665-4669.
    [92](a)宋军,王佩霞,吴兆霞.百菌清复合剂防治保护地黄瓜霜霉病效果好[J].植物保护2002,28,60;(b)许长敏,曾丽明.7种杀菌剂防治马铃薯晚疫病药效试验[J].福建农业科技2000,2,10-11.
    [93]Sun, H.; DiMagno, S. G. Fluoride relay:a new concept for the rapid preparation of anhydrous nucleophilic fluoride salts from KF [J]. Chem. Commun.2007,528-529.
    [94](a)林军,严胜骄,杨丽娟,李俊峰,刘复初.多卤代苯甲酰基脲类几丁质抑制剂的合成及杀虫活性[J].有机化学2005,25,304-307;(b)冒德寿,林军,朱洪友,李全,刘复初.含氟杀菌剂5-氯-2,4,6-三氟-1,3-苯二腈的合成[J].化学研究与应用2001,13,107-110.
    [95]Zhao, M. X.; Wang, M. X.; Huang, Z. T. The aza-ene or the Michael addition? Examination of an unusual substituent effect on the reaction of heterocyclic ketene aminals with ethyl propiolate [J]. Tetrahedron 2002,58,1309-1306.
    [96](a) Tieman, C. H.; Kollmeyer, W. D. Insectidal 2-(nitromethylene)-1,3-diazacycloalkanes are disclosed: U.S.,3948934 [P].1974-09-27; (b) Porter, P. E.; Kollmeyer, W. D. Insecticidal phenyl esters of (1-methyl-2-imidazolidinylidene)nitroacetic acids: US,4053623 [P].1977-01-14.
    [97](a) Maryanoff, B. E.; Nortey, S. O.; McNally, J. J.; Sanfilippo, P. J.; McComsey, D. F.; Dubinsky, B.; Shank, R. P.; Reitz, A. B. Potential anxiolytic agents.3. Novel A-ring modified pyrido[1,2-α]benzimidazoles [J]. Bioorg. Med. Chem. Lett.1999,9,1547-1552; (b) Kondo, H.; Taguchi, M.; Inoue, Y.; Sakamoto, F.; Tsukamoto, G. Synthesis and antibacterial activity of thiazolo-, oxazolo-, and imidazolo[3,2-α][1,8]naphthyridinecarb-oxylic acids [J]. J. Med. Chem. 1990,33,2012-2015.
    [98]Suryawanshi, S. N.; Pandey, S.; Rashmirathi; Bhatt, B. A.; Gupta, S. Chemotherapy of leishmaniasis part Ⅵ: synthesis and bioevaluation of some novel terpenyl S,N- and N,N-acetals [J]. Eur. J. Med. Chem.2007,42,511-516.
    [99]Abdelhalim, M. M.; El-Saidi, M. M.T.; Rabie, S. T.; Elmegeed,G. A. Synthesis of novel steroidal heterocyclic derivatives as antibacterial agents [J]. Steroids 2007,72,459-462.
    [100](a) Zhang, J. H.; Wang, M. X.; Huang, Z. T. The aza-ene reaction of heterocyclic ketene aminals with activated carbonyl compounds: a novel and efficient synthesis of γ-lactam-fused diazaheterocycles [J]. J. Chem. Soc., Perkin Trans.11999,321-326; (b) Yaqub, M.; Yu, C. Y.; Jia, Y. M.; Huang, Z. T. Reactions of Heterocyclic ketene aminals with Baylis-Hillman acetates: A novel synthesis of tetrahydropyridine-fused 1,3-diazaheterocycles [J]. Synlett.2008,12, 1357-1360; (c) Zhang, J. H.; Wang, M. X.; Huang, Z. T. The aza-ene reaction of heterocyclic ketene aminals with enones: an efficient and simple synthetic route to fused di- and tri-heterocycles [J]. J. Chem. Soc., Perkin Trans.11999,2087-2094; (d) Liao, J. P.; Zhang, T.; Yu, C. Y.; Huang, Z. T. Reaction of heterocyclic ketene aminals with bis(methylthio)methylene malononitrile:Synthesis of polyfunctionalized pyridine-fused 1,3-diazaheterocycles from heterocyclic ketene aminals [J]. Synlett.2007,5,761-764.
    [101](a) Huang, Z. T.; wang, M. X. Heterocyclic ketene aminals [J]. Heterocycles 1994,37,1233-1262;(b)王梅祥,黄志镗.杂环烯酮缩胺反应研究新进展[J].自然科学进展1999,9,971-983.
    [102]Liu, B.; Wang, M. X.; Wang, L. B.; and Huang, Z. T. The Reaction of aroyl-substituted heterocyclic ketene aminals with aryl azides [J]. Heteroatom Chemistry 2000,11,387-391.
    [103]Ren, Z. X.; Chen, X. M.; Li, Z. J.; Huang, Z. T. Synthesis of ribosylated 1,2,3-triazole derivatives [J]. Heteroatom Chem 2003,14,487-490.
    [104]Nie, X. P.; Wang, M. X.; Huang, Z. T. Reaction of heterocyclic ketene aminals with a-bromoketones: A convenient synthesis of pyrrole-fused 1,3-diazaheterocycles [J]. Synthesis 2000,10,1439-1443.
    [105]Xu, Z. H.; Jie, Y. F.; Wang, M. X.; Huang, Z. T. The regiospecific C-benzylation of heterocyclic ketene aminals with ethyl 2-(bromomethyl)benzoate:A simple route to 1H-imidazo[1,2-b][2]benzazepin-5-one derivatives [J]. Synthesis 2002,4,523-527.
    [106]Yu, C. Y.; Yang, P. Y.; Zhao, M. X.; Huang, Z. T. A novel one-pot reaction of heterocyclic ketene aminals: Synthesis of a small library of tetrahydropyridinone-fused 1,3-diazaheterocycles one-pot reaction of heterocyclic ketene aminals [J]. Synlett 2006,12,1835-1840.
    [107]Liao, J. P.; Zhang T.; Yu, C. Y.; Huang, Z. T. Reaction of heterocyclic ketene aminals with bis(methylthio)methylene malononitrile: Synthesis of polyfunctionalized pyridine-fused 1,3-diaza-heterocycles from heterocyclic ketene aminals synthesis of polyfunctionalized pyridine-fused 1,3-diazaheterocycles [J]. Synlett 2007,5,761-764.
    [108]Yaqub, M.; Yu, C. Y.; Jia, Y. M.; Huang, Z. T. Reactions of heterocyclic ketene aminals with Baylis-Hillman acetates: A novel synthesis of tetrahydropyridine-fused 1,3-diazaheterocycles synthesis of tetrahydropyridine-fused 1,3-diazaheterocycles [J]. Synlett.2008,9,1357-1360.
    [109]Zhao, H.; Zeng, A. Q.; Liao, W. L.; Jia, Y. M.; wang, L. B.; Huang, Z. T. and Yu, C. Y. Reactions of heterocyclic ketene aminals with acrylonitrile: an efficient synthsis of dihydropyridine-fused 1,3-diazaheterocycles [J]. Heterocycycles 2010,82,619-629.
    [110]Xu, W. Y.; Jia, Y. M.; Yang, J. K; Huang, Z. T.; Yu, C. Y. Reactions of heterocyclic ketene aminals with 2-[3-oxoisobenzofuran-1(3H)-ylidene]malononitrile:Synthesis of novel polyfunctionalized 1,4-dihydropyridine-fused 1,3-diazaheterocycles [J]. Synlett 2010,11, 1682-1684.
    [111](a) Zeng, C. C.; Ping, D. W.; Hu, L. M.; L. Song, X. Q. and Zhong, R. G. Anodic oxidation of catechols in the presence of a-oxoketene N,N-acetals with a tetrahydropyrimidine ring: selective a-arylation reaction [J] Org. Biomol. Chem.2010,8,2465-2472; (b) Zeng, C. C.; Liu, F. J.; Ping, D. W.; Hu, L. M.; Cai, Y. L. and Zhong, R. G. One-pot electrochemical synthesis of fused indole derivatives containing active hydroxyl groups in aqueous medium [J].J. Org. Chem. 2009,74,6386-6389; (c) Zeng, C. C.; Ping, D. W.; Xu, Y. S.; Hu, L. M. and Zhong, R. G. A facile synthesis of a-aryl a-oxoheterocyclic ketene N,N-acetals bearing an electron-rich catechol subunit-an electrochemical oxidative approach [J]. Eur. J. Org. Chem.2009,5832-5840.
    [112](a) Wen, L. R.; Liu, C.; Li, M. and Wang, L. J. Modulating the reactivity of heterocyclic ketene aminals in MCR:Selective construction of tetrahydrobenzo[b] imidazo[3,2,1-ij][1,8]naphthyridines [J]. J. Org. Chem.2010,75,7605-7614; (b) Wen, L. R.; Jiang, C. Y.; Li, M.; Wang, L. J. Application of 2-(2-chloroaroyl) methyleneimidazolidines in domino and multicomponent reaction:new entries to imidazo[1,2-a]pyridines and benzo[b]imidazo[1,2,3-ij[1,8]naphthyridines [J]. Tetrahedron 2011,67,293-302.
    [113](a) Sharon, A.; Maulik, P. R.; Roy, R.; Ram, V. J. An innovative approach to the synthesis of annelated [a]diaza-anthracenones through tandem cyclizationq [J]. Tetrahedron Letters 2004,45, 5815-5818; (b) Sharon, A.; Pratap, R.; Maulik, P. R.; Ram, V. J. Synthesis of annelated [a]aza-anthracenones and thieno[3,2-g]aza-naphthalenones through ring transformation of 2H-pyran-2-one followed by photocyclization [J]. Tetrahedron 2005,613781-3787; (c) Ram V. J.; Goel A.; Sarkhel S.; Maulik P. R. A convenient synthesis and hepatoprotective activity of imidazo[1,2-c]pyrimido[5,4-e]pyrimidine, tetraazaacenaphthene and tetraazaphenalene from cyclic ketene aminals through tandem addition-cyclization reactions [J]. Bioorg. Med. Chem. 2002,10,1275-1280.
    [1](a)王文兰,王春梅,6,7-二亚甲二氧基-9-甲基-1(2H,4H)-吖啶酮衍生物的合成[J].合成化学2004,12,297-302; (b) Phanstiel IV, O.; Price, H. L.; Wang, L.; Juusola, J.; Kline, M.; Shah S. M. The effect of polyamine homologation on the transport and cytotoxicity properties of polyamine-(DNA-intercalator) conjugates [J]. J. Org. Chem.2000,6,5590-5599.
    [2]Watterson, S. H.; Chen, P.; Zhao, Y. F.; Gu, H. H.; Murali Dhar, T. G.; Xiao, Z. L.; Ballentine, S. K.; Shen, Z. Q.; Fleener, C. A.; Rouleau, K. A.; Obermeier, M.; Yang, Z.; Mcintyre, K. M.; Shuster, D. J.; Witmer, M.; Dambach, D.; Chao, S.; Mathur, A.; Chen, B. C.; Barrish, J. C.; Robl, J. A.; Townsend, R.; Iwanowicz, E. J. Acridone-based inhibitors of inosine 5'-monophosphate dehydrogenase: discovery and SAR leading to the identification of N-(2-(6-(4-ethylpiperazin-1-yl)pyridin-3-yl)propan-2-yl)-2-fluoro-9-oxo-9,10-dihydroacridine-3-carboxamide (BMS-566419) [J]. J. Med. Chem.2007,50,3730-3742.
    [3](a) Akanitapichat, P.; Bastow, K. F. The antiviral agent 5-chloro-1,3-dihydroxyacridone interferes with assembly and maturation of herpes simplex virus [J]. Antivir. Res.2002,53, 113-126; (b) Stankiewicz-Drogon, A.; Palchykovska, L. G.; Kostina, V. G.; Alexeeva, I, V.; Shved, A. D.; Boguszewska-Chachulska, A. M. New acridone-4-carboxylic acid derivatives as potential inhibitors of hepatitis C virus infection [J]. Bioorg. Med. Chem.2008,16,8846-8852; (c) Yamamoto, N.; Furukawa, H.; Ito, Y.; Yoshida, S.; Maeno, K.; Nishiyama Y. Anti-herpesvirus activity of citrusinine-1, a new acridone alkaloid, and related compounds [J]. Antivir. Res.1989, 12,21-36; (d) Manfroni, G.; Paeshuyse, J.; Massari, S.; Zanoli, S.; Gatto, B.; Maga, G.; Tabarrini, O.; Cecchetti, V.; Fravolini, A.; Neyts, J. Inhibition of subgenomic hepatitis C virus RNA replication by acridone derivatives: identification of an NS3 helicase inhibitor [J]. J. Med. Chem.2009,52,3354-3365.
    [4]Singh, P.; Kaur, J.; Yadav, B.; Komath, S. S. Design, synthesis and evaluations of acridone derivatives using Candida albicans-search for MDR modulators led to the identification of an anti-candidiasis agent [J]. Bioorg. Med. Chem.2009,17,3973-3979.
    [5](a) Radzikomki, C.; Wysocka-Skrzela, B.; Jrabomka, M.; Konopa, J.; Kereczek-Marawska, E.; Onmzko, K.; Ledochowaki, Z. A search for antitumor compounds. IX. Biologic studies. Antitumor properties of 17 new acridone derivatives [J]. Arch. Immunol. Then Exp.1971,19, 219-228; (b) Antonini, I.; Polucci, P.; Magnano, A.; Gatto, B.; Palumbo, M.; Menta, E.; Pescalli, N.; Martelli, S. Design, synthesis, and biological properties of new bis(acridine-4-carboxamides) as anticancer agents [J]. J. Med. Chem.2003,46,3109-3115; (c) Dodic, N.; Dumaitre, B.; Daugan, M.; Pianetti, P. Synthesis and activity against multidrug resistance in Chinese hamster ovary cells of new acridone-4-carboxamides [J]. J. Med. Chem.1995,38,2418-2426; (d) Chao, H. J.; Jun, M. J.; Kwonb, Y.; Na, Y Oxiranylmethyloxy or thiiranylmethyloxy-azaxanthones and-acridone analogues as potential topoisomerase I inhibitors [J]. Bioorg. Med. Chem. Lett.2009, 19,6766-6769.
    [6](a) Bahr. N.; Tierney, E., Reymond, J. L. Highly photoresistant chemosensors using acridone as fluorescent label [J]. Tetrahedron Lett.1997,38,1489-1492; (b) Rothman, J. H., Still, W. C. A new generation of fluorescent chemosensors demonstrate improved analyte detection sensitivity and photobleaching resistance [J]. Bioorg. Med. Chem. Lett.1999,9,509-512.
    [7](a)谭颂德,陈文华,宋继国,许遵乐.吖啶酮类衍生物的光电性质研究[J].分析测试学报2005,24,39-41; (b) Bouzyk, A.; Jozwiak L.; Kolendo A. Y.; Blazejowski J. Theoretical interpretation of electronic absorption and emission transitions in 9-acridinones [J]. Spectrochim Acta A Mol Biomol Spectrosc.2003,59,543-558.
    [8](a) Moczar, I.; Peragovics, A.; Baranyai, P.; Toth, K.; Huszthy, P. Synthesis and fluorescence studies of novel bis(azacrown ether) type chemosensors containing an acridinone unit [J]. Tetrahedron 2010,66,2953-2960; (b) Yang, Y. K.; Tae, J. Acridinium salt based fluorescent and colorimetric chemosensor for the detection of cyanide in water [J]. Org. Lett.2006,8, 5721-5723. (c) Jiang, H.; Liu, Y. C.; Li, J.; Wang, G. W.; Wu, Y. D.; Wang, Q. M.; Mak, T. C. W. Novel photo-induced coupling reaction of 9-fluorenylidenemalononitrile with 10-methyl-9,10-dihydroacridine [J]. Chem. Commun.2002,882-883.
    [9]Cuny, G. D.; Robin, M.; Ulyanova, N. P.; Patnaik, D.; Pique, V.; Casano, G.; Liu, J. F.; Lin, X.; Xian, J.; Glicksman, M. A.; Stein, R. L.; Higgins, J. M. G. Structure-activity relationship study of acridine analogs as haspin and DYRK2 kinase inhibitors [J]. Bioorg. Med. Chem. Lett.2010, 20,3491-3494.
    [10]Meesala, R.; Nagarajan, R. A short route to the synthesis of pyrroloacridines via Ullmann-Goldberg condensation [J]. Tetrahedron Lett.2010,51,422-424.
    [11]MacNeil, S. L.; Gray, M.; Gusev, D. G.; Briggs, L. E.; Snieckus, V. Carbanionic Friedel-Crafts equivalents. Regioselective directed Ortho and remote metalation-C-N cross coupling routes to acridones and dibenzo[b,f]azepinones [J]. J. Org. Chem.2008,73,9710-9719.
    [12]Martins, C.; Gunaratnam, M.; Stuart, J.; Makwana, V.; Greciano, O.; Reszka, A. P.; Kelland, L. R.; Neidle, S. Structure-based design of benzylamino-acridine compounds as G-quadruplex DNA telomere targeting agents [J]. Bioorg. Med. Chem. Lett.2007,17,2293-2298.
    [13]Hutchinson, I.; Stevens, M. F. G. Synthetic strategies to a telomere-targeted pentacyclic heteroaromatic salt [J]. Org. Biomol. Chem.2007,5,114-120.
    [14](a) Lowden, C. T.; Bastow, K. F. Anti-Herpes simplex virus activity of substituted 1-hydroxyacridones [J]. J. Med. Chem.2003,46,5015-5020; (b) Herath, H. M. T. B.; Mullera, K.; Diyabalanage, H. V. K. Synthesis of acrimarins from 1,3,5-trioxygenated-9-acridone derivatives [J]. J. Heterocyclic Chem.2004,41,23-28.
    [15](a) Pintori, D. G.; Greaney, M. F. Insertion of benzene rings into the amide bond: one-step synthesis of acridines and acridones from aryl amides [J]. Org. Lett.2010,12,168-171; (b) Zhao, J.; Larock, R. C. Synthesis of xanthones, thioxanthones, and acridones by the coupling of arynes and substituted benzoates [J]. J. Org. Chem.2007,72,583-588.
    [16]Ohkubo, K.; Mizushima, K.; Iwata, R.; Souma, K.; Suzuki, N.; Fukuzumi, S. Simultaneous production of p-tolualdehyde and hydrogen peroxide in photocatalytic oxygenation of p-xylene and reduction of oxygen with 9-mesityl-10-methylacridinium ion derivatives [J]. Chem. Commun.2010,46,601-603.
    [17]宋化灿,季凤英,宋继国,郑祥礼,潘文龙,英柏宁.吖啶类衍生物的荧光性质[J].分析删试学报 2002,21,42-44.
    [18](a) Schulman, S. G.; Underberg, W. J. M. pH-dependence of the fluorescence of acridone in aqueous mineral acid solutions [J]. Anal. Chem. Acta.1979,107,411-414; (b) Shoji, A.; Hasegawa, T.; Kuwahara, M.; Ozaki, H.; Sawai, H. Chemico-enzymatic synthesis of a new fluorescent-labeled DNA by PCR with a thymidine nucleotide analogue bearing an acridone derivative [J]. Bioorg. Med. Chem. Lett.2007,17,776-779; (c) Hagiwara, Y.; Hasegawa, T.; Shoji, A.; Kuwahara, M.; Ozaki, H.; Sawai, H. Acridone-tagged DNA as a new probe for DNA detection by fluorescence resonance energy transfer and for mismatch DNA recognition [J]. Bioorg. Med. Chem.2008,16,7013-7020; (d) Lunardi, C. N.; Tedesco, A. C.; Kurth, T. L. Brinn, I. M. The complex between 9-(n-decanyl)acridone and bovine serum albumin. Part 2. What do fluorescence probes probe? [J]. Photochem. Photobiol. Sci.2003,2,954-959; (e) Agiamarnioti, A.; Triantis, T.; Papadopoulos, K.; Scorilas, A.10-(2-biotinyloxyethyl)-9-acridone. A novel fluorescent label for (strept)avidin-biotin based assays [J]. J. Photochem. Photobio. A: Chem.2006,181,126-131; (f) Faller, T.; Hutton, K.; Okafo, G.; Gribble, A.; Camilleri, P.; Games, D. E. A novel acridone derivative for the fluorescence tagging and mass spectrometric sequencing of peptides [J]. Chem. Commun.1997,16,1529-1530; (g) Reymond, J. L.; Koch, T.; Schrtier, J.; Tiemey, E. A general assay for antibody catalysis using acridone as a fluorescen tag [J]. Proc. Nat. Acad. Sci. USA.1996,93,4251-4256.
    [19](a) Guilbault, G. G. Practical fluorescence theory, methods and techniques [M]. New York: Marcel Dekker,1973:598; (b) Udenfriend, S. Fluorescence assay in biology and medicine [M]. New York: Academic Press,1962:470; (c) Dement J. Florescence titration [J]. J. Chem. Educat. 1953,30,145.
    [20]苏美红,聂丽华,马会民.pH荧光探针的研究进展[J].分析群学学报 2005,21,210—214.
    [21]Srivastava A., Krishnamoorthy G. Time-resolved fluorescence microscopy could correct for probe binding while estimating intracellular pH [J]. Anal. Biochem.1997,249,140-146.
    [22](a) Lakowicz, J. R., Ed.; Principles of Fluorescence Spectroscopy,2nd ed.; Kluwer Academic/Plenum Publishers: New York,1999,531; (b) Desvergne, J. P., Czarnik, A. W., Eds; Fluorescent Chemosensors for Ion and Molecule Recognition; Kluwer Academic Publishers: Dordrecht, The Netherlands,1997; (c) Valeur, B., Ed.; Molecular Fluorescence. Principles and Applications; Wiley-VCH:Weinheim, Germany,2002.
    [23](a) Vicentini, L. M.; Villereal, M. L. Inositol phosphates turnover, cytosolic Ca++ and pH: putative signals for the control of cell growth [J]. Life Sci.1986,38,2269-2276; (b) Ronnie, M. A.; Kjell, C.; Anders, L.; Hjalmar, B. Characterization of probe binding and comparison of its influence on fluorescence lifetime of two pH-sensitive benzo[c]xanthene dyes using intensity-modulated multiple-wavelength scanning technique [J]. Anal. Biochem.2000,283, 104-110; (c) Galaev, I. Y.; Mattiasson B.'Smart' polymers and what they could do in biotechnology and medicine [J]. Trends Notechnol.1999,17,335-340; (d) Roy, I.; Gupta, M. N. Smart polymeric materials: emerging biochemical applications [J]. Chem. Biol.2003, 10, 1161-1171; (e) Gil, E. S.; Hudson, M. Stimuli-reponsive polymers and their bioconjugates [J]. Prog. Polym. Sci.2004,29,1173-1222; (f) Grabowski, Z. R.; Rotkiewicz, K. Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures [J]. Chem. Rev.2003,103,3899-4032.
    [24](a) El-Shishtawy, R. M.; Almeida, P. A new Vilsmeier-type reaction for one-pot synthesis of pH sensitive fluorescent cyanine dyes [J]. Tetrahedron 2006,62,7793-7798; (b) Bizzarri, R.; Arcangeli, C.; Arosio, D.; Ricci, F.; Faraci, P.; Cardarelli, F.; Beltram, F. Development of a novel GFP-based ratiometric excitation and emission pH indicator for intracellular studies [J]. Biophys. J.2006,90,3300-3314; (c) Zhang, Z.; Achilefu, S. Design, synthesis and evaluation of near-infrared fluorescent pH indicators in a physiologically relevant range [J]. Chem. Commun.2005,5887-5889; (d) Tang, B.; Liu, X.; Xu, K. H.; Huang, H.; Yang, G. W.; An, L. G. A dual near-infrared pH fluorescent probe and its application in imaging of HepG2 cells [J]. Chem. Commun.2007,3726-3728; (e) Werts, M. H. V.; Gmouh, S.; Mongin, O.; Pons, T.; Blanchard-Desce, M. Strong modulation of two-photon excited fluorescence of quadripolar dyes by (De)protonation [J]. J. Am. Chem. Soc.2004,126,16294-16295; (f) Cui, D. W.; Qian, X. H.; Liu, F. Y.; Zhang, R. Novel fluorescent pH sensors based on intramolecular hydrogen bonding ability of naphthalimide [J]. Org. Lett.2004,6,2757-2760; (g) O'Connor N. A.; Sakata, S. T.; Zhu, H. D.; Shea, K. J. Phenanthrene-fused boron-dipyrromethenes as bright long-wavelength fluorophores [J]. Org. Lett.2006,8,1581-1584; (h) Su M.; Liu, Y.; Ma, H.; Ma, Q.; Wang, Z.; Yang J.; Wang, M. 1,9-Dihydro-3-phenyl-4H-pyrazolo[3,4-b]quinolin-4-one, a novel fluorescent probe for extreme pH measurement [J]. Chem. Commun.2001,960-961; (i) Lin, H.; Herman, P.; Kang, J. S.; Lakowicz, J. R. Fluorescence lifetime characterization of novel low-pH probes [J]. Anal. Biochem.2001,294,118-125; (j) Bergen, A.; Granzhan, A.; Ihmels, H. Water-soluble, pH-sensitive fluorescent probes on the basis of acridizinium ions [J]. Photochem. Photobiol. Sci.2008,7,405-407.
    [25](a) Robey, R. B.; Ruiz, O.; Santos, A.; Ma, J.; Kear, F.; Wang, L. J.; Li, C. J.; Bernardo, A. A.; Arruda, J. A. L. pH-dependent fluorescence of a heterologously expressed Aequorea green fluorescent protein mutant: in situ spectral characteristics and applicability to intracellular pH estimation [J] Biochem.1998,37,9894-9901; (b) Haugland, R. P., Ed.; Handbook of Fluorescent Probes and Research Chemicals,6th ed.;Eugene, OR: Molecular Probes 1996,51; (c) Adamczyk, M.; Grote, J. Synthesis of probes with broad pH range fluorescence [J]. Bioorg. Med. Chem. Lett.2003,13,2327-2330.
    [26](a) White, E.; Roswell, D. F.; Dupont, A. C.; Wilson, A. A. Chemiluminescence involving acidic and ambident ion light emitters. The chemiluminescence of 9-acridinepercarboxylate anion [J]. J. Med. Chem.1987,109,5189-5196; (b) Qiu, B.; Guo, L. H.; Chen, Z. T.; Chi, Y. W.; Zhang, L.; Chen, G. N. Synthesis of N-4-butylamine acridone and its use as fluorescent probe for ctDNA [J]. Biosens. Bioelectron.2009,24,1281-1285.
    [27](a) Tabarrini, O.; Manfroni, G.; Fravolini, A.; Cecchetti, V.; Sabatini, S.; Clerca, E. D.; Rozenski, J.; Canard, B.; Dutartre, H.; Paeshuyse, J.; Neyts, J. Synthesis and anti-BVDV activity of acridones as new potential antiviral agents [J]. J. Med. Chem.2006,49,2621-2627; (b) Boumendjel, A.; Macalou, S.; Ahmed-Belkacem, A.; Blanca, M.; Pietrob, A. D. Acridone derivatives:design, synthesis, and inhibition of breast cancer resistance protein ABCG2 [J]. Bioorg. Med. Chem.2007,15,2892-2897.
    [28]宋化灿,潘文龙,英柏宁,颜星中,蔡志刚,罗挺,周建英.10-烃基吖啶酮的非线性光学活性研究[J].高等学校化学学报,1998,19,78-79.
    [29](a) Eaton, D. International Union of Pure and Applied Chemistry Organic Chemistry Division Commission on Photochemistry. Reference materials for fluorescence measurement [J]. J. Photochem. Photobiol, B 1988,2,523-531; (b)慈云祥,贾欣.荧光量子效率的简化测量方法[J].分析化学1986,14,616-617.
    [30](a) Shu, L. J.; Mayor, M. Shape-persistent macrocycle with a self-complementary recognition pattern based on diacetylene-linked alternating hexylbenzene and perfluorobenzene rings [J]. Chem. Commun.2006,4134-4136; (b) Kitazume, T.; Nakajima, S. Introduction of several trifluoromethyl groups onto the activated aromatic materials with CF3TMS-CuI-KF system [J]. J. Fluor. Chem.2004,125,1447-1449; (c) Chan, P. K.; Leong, W. K. The Reaction of CpIr(CO)2 with Activated Perfluoroaromatic Compounds: Formation of Metallocarboxylic Acids via Aromatic Nucleophilic Substitution [J]. Organomet.2008,27,1247-1253.
    [31]中华人民共和国卫生部医政司编.全国临床检验操作规程[M].南京:东南大学出版社出版,2006.
    [32]Mossman, T. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays [J]. J. Immunol. Methods 1983,65,55-63.
    [1]基尔希(Kirsch, P.)著,朱士正,吴永明译.当代有机氟化学:合成反应应用实验(当代有机化学译丛)[M].上海:华东理工大学出版社,2006.
    [2](a)刘长令.含氟农药的创制途径[J].农药1998,37,1-5.(b)赵玉芬,赵国辉.元素有机化学[M].北京:清华大学出版社,1998:263-264.
    [3](a)姚为.芳香含氟化合物的制备、表征及理论研究[D].南京:南京理工大学,2006.(b)孙 晓波,张亚涛,刘国际,任珂,雒廷亮.氟化反应的研究进展[J].河南化工,2005,22(6):15-29.
    [4](a) Miura, M.; Nomura, M. Direct arylation via cleavage of activated and unactivated C-H bonds [J]. Top. Curr. Chem.2002,219,211-241; (b) Kakiuchi, F.; Chatani, N. Catalytic methods for C-H bond functionalization: Application in organic synthesis [J]. Adv. Synth. Catal.2003,345, 1077-1101; (c) Labinger, J. A.; Bercaw, J. E. Understanding and exploiting C-H bond activation [J]. Nature 2002,417,507-514; (d) Miura, M.; Satoh, T. Arylation reactions via C-H bond cleavage [J]. Top. Organomet. Chem.2005,14,55-83; (e) Alberico, D.; Scott, M. E.; Lautens, M. Aryl-aryl bond formation by transition-metal-catalyzed direct arylation [J]. Chem. Rev.2007,107,174-238; (f) Rafiee, E.; Joshaghani, M.; Eavania, S.; Rashidzadeh, S. A revision for the synthesis ofβ-enaminones in solvent free conditions: efficacy of different supported heteropoly acids as active and reusable catalysts [J]. Green Chem.,2008,10, 982-989.
    [5](a) Huang, Z. T.; Liu, Z. R. Alkylation of heterocyclic ketene aminals with benzyl chloride and ethyl bromoacetate. Synthesis of heterobicycles containing-lactam-fused diazaheterocycles [J]. Chem. Ber.1989,122,95-100; (b) Jones, R. C. F.; Hirst, S. C. Annulation of imidazolines: synthesis of imidazo[1,2-α]pyridones [J]. Tetrahedron Lett.1989,29,5005-5008.
    [6](a) Huang, Z. T.; Wang, M. X. Heterocyclic ketene aminals [J]. Heterocycles 1994,37, 1233-1262; (b) Muhammd, Y.; Yu, C. Y.; Jia, Y. M.; Huang, Z. T. Reactions of heterocyclic ketene aminals with Baylis-Hillman acetates: A novel synthesis of tetrahydropyridine-fused 1,3-diazaheterocycles [J]. Synlett.2008,12,1357-1360; (c) Yu, C. Y.; Yang, P. H.; Zhao, M. X.; Huang, Z. T. A novel one-pot reaction of heterocyclic ketene aminals: Synthesis of a small library of tetrahydropyridinone-fused 1,3-diazaheterocycles [J]. Synlett.2006,12,1835-1840; (d) Liao, J. P.; Zhang, T.; Yu, C. Y.; Huang, Z. T. Reaction of heterocyclic ketene aminals with bis(methylthio)methylene malononitrile: Synthesis of polyfunctionalized pyridine-fused 1,3-diazaheterocycles from heterocyclic ketene aminals [J]. Synlett.2007,5,761-764.
    [7]Zhao, W. Y.; Huang, Z. T. Arylation of heterocyclic ketene aminals with 2,4-dinitrohalobenzenes by a radical nucleophilic substitution mechanism [J]. J. Chem. Soc., Perkin Trans.2 1991,1967-1970.
    [8]王梅祥,黄志镗.杂环烯酮缩胺反应研究新进展[J].自然科学进展1999,11,971-983.
    [9]中华人民共和国卫生部医政司编.全国临床检验操作规程[M].南京:东南大学出版社出版,2006.
    [10](a) Suryawanshi, S. N.; Pandey, Susmita; Rashmirathi; Bhatt, B. A.; Gupta, Suman Chemotherapy of leishmaniasis Part Ⅵ: Synthesis and bioevaluation of some novel terpenyl S,N- and N,N-acetals [J]. Eur. J. Med. Chem.2007,42,511-516; (b) Sharon, A.; Pratap, R.; Maulik, P. R.; Ram, V. J. Synthesis of annelated [a]aza-anthracenones and thieno[3,2-g]aza-naphthalenones through ring transformation of 2H-pyran-2-one followed by photocyclization [J]. Tetrahedron 2005,61,3781-3787; (c) Pratap, R.; Sharon, A.; Maulik, P. R.; Ram, V. J. A one-pot synthesis of an annelated [a]aza-thieno[3,2-g]naphthalenone through ring transformation followed by photocyclization [J] Tetrahedron Lett.2005,46,85-87.
    [11]Heilman, W. P.; Battershell, R. D.; Pyne, W. J.; Goble, P. H.; Magee, T. A. Synthesis and antiinflammatory evaluation of substituted isophthalonitriles and trimesonitriles, benzonitriles, and terephthalonitriles [J]. J. Med. Chem.1978,21,906-913.
    [12](a) Kim, D. K.; Ryu, D. H.; Lee, J. Y.; Lee, N.; Kim, Y. W.; Kim, J. S.; Chang, K.; Im, G. J.; Kim, T. K.; Choi, W. S. Synthesis and biological evaluation of novel A-ring modified hexacyclic camptothecin analogues [J]. J. Med. Chem.2001,44,1594-1602; (b) Carmichael, J.; DeGraff, W. G.; Gazdar, A. F.; Minna, J. D.; Mitchell, J. B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of chemosensitivity testing [J]. Cancer Res. 1987,47,936-942; (c) Mossman, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays [J]. J. Immunol. Methods 1983,65,55-63.
    [13]Kontrec, D.; Vinkovic, V.; Lesac, A.; Sunjic, V.; Hollosi, M. Chiroptical and conformational properties of (R)-1-phenylethylamine derivatives of persubstituted benzene [J]. Tetrahderon Asymmetry 1999,10,1935-1945.
    [14]林军;严胜骄;杨丽娟;宗乾收.新型苯甲酰基脲类化合物及合成方法和应用:中国发明专利,02133872.8[P].2004-04-07.
    [15]Kitazume, T.; Nakajima, S. Introduction of several trifluoromethyl groups onto the activated aromatic materials with CF3TMS-CuI-KF system [J]. J. Fluorine Chem.2004,125, 1447-1450.
    [16](a)张晶,林晨,岑颖洲,沈伟哉,刑莹莹,江振友,袁桂秀,韦静,李小兰.MTT法在真菌药实验中的应用[J].暨南大学学报(医学版)2003,24,36-40.(b)王文莉,郑玮清,李若瑜,王端礼,万哲,王晓红.采用NCCLS M27-A方案微量法检测念珠菌对抗真菌药物的敏感性[J].中国检验医学杂志2001,24,107-108.
    [1](a) Zhang, A. H.; Jiang, N.; Gu, W.; Ma, J.; Wang, Y. R.; Song, Y. C.; Tan, R. X. New positive allosteric modulators of the metabotropic glutamate receptor 2 (mGluR2). Identification and synthesis of N-propyl-5-substituted isoquinolones [J]. Med. Chem. Commun.2010,16, 14479-14485. (b) Robison, M. M.; Robison, B. L. The rearrangement of isoquinoline-n-oxides [J]. J. Org. Chem.1956,21,1337-1341. (c) Georgian, V.; Harrisson, R. J.; Skaletzky, L. L. The synthesis of 5-oxoperhydroisoquinolines [J]. J. Org. Chem.1962,27,4571-4579.
    [2]Semple, J. E.; Rydzewski, R. M.; Gardner, G. An efficient synthetic route to ethyl 2-aryl-4-hydroxy-1,3(2H,4H)-dioxoisoquinoline-4-carboxylates [J]. J. Org. Chem.1996,61, 7967-7972.
    [3](a) Sunderland, P. T.; Dhami, A.; Mahon, M. F.; Jones, L. a.; Tully, S. R.; Lloyd, M. D.; Thompson, A. S.; Javaid, H.; Martin, N. M.; Threadgill, M. D. Synthesis of 4-alkyl-,4-aryl-and 4-arylamino-5-aminoisoquinolin-l-ones and identification of a new PARP-2 selective inhibitor [J]. Org. Biomol. Chem.2011,9,881-891. (b) Hudlicky, T.; Olivo, H. F. A short synthesis of (+) lycoricidine [J]. J. Am. Chem. Soc.1992,114,9694-9696. (c) Hudlicky, T.; Olivo, H. F.; McKibben, B. Microbial oxidation of aromatics in enantiocontrolled synthesis.3. Design of amino cyclitols (exo-nitrogenous) and total synthesis of (+)-lycoricidine via acylnitrosyl cycloaddition to polarized 1-halo-1,3-cyclohexadienes [J]. J. Am. Chem. Soc.1994,116, 5108-5115. (d) McIntosh, M. C.; Weinreb, S. M. An approach to total synthesis of (+)-lycoricidine [J] J. Org. Chem.1993,58,4823-4832. (e) Trost, B. M.; Pulley, S. R. Antineoplastic agents.450. Synthesis of (+)-pancratistatin from (+)-narciclasine as relay [J]. J. Am. Chem. Soc.1995,117,10143-10144. (f) Majumdar, K. C.; Chakravorty, S.; Ray, K. Palladium-mediated direct synthesis of N-substituted 4-methyl- and 4-ethylisoquinolone derivatives [J]. Synthesis 2008,18,2991-2995.
    [4](a) Pettit, G. R.; Meng, Y.; Herald, D. L.; Graham, N. K. A.; Pettit, R. K.; Doubek, D. L. Isolation and structure of ruprechstyril from Ruprechtia tangarana [J]. J. Nat. Prod.2003,66, 1065-1069. (b) Wu, F.; Buttner, F. H.; Chen, R.; Hickey, E.; Jakes, S.; Kaplita, P.; Kashem, M.; Kerr, S.; Kugler, S.; Paw, Z.; Prokopowicz, A.; Shih, C.; Snow, R.; Young, E.; Cywin, C. L. Substituted 2H-isoquinolin-l-one as potent Rho-Kinase inhibitors. Part 1:Hit-to-lead account [J]. Bioorg. Med. Chem. Lett.2010,20,3235-3239.
    [5](a) Becker, M. R.; Ewing, W. R.; Davis, R. S.; Pauls, H. W.; Ly, C.; Li, A.; Mason, H. J.; Sledeski, Y. M. C.; Spada, A. P.; Chu, V.; Brown, K. D.; Colussi, D. J.; Leadley, R. J.; Bentley, R.; Bostwick, J.; Kasiewski, C.; Morgan, S. Synthesis, SAR, and in vivo activity of novel thienopyridine sulfonamide pyrrolidinones as factor Xa inhibitors [J]. Bioorg. Med. Chem. Lett. 1999,9,2753-2758. (b) Dou, D.; Viwanathan, P.; Li, Y.; He, G.; Alliston, K. R.; Lushington, G. H.; Brown-Clay, J. D.; Padmanabhan, R.; Groutas, W. C. Design, synthesis, and in vitro evaluation of potential west nile virus protease inhibitors based on the 1-oxo-1,2,3,4-tetrahydroisoquinoline and 1-oxo-1,2-dihydroisoquinoline scaffolds [J]. J. Comb. Chem.2010,12,836-843.
    [6](a) Lee, A. W. M.; Chan, W. H.; Chan, E. T. T. A facile total synthesis of isoquinolone alkaloids [J]. J. Chem. Soc., Perkin Trans.1 1992,309-310. (b) Walker, E. R.; Leung, S. Y.; Barrett, A. G. M. Studies towards the total synthesis of Sch 56036; isoquinolinone synthesis and the synthesis of phenanthrenes [J]. Tetrahedron Lett.2005,46,6537-6540.
    [7]Yao, T.; Larock, R. C. Regio- and stereoselective synthesis of isoindolin-1-ones via electrophilic cyclization [J]. J. Org. Chem.2005,70,1432-1437.
    [8](a) Roth, J.; Madoux, F.; Hodder, P.; Roush, W. R. Synthesis of small molecule inhibitors of the orphan nuclear receptor steroidogenic factor-1 (NR5A1) based on isoquinolinone scaffolds [J]. Bioorg. Med. Chem. Lett.2008,18,2628-2632. (b) Fisher, L. E.; Muchowski, J. M.; Clark, R. D. Heteroatom-directed metalation. Lithiation of N-propenylbenzamides and N-propenyl-o-toluamides. Novel routes to ortho-substituted primary benzamide derivatives and N-unsubstituted isoquinolin-1(2H)-ones [J]. J. Org. Chem.1992,57,2700-2705. (c) Kucherenko, T. T.; Gutsul, R.; Kisel, V. M.; Kovtunenko, V. A. Fused isoquinolines: 3-aryl-2,3,4,5-tetrahydro-1H- pyrrolo[2,3-c]isoquinoline-1,5-dione-2-spiro-4'-(1'-alkyl-1',4'-dihydropyridine)s [J]. Tetrahedron 2004,60,211-217.
    [9]Gutierrz, A. J.; Shea, K. J.; Svoboda, J. J. The intramolecular Diels-Alder cycloaddition of N-dienoyl acrylimidates. An efficient approach for the synthesis of hexahydroisoquinolones and hexahydroisoindolones [J]. J. Org. Chem.1989,54,4335-4344.
    [10]Roy, S.; Roy, S.; Neuenswander, B.; Hill, D.; Larock, R. C. Solution-phase synthesis of a diverse isocoumarin library [J]. J. Comb. Chem.2009,11,1128-1135.
    [11](a) Ukita, T.; Nakamura, Y.; Kubo, A.; Yamamoto, Y.; Moritani, Y.; Saruta, K.; Higashijima, T.; Kotera, J.; Takagi, M.; Kikkawa, K.; Omori, K. Novel potent and selective phosphodiesterase 5 inhibitors synthesis and biological activities of a series of 4-ary-l-isochinoline dertives [J] J. Med. Chem.2001,44,2204-2218. (b) Beak, P.; Kerrick, S. T.; Gallagher, D. J. Directed lithiations:the effect of varying directing group orientation on competitive efficiencies for a series of tertiary amide, secondary amide, and alkoxide directed ortho lithiations [J]. J. Am. Chem. Soc.1993,115,10628-10636. (c) Jagtap, P. G.; Baloglu, E.; Southan, G.; Williams, W.; Roy, A.; Nivorozhkin, A.; Landrau, N.; Desisto, K.; Salzman, A. L.; Szab, C. Facile and convenient syntheses of 6,11-dihydro-5H-indeno[1,2-c]isoquinolin- 5-ones and 6,11-dihydro-5H-indolo[3,2-c] isoquinolin-5-one [J]. Org. Lett.2005,7,1753-1756.
    [12]Couture, A.; Deniau, E.; Grandclaudon, P.; Lebrun, S. Dramatically different photochemical behaviour of 1-aroyl-2-methylene piperidine and pyrrolidine derivatives. An expeditious synthesis of ruspolinone [J]. Tetrahedron Lett.1996,37,7749-7752.
    [13](a) Chang, J. K.; Chang, N. C. Total synthesis of (±)-Gusanlung D (IV) [J]. Tetrahedron 2008, 64,3483-3487. (b) Mori, M.; Wakamatsu, H.; Tonogaki, K.; Fujita, R.; Kitamura, T.; Sato, Y. Synthesis of isoquinoline derivatives using ROM-RCM of cyclobuteneyne [J]. J. Org. Chem. 2005,70,1066-1069. (c) Lebrun, S.; Couture, A.; Deniau, E.; Grandclaudon, P. Suzuki-Miyaura cross-coupling and ring-closing metathesis: a strategic combination to the synthesis of indeno[1,2-c]isoquinolin-5,11-diones [J]. Tetrahedron Lett.2011,52,1481-1484.
    [14](a) Ma, Z.; Xiang, Z.; Luo, T.; Lu, K.; Xu, Z.; Chen, J.; Yang, Z. Synthesis of functionalized quinolines via Ugi and Pd-catalyzed intramolecular arylation reactions [J]. J. Comb. Chem. 2006,8,696-704. (b) Xiang, Z.; Luo, T. P.; Lu, K.; Cui, J. Y.; Shi, X. M; Fathi, R.; Chen, J. H.; Yang, Z. Concise synthesis of isoquinoline via the Ugi and Heck reactions [J]. Org. Lett.2004, 6,3155-3158. (c) Meng, T.; Zhang, Z. X.; Hu, D. Y.; Lin, L. P.; Ding, J.; Wang, X.; Shen, J. K. Three-component combinatorial synthesis of a substituted 6H-pyrido[2'1': 2,3]imidazo-[4,5-c]isoquinolin-5(6H)-one library with cytotoxic activity [J] J. Comb. Chem. 2007,9,739-741.
    [15](a) Khadka, D. B.; Cho, W.3-Arylisoquinolines as novel topoisomerase I inhibitors [J]. Bioorg. Med. Chem.2010,19,724-734. (b) Bollini, M.; Asis, S. E.; Bruno, A. M. Synthesis of 2,3-dihydroimidazo[1,2-b]isoquinoline-5(1H)-one and derivatives [J] Synthesis 2006,2, 237-242. (c) Guastavino, J. F.; Barolo, S. M.; Rossi, R. A. One-pot synthesis of 3-substituted isoquinolin-l-(2H-ones and fused isoquinolin-l-(2H)-ones by SRN1 reactions in DMSO [J]. Eur. J. Org. Chem.2006,3898-3902. (d) Trabanco, A. a.; Duvey, G.; Cid, J. M.; Macdonald, G. J.; Cluzeau, P.; Nhem, V.; Furnari, R.; Behaj, N.; Poulain, G.; Finn, T. New positive allosteric modulators of the metabotropic glutamate receptor 2 (mGluR2):Identification and synthesis of N-propyl-8-chloro-6-substituted isoquinolones [J]. Bioorg. Med. Chem. Lett.2010,21,971-976.
    [16](a) Zheng, Z. Y.; Alper, H. Palladium-catalyzed carbonylation-decarboxylation of diethyl(2-iodoaryl)malonates with imidoyl chlorides:An efficient route to substituted isoquinolin-1(2H)-ones [J]. Org. Lett.2008,10,4903-4906. (b) He, Z.; Yudin, A. K. Palladium-catalyzed oxidative activation of arylcyclopropanes [J]. Org. Lett.2006,8, 5829-5832. (c) Vicente, J.; Llamas, I. S.; Lopez, J. A. G. Insertion of isocyanides, isothiocyanates, and carbon monoxide into the Pd-C bond of cyclopalladated complexes containing primary arylalkylamines of biological and pharmaceutical significance. Synthesis of lactams and cyclic amidinium salts related to the isoquinoline, benzo[g]isoquinoline, and β-carboline nuclei [J]. Organometallics 2009,28,448-464. (d) Furuta, T.; Kitamura, Y.; Hashimoto, A.; Fujii, S.; Tanaka, K.; Kan, T. Efficient Synthesis of Phenanthridinone Derivatives via a Palladium-Catalyzed Coupling Process [J]. Org. Lett.2007,9,183-186. (e) Miura T.; Yamauchi, M.; Murakami, M. Synthesis of 1(2H)-isoquinolones by the nickel-catalyzed denitrogenative alkyne insertion of 1,2,3-benzotriazin-4(3H)-ones [J].Org. Lett.2008,10,3085-3088.
    [17]Glushkov, V. A.; Shklyaev, Y. V. Synthesis of 1(2H)-isoquinolones [J]. Chem. Heterocycl. Compd.2001,37,663-687.
    [18]Thansandote, P.; Hulcoop, D. G.; Langer, M.; Lautens, M. Palladium-catalyzed annulation of haloanilines and halobenzamides using norbornadiene as an acetylene synthon: A route to functionalized indolines, isoquinolinones, and indoles [J]. J. Org. Chem.2009,74,1673-1678.
    [19]Zheng, Z.; Alper, H. Palladium-catalyzed carbonylation-decarboxylation of diethyl(2-iodoaryl)malonates with imidoyl chlorides: An efficient route to substituted isoquinolin-1(2H)-ones [J]. Org. Lett.2008,10,4903-4906.
    [20]Nakamura, M.; Aoyama, A.; Salim, M. T.; Okamoto, M.; Baba, M.; Miyachi, H.; Hashimoto, Y.; Aoyama, H. Structural development studies of anti-hepatitis C virus agents with a phenanthridinone skeleton [J]. Bioorg. Med. Chem.2010,18,2402-2411.
    [21](a) Guimond, N.; Gouliaras, C.; Fagnou, K. Rhodium(III)-catalyzed isoquinolone synthesis: The N-O bond as a handle for C-N bond formation and catalyst turnover [J]. J. Am. Chem. Soc.2010, 132,6908-6909. (b) Patureau, F. W.; Glorius, F. Oxidizing directing groups enable efficient and innovative C-H activation reactions [J]. Angew. Chem., Int. Ed.2011,50,1977-1979. (c) Hyster, T. K.; Rovis, T. Rhodium-catalyzed oxidative cycloaddition of benzamides and alkynes via C-HIN-H activation [J]. J. Am. Chem. Soc.2010,132,10565-10569.
    [22](a) Kajita, Y.; Matsubara, S.; Kurahashi, T. Nickel-catalyzed decarbonylative addition of phthalimides to alkynes [J]. J. Am. Chem. Soc.2008,130,6058-6059. (b) Song, G.; Chen, D.; Pan, C.; Crabtree, R. H.; Li, X. Rh-catalyzed oxidative coupling between primary and secondary benzamides and alkynes: Synthesis of polycyclic amides [J]. J. Org. Chem.2010,75, 7487-7490. (c) Liu, C.; Parthasarathy, K.; Cheng, C. Synthesis of highly substituted isoquinolone derivatives by Nickel-catalyzed annulation of 2-halobenzamides with alkynes [J]. Org. Lett.2010,12,3518-3521.
    [23]Alvarez, R.; Martinez, C.; Madich, Y.; Denis, J. G.; Aurrecoechea, J. M.; de Lera, A. R. A General synthesis of alkenyl-substituted benzofurans, indoles, and isoquinolones by cascade Palladium-catalyzed heterocyclization/oxidative Heck coupling [J]. Chem. Eur. J.2010,16, 12746-12753.
    [24]Wang, G.; Yuan, T.; Li, D. One-pot formation of C-C and C-N bonds through Palladium-catalyzed dual C-H activation: Synthesis of phenanthridinones [J]. Angew. Chem., Int. Ed.2011,50,1380-1383.
    [25]Zhang, A. H.; Jiang, N.; Gu, W.; Ma, J.; Wang, Y. R.; Song, Y. C.; Tan, R. X. Characterization, synthesis and self-aggregation of (-)-alternarlactam:A new fungal cytotoxin with cyclopentenone and isoquinolinone scaffolds [J]. Chem. Eur. J.2010,16,14479-14485.
    [26]Chouhan, G.; Alper, H. Synthesis of ring-fused oxazolo- and pyrazoloisoquinolinones by a one-pot Pd-catalyzed carboxamidation and Aldol-type condensation cascade process [J]. J. Org. Chem.2009,74,6181-6189.
    [27]Chouhan, G.; Alper, H. Palladium-catalyzed carboxamidation reaction and Aldol condensation reaction cascade: A facile approach to ring-fused isoquinolinones [J]. Org. Lett.2008,10, 4987-4990.
    [28]Li, L.; Chua, W. K. One-pot multistep synthesis of 3,4-fused isoquinolin-1(2H)-one analogs [J]. Tetrahedron Lett.2011,52,1574-1577.
    [29]Rhee, H.; Yun, S.; Jung, M.; Kwon, Y.; Kim, M.; Choo, H. P. Synthesis of isoquinolinone-based tetracycles as poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors [J]. Bioorg. Med. Chem. 2009,17,7537-7541.
    [30]Lu, J.; Gong, X.; Yang, H.; Fu, H. Concise copper-catalyzed one-pot tandem synthesis of benzimidazo [1,2-b]isoquinolin-ll-one derivatives [J]. Chem. Commun.2010,46,4172-4174.
    [31]Decker, M. Homobivalent quinazolinimines as novel nanomolar inhibitors of cholinesterases with dirigible selectivity toward butyrylcholinesterase [J]. J. Med. Chem.2006,49 5411-5413.
    [32]Calas,M.; Ouattara, M.; Piquet, G.; Ziora, Z.; Bordat, Y.; Ancelin, M. L. R.; Escale, H. Vial, Potent antimalarial activity of 2-aminopyridinium salts, amidines, and guanidines [J]. J. Med. Chem.2007,50,6307-6315.
    [33]Elmegeed, G. A.; Baiuomy, A. R.; Abdel-Salam, O. M. Evaluation of the anti-inflammatory and anti-nociceptive activities of novel synthesized melatonin analogues [J]. Eur. J. Med. Chem. 2007,42,1285-1292.
    [34]El-Sharief, A. M.; Moussa, S. Z. Synthesis, characterization and derivatization of some novel types of moo- and bis-imidazolidineiminothiones and imidazolidineiminodithiones with antitumor, antiviral, antibacterial and antifungal activities- part Ⅰ [J]. Eur. J. Med. Chem.2009, 44,4315-4334.
    [35](a) Burke, R. N.; Butler, L. A. Computational investigation of rearrangements in huisgen cycloadducts of azolium N-dicyanomethanide 1,3-dipoles with alkynes: a mechanistic panoply [J]. J. Org. Chem.2009,74,5199-5210. (b) Glaser, R.; Yin, J.; Miller, S. Asymmetry in the N-inversion of heteroarene emines: pyrimidin-4(3H)-imine, pyridin-2(1H)-imine, and 1H-purine-6(9H)-imine [J]. J. Org. Chem.2010,75,1132-1142.
    [36]CCDC 736001 can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.
    [37]中华人民共和国卫生部医政司编.全国临床检验操作规程[M].南京:东南大学出版社出版,2006.
    [38](a)陈凯先,蒋华良.计算机辅助药物设计—原理、方法及应用[M].上海:上海科学技术出版社,2000;(b)李洪林,沈建华,罗小民,沈旭,朱维良,王希诚,陈凯先,蒋华良.虚拟筛选与新药发现[J].生命科学2005,17,125-131.(c)叶德举,罗小民,沈建华,朱维良,沈旭,蒋华良,柳红.先导化合物的发现——整合计算机虚拟筛选、化学合成和生物测试方法[J].化学进展2007,19,1939-1946.(d)刘艾林,杜冠华.虚拟筛选辅助新药发现的研究进展[J].药学学报2009,44,566-570.
    [39]Liu, X. F.; Ouyang, S. S.; Yu, B.; Liu, Y. B.; Huang, K.; Gong, J. Y.; Zheng, S. Y.; Li, Z. H.; Li, H. L.; Jiang, H. L. PharmMapper server:a web server for potential drug target identification using pharmacophore mapping approach [J]. Nucleic Acids Research 2010,38, W609-W614.
    [40](a) Menear, K. A.; Adcock, C.; Boulter, R.; Cockcroft, X. L.; Copsey, L.; Cranston, Dillon, A.; K. J.; Drzewiecki, J.; Garman, S.; Gomez, S.; Javaid, H.; Kerrigan, F.; Knights, C.; Lau, A.; Loh, Jr., V. M.; Matthews, I. T. W.; Moore, S.; O'Connor, M. J.; Smith, G. C. M.; Martin, N. M. B.4-[3-(4-Cyclopropanecarbonylpiperazine-l-carbonyl)-4-fluorobenzyl]-2H-phthalazin-1-one: A novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1 [J]. J. Med. Chem.2008,51, 6581-6591. (b) DiMauro, E. F.; Newcomb, J.; Nunes, J. J.; Bemis, J. E.; Boucher, C.; Chai, L.; Chaffee, S. C.; Deak, H. L.; Epstein, L. F.; Faust, T.; Gallant, P.; Gore, A.; Gu, Y.; Henkle, B.; Hsieh, F.; Huang, X.; Kim, J. L.; Lee, J. H.; Martin, M. W.; McGowan, D.C.; Metz, D.; Mohn, D.; Morgenstern, K. A.; Oliveira-dos-Santos, A.; Patel, V. F.; Powers, D.; Rose, P. E.; Schneider, S.; Tomlinson, S. A.; Tudor, Y. Y.; Turci, S. M.; Welcher, A. A.; Zhao, H.; Zhu, L.; Zhu, X. Structure-guided design of aminopyrimidine amides as potent, selective inhibitors of lymphocyte specific kinase: synthesis, structure-activity relationships, and inhibition of in vivo T cell activation [J]. J. Med. Chem.2008,51,1681-1694.
    [41]Jagtap, P.; Szabo, C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors [J]. Nature Reviews Drug Discovery 2005,4,421-440.
    [1]Gudmundsson, K. S.; Williams, J. D. J.; Drach, C.; Townsend, L. B. Mechanism of action of the ribopyranoside benzimidazole GW275175X against human cytomegalovirus [J]. J. Med. Chem. 2003,46,1449-1455.
    [2](a) Rival, Y.; Grassy, G.; Michael, G. Synthesis and antibacterial activity of some. Imidazo[1,2-a]pyridine derivatives [J]. Chem. Pharm. Bull.1992,40,1170-1176; (b) Rewankar, G. R.; Matthews J. R.; Robins, R. K. Synthesis and antimicrobial activity of certain imidazo[1,2-a] pyrimidines [J]. J. Med. Chem.,1975,18,1253-1255.
    [3]Franke, H.; Geisler, J.; Hartfiel, U.; Franke, W.; Dorfmeister, G.; Ganzer, M.; Johahann, G.; Rees, R. Herbicidal 2-phenyl-5,6,7,8-tetrahydroimidazo[1,2-a]pyridines [P]. Ger. Offen. DE. 4,120,108,1991; Chem. Abstr.1992,18,213075v.
    [4]Beswick, P. J.; Campbell, I. B.; Naylor, A. Imidazo[1,2-α]pyridine Derivatives:WO,9631509 [P].1996-10-10.
    [5](a) Badawey, E. A. M.; Kappe, T. Benzimidazole condensed ring system. Ⅸ. Potential antineoplastics. New synthesis of some pyrido[1,2-α]benzimidazoles and related derivatives [J]. Eur. J. Med. Chem.1995,30,327-332; (b) Hranjec, M.; Kralj, M.; Piantanida, I.; Sedic, M.; Suman, L.; Pavelic K.; Karminski-Zamola, G. Novel cyano- and amidino-substituted derivatives of styryl-2-benzimidazoles and benzimidazo[1,2-α]quinolines. Synthesis, photochemical synthesis, DNA binding, and antitumor evaluation, part 3 [J]. J. Med. Chem.2007,50, 5696-5711.
    [6]Kaminsky, J. J.; Doweyko, A. M. Pyridines and related analogues using comparative molecular field analysis and hypothetical active site lattice methodologies [J]. J. Med. Chem.1997,40, 427-436.
    [7]Goodacre, S. C.; Street, L. J.; Hallett, D. J.; Crawforth, J. M.; Kelly, S.; Owens, A. P.; Blackaby, W. P.; Lewis, R. T.; Stanley, J.; Smith, A. J.; Ferris, P.; Sohal, B.; Cook, S. M.; Pike, A.; Brown, N.; Wafford, K. A.; K. A. Marshall, K. A.; Castro, J. L.and Atack, J. R. Imidazo[1,2-a] pyrimidines as functionally selective and orally bioavailable GABAAa2/a3 binding site agonists for the treatment of anxiety disorders [J]. J. Med. Chem.2006,49,35-38.
    [8]Hunt, A. H.; Mynderse, J. S.; Samlaska, S. K.;. Fukuda, D. S.; Maciak, G. M.; Kirst, H. A.; Occolowitz, J. L. Swartzendruber, J. K.and Jones, N. D.; Structure elucidation of A58365A and A58365B, angiotensin converting enzyme inhibitors produced by Streptomyces chromofuscus [J]. J. Antibiot.1988,41,771-779.
    [9]Dragovich, P. S.; Prins, T. J.; Zhou, R.; Johnson, T. O.; Brown, E. L.; Maldonado, F. C.; Fuhrman, S. A.; Zalman, L. S.; Patick, A. K.; Matthews, D. A.; Hou, X. J.; Meador, J. W.; Ferre, R. A.and Worland, S. T. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. Part 7: Structure-activity studies of bicyclic 2-pyridone-containing peptidomimetics [J]. Bioorg. Med. Chem. Lett.2002,12, 733-738.
    [10]Aberg, V.; Norman, F.; Chorell, E.; Westermark, A.; Olofsson, A.; Sauer-Eriksson, A. E. and Almqvist, F. Microwave-assisted decarboxylation of bicyclic 2-pyridone scaffolds and identification of aβ-peptide aggregation inhibitors [J]. Org. Biomol. Chem.2005,3,2817-2823.
    [11]Trapani, G.; Franco, M.; Latrofa, A.; Ricciardi, L.; Carotti, A.; Serra, M.; Sanna, E.; Biggio, G.; Liso, G. Novel 2-phenylimidazo[1,2-α]pyridine derivatives as potent and selective ligands for peripheral benzodiazepine receptors: Synthesis, binding affinity, and in vivo studies [J]. J. Med. Chem.1999,42,3934-3941.
    [12]Sanfilippo, P. J; Urbanski, M.; Press, J. B.; Dubinsky, B. and Moore Jr., J. B. Anticonvulsant activities of phenyl-substituted bicyclic 2,4-oxazolidinediones and monocyclic models. Comparison with binding to the neuronal voltage-dependent sodium channel [J]. J. Med. Chem. 1988,31,2218-2221.
    [13]Byth, K. F.; Culshaw, J. D.; Green, S.; Oakes, S.; Thomas, A. P. Imidazo[1,2-α] pyridines. Part 2: SAR and optimisation of a potent and selective class of cyclin-dependent kinase inhibitors [J]. Bioorg. Med. Chem. Lett.2004,14,2245-2248.
    [14]Humphries, A. C.; Gancia, E.; Gilligan, M. T.; Goodacre, S.; Hallett, D.; Merchant, K. J.; Thomas, S. R.8-Fluoroimidazo[1,2-α]pyridine:synthesis, physicochemical properties and evaluation as a bioisosteric replacement for imidazo[1,2-a]pyrimidine in an allosteric modulator ligand of the GABA A receptor [J]. Bioorg. Med. Chem. Lett.2006,16,1518-1522.
    [15]Emtenas, H.; Ahlin, K.; Pinkner, J. S.; Hultgren, S. J.; Almqvist, F. Design and parallel solid-phase synthesis of ring-fused 2-pyridinones that target pilus biogenesis in pathogenic bacteria [J]. J. Comb. Chem.2002,4,630-639.
    [16]Hamama, W. S.; Zoorob, H. H. Chemistry of bicyclic pyridines containing a ring-junction nitrogen [J]. Tetrahedron 2002,58,6143-6162.
    [17]Perreault, S. and. Rovis, T. Multi-component cycloaddition approaches in the catalytic asymmetric synthesis of alkaloid targets [J]. Chem. Soc. Rev.2009,38,3149-3159.
    [18](a) Huang, Z. T.; Liu, Z. R. Synthesis of imidazo[1,2-a]pyridine and pyrido[1,2-a] pyrimidine derivatives by the addition and cyclocondensation reactions of ketenaminals containing imidazolidine or hexahydropyrimidine ring with esters of a,β-unsaturated acids [J]. Heterocycles 1986,24,2247-2254; (b) Jones, R. C. F.; Smallridge, M. J. Annulation of imidazolines: synthesis of imidazo[1,2-a]pyridones [J]. Tetrahedron Lett.1988,29,5005-5008; (c) Huang, Z. T.; Tzai, L. H. Synthesis of ketene aminals with an imidazolidine ring by condensation of 4,5-dihydro-2-(methylithio)-1H-imidazoles with active methylene compounds and some addition and cyclocondensation reactions [J]. Chem. Ber.1986,119,2208-2219; (d) Huang, Z. T.; Liu, Z. R. Synthesis of heterobicycles of δ-lactam fused with 1,3-diazaheterocycles by the reaction of heterocyclic ketene aminals with a,β-unsaturated carboxylic esters [J]. Synth. Commun.1989,19,1801-1812; (e) Zhao, M. X.; Wang, M. X.; Huang, Z. T. The aza-ene or the Michael addition? Examination of an unusual substituent effect on the reaction of heterocyclic ketene aminals with ethyl propiolate [J]. Tetrahedron 2002,58,1309-1306; (f) Wang, L. B.; Huang, Z. T. Synthesis of imidazo(1,2-a)pyridin-5-one derivatives with α,β-hydroxyethyl group on the nitrogen atom [J]. Synth. Commun.1997,27,409-414; (g) Huang, Z. T.; Wang, X. J. Synthesis of cycloalkanone-dubstituted ketene aminals and their reaction with ethyl propiolate [J]. Chem. Ber.1987,120,1803-1807; (h) Takao, T.; Satomi, N. Reactions of 1,1-diamino-2-nitroethylenes with dimethyl acetylenedicarboxylate [J]. Bull. Chem. Soc. Jpn. 1993,66,2118-2120.
    [19]Kubo, K.; Ito, N.; Isomura, Y.; Sozu, I.; Homma, H.; Murakami, M. Studies on the syntheses of 2(1H)-pyridone derivatives. Ⅱ. Reactions of N-substituted 6-chloro-2(1H)-pyridones with ethylenediamine,2-aminoethanethiol and related compounds [J]. Chem. Pharm. Bull.1979,27, 1207-1213.
    [20]Hehemann, D. G.; Winnik, W. Addition of diamines to methylthiopyridones [J]. J. Heterocycl. Chem.1994,31,393-396.
    [21](a) Cheng, D. C.; Croft, L.; Abdi, M.; Lightfoot, A.; Gallagher, T. Synthetic entries to substituted bicyclic pyridones [J]. Org. Lett.2007,9,5175-5178; (b) Cheng, D. C.; Gallagher, T. Direct and regioselective C-Halkenylation of tetrahydropyrido[1,2-a]pyrimidines [J]. Org. Lett. 2009,11,2639-2641; (c) Qacemi, M. E.; Ricard, L.; Zard, S. Z. An unprecedented radical ring closure on a pyridine nitrogen [J]. Chem. Commun.2006,4422-4424; (d) Podhorez, D. E. Stepwise approach to the 2,3-dihydroimidazo[1,2-a]pyridine and 5-oxo-1,2,3,5-tetrahydro-imidazo[1,2-a] pyridine ring systems [J]. J. Heterocycl. Chem.1991,28,971-976; (e) Sylvia, S.; Daniel, S.; Simon, S.; Zhang, X.; Volkhard, A. Synthesis of 1,2,2a,3-Tetrahydro-l,4,7b-triazacyclopenta[cd]indenes [J]. Synthesis 2005,18,3107-3118.
    [22]Yu, H. F.; Jin, W. W; Sun, C. L.; Chen, J. P.; Du, W. M.; He, S. B.; Yu, Z. K. Palladium-catalyzed cross-coupling of internal alkenes with terminal alkenes to functionalized 1,3-butadienes using C-H bond activation: Efficient synthesis of bicyclic pyridones [J]. Angew. Chem. Int. Ed.2010,49,5792-5797.
    [23](a) Jones, R. C. F.; Dimopoulos, P.; Coles, S. C.; Light, M. E.; Hursthouse, M. B. Synthesis of imidazo[1,2-a]pyridines from unactivated 2-alkyl-4,5-dihydroimidazoles through conjugate N-addition [J].J. Chem. Soc., Perkin Trans.1 2000,2331-2342; (b) Al-Afaleq, E. A Facile method for the synthesis of novel pyridinone derivatives via ketene N,S-acetals [J]. Synth. Commun.2001,31,3557-3567.
    [24](a).Yan, S. J.; Huang, C.; Su, C. X.; Ni, Y. F.; Lin, J. Facile route to 1,3-diazaheterocycle-fused [1,2b]isoquinolin-1(2H)-one derivatives via substitution-cyclization reactions [J]. J. Comb.Chem. 2010,12,91-94; (b) Yan, S. J.; Huang, C.; Zeng, X. H.; Huang, R.; Lin, J. Solvent-free, microwave assisted synthesis of polyhalo heterocyclic ketene aminals as novel anti-cancer agents [J]. Bioorg. Med. Chem. Lett.2010,20,48-51; (c) Yan, S. J.; Niu, Y. F.; Huang, R. and Lin, J. Synthesis of bicyclic pyridones via cyclocondensation of heterocyclic ketene aminals with β-ketoester enol tosylates [J]. Synlett.2009,17,2821-2824; (d) Huang, Z. T.; Wang, M. X. Heterocyclic ketene aminals [J]. Heterocycles 1994,37,1233-1262; (e) Zhang, A. M.; Zheng, X. L.; Fan, J. F.; Shen, W. Synthesis of imidazo[1,5-α]pyridines from 1,1-dibromo-l-alkenes [J]. Tetrahedron Lett.2010,51,828-831; (f) Tremmel, P.; Geyer, A. Pyridone dipeptides-Synthesis of a novel peptide chromophore [J]. Eur. J. Org. Chem.2005,3475-3481; (g) Bengtsson, C.; Almqvist, F. Regioselective halogenations and subsequent Suzuki-Miyaura coupling onto bicyclic 2-pyridones [J]. J. Org. Chem.2010,75,972-975; (h) Sellstedt, M.; Almqvist, F. A novel heterocyclic scaffold formed by ring expansion of a cyclic sulfone to sulfonamides [J]. Org. Lett.2009,11,5470-5472.
    [25]Jones, R. C. F.; Patel, P.; Hirst, S. C.; Smallridge, M. J. Annulation of imidazolines with bis-electrophiles: Synthesis of imidazo[1,2-a]pyridines [J]. Tetrahedron 1998,54,6191-6200.
    [26](a) Huang, Z. T.; Wang, M. X. Further investigation on the reaction of heterocyclic ketene aminals with ethyl propiolate: ene-type reaction of enamines and an unusual substituent effect [J]. J. Chem. Soc. Perkin Trans.1993,1085-1090; (b) Naito, H.; Hata, T. Facile preparation of N-protected 2-alkylidene-1,3-imidazolidines [J]. Tetrahedron Lett.2008,49,2298-2301.
    [27]俞初一,杨鹏辉,赵梅欣,黄志镗.一种含硝基的并环杂环烯酮缩胺及其制备方法:中国发明专利,CN101070320[P].2007-11-14.
    [28]王梅祥,黄志镗.杂环烯酮缩胺反应研究新进展[J].自然科学进展1999,9,971-983.
    [29]俞初一,杨鹏辉,赵梅欣,黄志镗.四氢吡啶酮并1,3-二氮杂环化合物及其制备方法:中国发明专利,CN101070321[P].2007-11-14.
    [30]Evans, D. A.; Bartroli, J.; Shih, T. L. Enantioselective aldol condensations.2. Erythro-selective chiral aldol condensations via boron enolates [J]. J. Am. Chem. Soc.1981,103,2127-2129.
    [31]Ager, D. J.; Prakash, I.; Schaad, D. R.1,2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis [J]. Chem. Rev.1996,96,835-875.
    [32]Sigmaaldrich. Oxazolidinone Chiral Auxiliaries [EB/01]. http://www.sigmaaldrich.com/ chemistry/chemical-synthesis/technology-spotlights/oxazolidinones.html,2011.
    [33]Evans, D. A.; Ennis, M. D.; Mathre, D. J. Asymmetrie alkylation reaction of chrial imide enolates. A practical approch to the enantioselective synthesis of a-substituted carboxylie acid derivatives [J]. J. Am. Chem. Soc.1982,104,1737-1739.
    [34]杨睿;杨丽娟;董四花;王淑娟;林军.(4R)-5,5-二甲基4-苄硫甲基-2-嗯唑烷酮的合成[J].有机化学2010,1,103-106.
    [35]Dutta, B.; Gilboa, N.; Marek, I. Highly diastereoselective preparation of homoallylic alcohols containing two contiguous quaternary stereocenters in acyclic systems from simple terminal alkynes [J]. J. Am. Chem. Soc.2010,132,5588-5589.
    [36](a) Shinisha, C. B.; Sunoj, R. B. Transition state bodels for probing stereoinduction in evans chiral auxiliary-based asymmetric aldol reactions [J]. J. Am. Chem. Soc.2010,132, 12319-12330. (b) Shinisha, C. B.; Sunoj, R. B. The pivotal role of chelation as a stereochemical control element in non-evans anti Aldol product formation [J]. Org. Lett.2010,12,2868-2871.
    [37]Evans, D. A.; Starr, J. T. A cascade cycloaddition strategy leading to the total synthesis of (-)-FR182877 [J].Angew. Chem. Int. Ed.2002,41,1787-1790.
    [38]Crimmins, M. T.; Christie, H. S.; Chaudhary, K.; Long, A. Enantioselective synthesis of apoptolidinone: Exploiting the versatility of thiazolidinethione chiral auxiliaries [J]. J. Am. Chem. Soc.2005,127,13810-13812.
    [39]Sivaguru, J.; Poon, T.; Hooper, C.; Saito, H.; Solomon, M. R.; Jockusch, S.; Adam, W.; Inoue, Y.; Turro, N. J. A comparative mechanistic analysis of the stereoselectivity trends observed in the oxidation of chiral oxazolidinone-functionalized enecarbamates by singlet oxygen, ozone, and triazolinedione [J]. Tetrahedron 2006,62,10647-10659.
    [40]Solomon, M. R.; Sivaguru, J.; Jockusch, S.; Adam, W.; Turro, N. J. Decoding stereocontrol during the photooxygenation of oxazolidinone-functionalized enecarbamates [J]. Org. Lett.2010, 12,2142-2145.
    [41]Slhi, M. P.; Deshpande, P. K.; Ji, J. A new chiral oxazolidinone derived from diphenylalaninol. Aldol, alkylation, and diebAlder reactions [J]. Tetrahedron Lerrers.1995,36,8965-8968.
    [42]Lam, Y.; Cheong, P. H.; Mata, J. M. B.; Stanway, S. J.; Gouverneur, V.; Houk, K. N. Diels-Alder exo selectivity in terminal-substituted dienes and dienophiles:Experimental discoveries and computational explanations [J]. J. Am. Chem. Soc.2009,131,1947-1957.
    [43]Krenske, E. H.; Houk, K. N.; Lohse, A. G.; Antoline, J. E.; Hsung, R. P. Stereoselectivity in oxyallyl-furan (4+3) cycloadditions:control of intermediate conformations and dispersive stabilisation in cycloadditions involving oxazolidinone auxiliaries [J]. Chem. Sci.2010,1, 387-392.
    [44]Hein, J. E.; Zimmerman, J.; Sibi, M. P.; Hultin, P. G. Stereoselective conjugate radical additions: Application of a fluorous oxazolidinone chiral auxiliary for efficient tin removal [J]. Org. Lett. 2005,7,2755-2758.
    [45]Snider, B. B.; Zhang, Q. Lewis acid catalyzed ene reactions of a,β-unsaturated N-acyloxazolidinones [J]. J. Org. Chem.1991,56,4908-4913.
    [46]Koseki, Y.; Fujino, K.; Takeshita, A.; Sato, H.; Nagasaka, T. The intramolecular tandem Michael/Mannich-type reaction of α,β-unsaturated carbonyl compounds with acyliminium ions provides access to chiral indolizidines [J]. Tetrahedron: Asymmetry 2007,18,1533-1539.
    [47]Somaiah, S.; Sashikanth, S.; Raju, V.; Reddy, K. V. An efficient and stereoselective synthesis of (3S,4R)-(-)-trans-4-(40-fluorophenyl)-3-hydroxymethyl-N-methylpiperidine [J]. Tetrahedron: Asymmetry 2011,22,1-3.
    [48]Sibi, M. P.; Soeta, T.; Jasperse, C. P. Nitrile ylides: Diastereoselective cycloadditions using chiral oxzolidinones without lewis acid [J]. Org. Lett.2009,11,5366-5369.
    [49]樊会丹.氨基酸的不对称合成新方法研究[D].昆明:云南大学,2008:30.
    [50]樊会丹.氨基酸的不对称合成新方法研究[D].昆明:云南大学,2008:31.
    [1](a) Lagoja, I. M. Pyrimidine as constituent of natural biologically active compounds [J]. Chem. Biodiversity 2005,2,1-50; (b) Michael, J. P. Quinoline, quinazoline and acridone alkaloids [J]. Nat. Prod. Rep.2005,22,627-646; (c) Erian, A. W. The chemistry of β-enaminonitriles as versatile reagents in heterocyclic synthesis [J]. Chem. Rev.1993,93,1991-2005.
    [2]Joffe, A. M.; Farley, J. D.; Linden, D.; Goldsand, G. Trimethoprim-sulfamethoxazole- associated aseptic meningitis:Case reports and review of the literature [J].Am. J. Med.1989,87,332-338.
    [3]Petersen, E.; Schmidt, D. R. Sulfadiazine and pyrimethamine in the postnatal treatment of congenital toxoplasmosis: what are the options? [J]. Expert Rev. Anti-Infect. Ther.2003,1,175-182.
    [4]Nadal, E.; Olavarria, E. Imatinib mesylate (Gleevec/Glivec) a molecular-targeted therapy for chronic myeloid leukaemia and other malignancies [J]. Int. J. Clin. Pract.2004,58,511-516.
    [5]Blum, J. L. The role of capecitabine, an oral, enzymatically activated fluoropyrimidine, in the treatment of metastatic breast cancer [J]. Oncologist 2001,6,56-64.
    [6](a) Hill, M. D.; Movassaghi, M. New strategies for the synthesis of pyrimidine derivatives [J]. Chem. Eur. J.2008,14,6836-6844; (b) Radi, M.; Schenoneb, S.; Botta, M. Recent highlights in the synthesis of highly functionalized pyrimidines [J]. Org. Biomol. Chem.2009,7,2841-2847.
    [7](a) Nagashima, S.; Yokota, M.; Nakai, E.; Kuromitsu, S.; Ohga, K.; Takeuchi, M.; Tsukamoto, S.; Ohta, M. Synthesis and evaluation of 2-{[2-(4-hydroxyphenyl)-ethyl]amino} pyrimidine-5-carboxamide derivatives as novel STAT6 inhibitors [J]. Bioorg. Med. Chem.2007,15, 1044-1055; (b) Orjales, A.; Mosquera, R.; Lopez, B.; Olivera, R.; Labeaga, L.; Nunez, M. T. Novel 2-(4-methylsulfonylphenyl)pyrimidine derivatives as highly potent and specific COX-2 inhibitors [J]. Bioorg. Med. Chem.2008,16,2183-2199; (c) El-Hamamsy, M. H.; Smith, A. W.; Thompson, A. S.; Threadgill, M. D. Structure-based design, synthesis and preliminary evaluation of selective inhibitors of dihydrofolate reductase from Mycobacterium tuberculosis [J]. Bioorg. Med. Chem.2007,15,4552-4576; (d) Giblin, G. M. P.; O'Shaughnessy, C. T.; Naylor, A.; Mitchell, W. L.; Eatherton, A. J.; Slingsby, B. P.; Rawlings, D. A.; Goldsmith, P.; Brown, A. J.; Haslam, C. P.; Clayton, N. M.; Wilson, A. W.; Chessell, Wittington, A. R.; Green, R. Discovery of 2-[(2,4-dichlorophenyl)amino]-N-[(tetrahydro-2H-pyran-4-yl)methyl]-4-(trifluoromethyl)-5-pyrimidinecarboxamide, a selective CB2 receptor agonist for the treatment of inflammatory pain [J]. J. Med. Chem.2007,50,2597-2600; (e) Altmann, E.; Aichholz, R.; Betschart, C.; Buhl, T.; Green, J.; Irie, O.; Teno, N.; Lattmann, R.; Tintelnot-Blomley, M.; Missbach, M.2-Cyano-pyrimidines: A new chemotype for inhibitors of the cysteine protease cathepsin K [J]. J. Med. Chem.2007,50,591-594; (f) Yang, W.; Ruan, Z.; Wang, Y.; Kirk, K. V.; Ma, Z.; Arey, B. J.; Cooper, C. B.; Seethala, R.; Feyen, J. H. M.; Dickson, J. K. Discovery and structure-activity relationships of trisubstituted pyrimidines/pyridines as novel calcium-sensing receptor antagonists [J]. J. Med. Chem.2009,52,1204-1208; (g) R. J.; Altenbach, Adair, R. M.; Bettencourt, B. M.; Black, L. A.; Fix-Stenzel, S. R.; Gopalakrishnan, S. M.; Hsieh, G. C.; Liu, H.; Marsh, K. C.; McPherson, M. J.; Milicic, I.; Miller, T. R.; Vortherms, T. A.; Warrior, U.; Wetter, J. M.; Wishart, N.; Witte, D. G.; Honore, P.; Esbenshade, T. A.; Hancock, A. A.; Brioni, J. D.; Cowart, M. D. Structure-activity studies on a series of a 2-aminopyrimidine-containing histamine H4 receptor ligands [J]. J. Med. Chem.2008,51,6571-6580; (h) Sharma, S.; Kedrowski, J.; Rook, J. M.; Smith, R. L.; Jones, C. K.; Rodriguez, A. L.; Conn, P. J.; Lindsley, C. W. Discovery of molecular Switches that modulate modes of metabotropic glutamate receptor subtype 5 (mGlu5) pharmacology in vitro and in vivo within a series of functionalized, regioisomeric 2- and 5-(phenylethynyl)pyrimidines [J]. J. Med. Chem.2009,52,4103-4106.
    [8]Karpov, A. S.; Miiller, T. J. J. Straightforward novel one-pot enaminone and pyrimidine syntheses by coupling-addition-cyclocondensation sequences [J]. Synthesis 2003,18, 2815-2826.
    [9]Eilingsfeld, H.; Patsch, M.; Scheuermann, H. Synthese von pyrimidinen aus Malondiimidsaureestern [J]. Chem. Ber.1968,101,2426-2434.
    [10]Vicario, J.; Aparicio, D.; Palacios, F. Conjugate addition of amines to an α,β-unsaturated imine derived from a-aminophosphonate. Synthesis of y-amino-a-dehydro- aminophosphonates [J]. J. Org. Chem.2009,74,452-455.
    [11]Robin, A.; Julienne, K.; Meslin, J. C.; Deniaud, D. Straightforward pyrimidine ring construction: A versatile tool for the synthesis of nucleobase and nucleoside analogues [J]. Eur. J. Org. Chem. 2006,3,634-643.
    [12]Sakai, N.; Aoki, Y.; Sasada, T.; Konakahara, T. New approach to the practical synthesis of tri-or tetrasubstituted pyrimidine derivatives:A four-component coupling reaction from a functionalized silane, Two types of aromatic nitriles, and acetals [J]. Org. Lett.2005,7, 4705-4708.
    [13]Guzman, A.; Romero, M.; Talamas, F. X. 1,3-Diaza-1,3-butadienes. Synthesis and conversion into pyrimidines by [4π+2π] cycloaddition with electron deficient acetylenes. Synthetic utility of 2-(trichloromethyl)pyrimidines [J]. J. Org. Chem.,1996,61,2470-2483.
    [14]Ghosez, L.; Jnoff, E.; Bayard, P.; Sainte, F.; Beaudegnies, R. A highly efficient multicomponent synthesis of pyridones and pyrimidones by a [2+2+2] strategy [J]. Tetrahedron 1999,55, 3387-3400.
    [15]Movassaghi, M.; Hill, M. D. Single-step synthesis of pyrimidine derivatives [J]. J. Am. Chem. Soc.2006,128,14254-14255.
    [16](a) Koytepe, S.; Pasahan, A.; Ekinci, E.; Seckin, T. Synthesis, characterization and H2O2-sensing properties of pyrimidine-based hyperbranched polyimides [J]. Eur. Polym. J.2005,41,121-127; (b) Gompper, R.; Mair, H. J.; Polborn, K. Synthesis of oligo(diazaphenyls). Tailor-Made fluorescent heteroaromatics and pathways to nanostructures [J]. Synthesis 1997,6,696-708; (c) Kanbara, T.; Kushida, T.; Saito, N.; Kuwajima, I.; Kubota, K.; Yamamoto, T. Preparation and properties of highly electron-accepting poly(pyrimidine-2,5-diyl) [J]. Chem. Lett.1992, 583-586.
    [17](a) V. Singh; P. K. Sahu; B. C. Sahu; S. M. Mobin. Diels-Alder cycloaddition and ring-closing metathesis:A versatile, stereoselective, and general route to embellished bridged bicyclic systems, carbocyclic framework of secoatisanes, and homologues [J]. J. Org. Chem.2009,74, 6092-6104; (b) Yamada; H.; Nagao; K.; Dokei; K.; Kasai; Y; Michihata, N. Total synthesis of (-)-corilagin [J]. J. Am. Chem. Soc.2008,130,7566-7567; (c) Rosales, A.; Estvez, R. E.; Cuerva, J. M.; Oltra, J. E. Enantiospecific strategy towards oxygen-bridged terpenoids:Tandem transannular-cyclization and ring-contraction processes [J]. Angew. Chem.2005,117,323-326; (d) Gao, P.; Liu, Y; Zhang, L.; Xu, P. F.; Wang, S.; Lu, Y.; He, M.; Zhai, H. Total synthesis of indole alkaloid (±)-subincanadine F via SmI2-mediated ring opening and bridge-forming Mannich reaction [J]. J. Org. Chem.2006,71,9495-9498.
    [18](a) Hanessian, S.; Ritson, D. J. Structure-based organic synthesis of a tricyclic N-malayamycin analogue [J]. J. Org. Chem.2006,71,9807-9817; (b) Shibuyam, M.; Sagara, A.; Saitoh, A.; Kushiro, T.; Ebizuka, Y. Biosynthesis of baccharis oxide, a triterpene with a 3,10-oxide bridge in the A-ring [J]. Org. Lett.2008,10,5071-5074; (c) Wender, P. A.; D'Angelo, N.; Elitzin, V. I.; Ernst, M.; Jackson-Ugueto, E. E.; Kowalski, J. A.; McKendry, S.; Rehfeuter, M.; Sun, R.; Voigtlaender, D. Function-oriented synthesis: studies aimed at the synthesis and mode of action of 1a-alkyldaphnane analogues [J]. Org. Lett.2007,9,1829-1832.
    [19]Tius, M. A.; Gu, X. Q.; Galeno, J. G. Convergent synthesis of vineomycinone B2 methyl ester [J]. J. Am. Chem. Soc.1990,112,8188-8189.
    [20]Dwek, R. A. Glycobiology: Toward understanding the function of sugars [J]. Chem. Rev.1996, 96,683-720
    [21]Sunkara, P. S. Antiretroviral activity of castanospermine and deoxynojirimycin, specific inhibitors of glycoprotein processing [J]. Biochem. Biophys. Res. Commun.1987,148,206-210.
    [22]Hughs, A.B.; Rudge, A. J. Deoxynojirimycin:synthesis and biological activity [J]. Nat. Prod. Rep.1994,11,135-162.
    [23]Tyms, A. S.; Berrie, E. M.; Ryder, T. A.; Nash, R. J.; Hegarty, M. P.; Taylor, D. L.; Mobberley, M. A.; Davis, J. M.; Bell, E. A.; Jeffries, D. J.; Taylor-Robinson, D.; Fellows, L. E. Castanospermine and other plant alkaloid inhibitors of glucosidase activity block the growth of HIV [J]. The Lancet 1987,31,1025-1026.
    [24]Howard, S.; Withers, S. G. Bromoketone C-Glycosides, a new class of β-Glucanase inactivators [J]. J. Am. Chem. Soc.1998,120,10326-10331.
    [25]Prasad, K. R.; Gholap, S. L. Stereoselective total synthesis of bioactive styryllactones (+)-Goniofufurone, (+)7-epi-Goniofufurone, (+)-Goniopypyrone, (+)-Goniotriol, (+)-Altholactone, and (-)-Etharvensin [J]. J. Org. Chem.2008,73,2-11.
    [26]Reddy, B. G.; Schmidt, R. R.2-Nitroglycals: versatile intermediates for efficient and highly stereoselective base-catalyzed glycoside bond formations [J]. Nature Protocols.2008,3, 114-121.
    [27]Schmidt, R. R.; Vankar, Y. D.2-Nitroglycals as powerful glycosyl donors: Application in the synthesis of biologically important molecules [J].Acc. Chem. Res.2008,41,1059-1073.
    [28]Zhang, T.; Yu, C. Y.; Huang, Z. T.; Jia, Y. M. Solvent-free and stereoselective synthesis of C-Glycosides by Michael-type addition of enamino esters to 2-Nitro-d-glucal [J]. Synlett 2010, 14,2174-2178.
    [29]Xue, W.; Sun, J.; Yu, B. An efficient route toward 2-amino-β-D-galactoand -glucopyranosides via stereoselective Michael-type addition of 2-nitroglycals [J]. J. Org. Chem.2009,74, 5079-5082.
    [30]Zhang, Q.; Sun, J.; Zhang, F.; Yu, B. Synthesis of sugar-fused isoxazoline N-oxides from 2-nitroglycals [J]. Eur. J. Org. Chem.2010,3579-3582.
    [31]Clark, M. A.; Wang, Q.; Ganem, B. Oxidation of bicyclic oxazolines: applications to glycomimetics and novel saccharide derivatives [J]. Tetrahedron Lett.2002,43,347-349.
    [32]严胜骄.具有潜在糖苷酶抑制性的碳苷类化合物的合成及杂环系统的固相合成[D].北京:中国科学院化学研究所,2006:152.
    [33]Sugihara J. M.; Newman S. R. Recrystallization of organic compounds from detergent-water systems [J].J. Org. Chem.1956,21,1445-1447.
    [34]Manolopoulos P. T.; Mednick M.; Lichtin N. N. Oxymercuration of D-glucal and its 3,4,6-triacetate [J]. J. Am. Chem. Soc.1962,84,2203-2210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700