用户名: 密码: 验证码:
新型纳米光电材料及其复合体系的光物理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型纳米光电材料在新能源等光电转换领域具有重要的应用前景。相比于传统的硅基太阳能电池和染料敏化系统,基于半导体量子点制备的光伏器件有着更大的摩尔消光系数,可调节的吸收光谱范围,以及理论上预期的更高的能量转换效率和更长的使用寿命。此外,荧光碳纳米材料,如碳纳米点(简称碳点)和石墨烯量子点等,由于具有储量丰富、毒性低、生物相容性高、化学惰性好及抗光致漂白强等特性,与高荧光量子效率的聚合物自组装纳米粒子一样,是近年出现的十分有前途的生物荧光探针,并具有替代传统有机光发射器件的潜力。但是,这些新型纳米光电材料目前各自都面临一些急待解决的问题,限制了基于这些新材料的光电器件的性能或者应用范围。本论文以超快光谱技术为主要研究手段,仔细研究这些新型纳米光电材料的光物理特性,揭示了其复合体系在光电转换领域里的工作机制,取得了以下创新研究成果:
     1.通过超快光谱技术手段,包括宽带飞秒瞬态吸收光谱、基于荧光上转换技术的飞秒时间分辨荧光及纳秒时间分辨的时间相关单光子计数技术,我们对石墨烯氧化物、石墨烯量子点和碳点的电子结构及其与发光态之间的关联进行了深入的研究。我们详细研究了石墨烯量子点中的发光机制,发现并阐明了表面类分子态对不同荧光发射的贡献。然后,我们在可作为合成石墨烯量子点的前驱体材料的石墨烯氧化物中首次发现了以前未曾直接观察到的量子限域的类石墨烯态,为阐述石墨烯氧化物的能级结构,判断所制备的石墨烯氧化物到底是“绝缘型”还是“半导体型”提供了可靠的光谱学依据。除了这些量子限域的类石墨烯态,我们还在石墨烯氧化物及其还原石墨烯氧化物中观察到了新颖的杂化态,这些杂化态是由围绕在类石墨烯态边缘的区域的碳原子由于具有的很高的sp3/sp2碳原子杂化例而形成。这很好的解释了之前在石墨烯量子点中观察到的固有的电子态。我们还进一步证明了在由电化学剥离法制备的碳点中也存在着这种杂化态的信号,由此说明这种杂化态是碳纳米材料中的共同存在的一种相互作用形式。随后,我们又通过对比多种碳点和石墨烯量子点的发光过程,我们进一步理解了荧光碳点和石墨烯量子点之间存在的共同的绿色荧光起源,解释了碳纳米骨架在这些荧光碳纳米材料中的作用。
     2.在利用纳米光电材料复合体系研发的新型光电转换器件领域,我们着重研究了敏化太阳能电池体系和有机/无机杂化太阳能电池体系。在前者,我们系统研究了染料敏化太阳能电池中的初始电子转移过程,发现了在敏化体系中普遍存在的有关电子注入过程的物理规律,提出了静态不均匀分布模型来系统解释敏化体系中电子注入动力学的复杂多指数衰减行为,并且这个模型可以推广到CdSe量子点敏化体系。对于后者,我们分了三步来研究。首先,我们通过时间分辨荧光技术探索了水溶液中混合聚合物纳米粒子中的超快能量传递过程,阐明了聚合物材料中能量转移距离显著缩短的根本原因。然后,利用飞秒时间分辨瞬态吸收光谱,我们研究了CdTe/CdS核壳结构量子点中的能级排列随CdS壳层厚度变化的规律,直观地从瞬态光谱上观测其超快电荷转移的演化过程。最后,我们通过超快光谱的手段系统揭示了由水相CdTe纳米晶和水相PPV基聚合物构成的杂化太阳能电池体系中的电荷分离和传输过程。我们的研究表明在这类杂化太阳能电池中,水相聚合物相对于生长后的纳米晶来说其作用大大减弱了。这一方面是因为水相聚合物自身在传导电荷方面存在不足,另一方面我们发现由于生长的纳米晶具有了稳态光谱中没有体现出来的自发形成的CdTe/CdS核壳结构,这使得纳米晶之间电荷的自发分离和传输更为便利。在CdS壳层的帮助下形成的纳米晶网络很好的承担了电荷分离和传输的任务,这也为开发基于水相半导体纳米晶的新型太阳能电池打开了新的窗口。
Novel optoelectronic nanomaterials have great application potential in the photo electronconversion fields, especially for green energy fields. In contrast to traditional silicon-basedsolar cells and dye-sensitized systems, photovoltaic devices on the basis of semiconductorquantum dots possess larger molar extinction coefficient, tunable light-harvesting range, higherpower conversion efficiency in theory and longer working life. In addition, due to theabundance of raw material in nature, low toxicity, excellent biocompatibility, and superiority inchemical inertness and resistance to photobleaching, fluorescent carbon nanomaterials, such ascarbon nanodots and graphene quantum dots, as well as self-assembly polymer nanoparticleswith high photoluminescence quantum yield, have recently emerged as promising fluorescentbiological probes and candidates for the prospective substitution for traditional organiclight-emitting devices. However, there are still a lot of technical problems that need solving inthese novel optoelectronic nanomaterials, which limit their device performances or applicationrange. This thesis detailedly studies on the photophysical properties in these nanomaterials byultrafast spectroscopy, and unravels the work mechanisms of their composite systems in thefield of photovoltaic devices. The main researches are listed as follows:
     1. By the combined usage of various ultrafast spectroscopy techniques, including broadbandfemtosecond transient absorption spectroscopy, femtosecond time-resolved fluorescencedynamics measured by a fluorescence upconversion technique, as well as a nanosecondtime-correlated single-photon counting technique, we have deeply investigated the electronicstructure which could be related to the emission states in graphene oxide, graphene quantumdots and carbon nanodots. We have studied the photoluminescence mechanism in detail ingraphene quantum dots, and unraveled the contributions of molecule-like states to differentfluorescent emissions. Then, we have discovered quantum-confined graphene-like states in theprecursor of graphene quantum dots graphene oxide for the first time. This provided reliablespectroscopic evidences for unraveling the energy structure of graphene oxide, and estimating that the as-prepared graphene oxide was either “insulation” type or “semiconductor-like” type.Moreover, we have observed the novel hybrid states in graphene oxide and reduced grapheneoxide, which were originated from the regions with high sp3/sp2carbon atom ratio surroundingthe graphene-like states. It explained the previously observed intrinsic state in graphenequantum dots very well. We also demonstrated these hybrid states existed in electrochemicallyfabricated carbon dots. This indicated that the hybrid state was a common interaction mode inthese carbon nanomaterials. Following these results, in comparison with the excited-stateprocesses among carbon nanodots and graphene quantum dots, we have further understood thecommon origin of green luminescence, which could be explained by the role of carbonbackbone in these fluorescent carbon nanomaterials.
     2. In the fields of photo-electron conversion where these optoelectronic nanomaterials andtheir composite systems are used, we focus on the photophysical studies in sensitized andorganic/inorganic hybrid photovoltaic systems. For the former, we have systemically studiedthe initial nanointerfacial electron transfer processes in various dye-sensitized solar cells, andfound that there was a universal physical behavior which controlled the electron injectiondynamics. We have proposed a static inhomogeneous electronic coupling model to explain thecomplex multi-exponential decay for the electron injection in sensitized systems. Furthermore,we found that this model can be extended to CdSe quantum dot-sensitized films. For theinvestigation on the latter hybrid photovoltaic systems, we have prepared three steps. At first,by time-resolved fluorescence techniques, we have investigated the ultrafast energy transferprocesses in water-solution polymer-blend dots. These results explained the essential reason forthe energy transfer distance “shortening” in polymer materials. Then, as the CdS shell thicknessincreased in CdTe/CdS core-shell quantum dots, we have studied the band-structure-typechange by femtosecond time-resolved transient absorption spectroscopy. In that way, we havedirectly observed the transient spectral evolution of ultrafast charge transfer in these core-shellquantum dots. At last, by ultrafast spectroscopy techniques, we have unraveled the chargeseparation and transport mechanism in hybrid solar cells consisting of water-solution CdTenanocrystals and poly(p-phenylenevinylene)(PPV)-based aqueous polymers. This workindicated that the effect of aqueous polymers was weakened to a great extent in comparisonwith grown nanocrystals in these aqueous-processed hybrid solar cells. On one hand, this was due to the shortage of charge transport in aqueous polymers themselves. On the other hand, wehave found that the grown CdTe nanocrystals were partly capped CdS shells, andspontaneously formed a CdTe/CdS core-shell structure, which was “invisible” in steady-statespectroscopy. These core/shell nanocrystals facilitated the charge separation and transport in thevicinity of nanocrystals. With the help of CdS shell, these grown nanocrystals formed effectivecharge transport networks, and played a dominant role in the charge separation and carriertransport. As a result, these findings provided a new window for highly effective water-solutionsemiconductor nanocrystal based solar cells.
引文
[1] MARCUS R A, Electron transfer reactions in chemistry: Theory and experiment [R].Nobel Lecture,1992.
    [2] YURTSEVER A, VAN DER VEEN R M, ZEWAIL A H, Subparticle ultrafast spectrumimaging in4D electrong microscopy [J]. Science,2012,335:5964.
    [3] SHAFIR D, SOIFER H, BRUNER B D, et al. Resolving the time when an electronexits a tunnelling barrier [J]. Nature,2012,485:343346.
    [4] RAO A, CHOW P C Y, GéLINAS S, et al. The role of spin in the kinetic control ofrecombination in organic photovoltaics [J]. Nature,2013,500:435439.
    [5] FANG C, FRONTIERA R R, TRAN R, et al. Mapping GFP structure evolution duringproton transfer with femtosecond Raman spectroscopy [J]. Nature,2009,462:200204.
    [6] LIU M Z, JOHNSTON M B, SNAITH H J, Efficient planar heterojunction perovskitesolar cells by vapour deposition [J]. Nature,2013,501:395398.
    [7] STRANKS S D, EPERON G E, GRANCINI G, et al. Electron-hole diffusion lengthsexceeding1micrometer in an organometal trihalide perovskite absorber [J]. Science,2013,342:341344.
    [8] WEHRENFENNIG C, EPERON G E, JOHNSTON M B, et al. High charge carriermobilities and lifetimes in organolead trihalide perovskites [J]. Adv Mater,2014,26:15841589.
    [9] TISDALE W A, WILLIAMS K J, TIMP B A, et al. Hot-electron transfer fromsemiconductor nanocrystals [J]. Science,2010,328:15431547.
    [10] JAILAUBEKOV A E, WILLARD A P, TRITSCH J R, et al. Hot charge-transferexcitons set the time limit for charge separation at donor/acceptor interfaces in organicphotovoltaics [J]. Nature Mater,2013,12:6673.
    [11] ZHANG W, HU R, LI D, et al. Primary dynamics of exciton and charge phtogenerationin solvent vapor annealed P3HT/PCBM films [J]. J Phys Chem C,2012,116:42984310.
    [12] ZHANG W, WANG Y W, HU R, et al. Mechanism of primary charge photogenerationin polyfluorene copolymer/fullerene blends and influence of the donor/acceptor lowestunoccupied molecular orbital level offset [J]. J Phys Chem C,2013,117:735749.
    [13] HUO M M, LIANG R, XING Y D, et al. Side-chain effects on the solution-phaseconformations and charge photogeneration dynamics of low-bandgap copolymers [J]. JChem Phys,2013,139:124904.
    [14] WANG Y W, ZHANG W, AI X C, et al. Influence of fullerene multiadducts on themorphology and charge photogeneration of their photovoltaic blends withpoly(3-hexylthiophene)[J]. J Phys Chem C,2013,117:2589825907.
    [15] ZHU M, MI Y, ZHU G B, et al. Determination of midgap state energy levels of ananatase TiO2nanocrystal film by nanosecond transient infrared absorption-excitationenergy scanning spectra [J]. J Phys Chem C,2013,117:1886318869.
    [16] LU G W, LI W Q, ZHANG T Y, et al. Plasmonic-enhanced molecular fluorescencewithin isolated bowtie nano-apertures [J]. ACS Nano,2012,6:14381448.
    [17] LOH K P, BAO Q L, EDA G, et al. Graphene oxide as a chemically tunable platform foroptical applications [J]. Nature Chem,2010,2:10151024.
    [18] CHEN D, FENG H B, LI J H, Graphene oxide: Preparation, functionalization, andelectrochemical applications [J]. Chem Rev,2012,112:60276053.
    [19] EDA G, CHHOWALLA M, Chemically derived graphene oxide: Towards large-areathin-film electronics and optoelectronics [J]. Adv Mater,2010,22:23922415.
    [20] ZHU S J, TANG S J, ZHANG J H, et al. Control the size and surface chemistry ofgraphene for the rising fluorescent materials [J]. Chem Commun,2012,48:45274539.
    [21] SHEN J H, ZHU Y H, YANG X L, et al. Graphene quantum dots: Emergent nanolightsfor bioimaging, sensors, catalysis and photovoltaic devices [J]. Chem Commun,2012,48:36863699.
    [22] BAKER S A, BAKER G A, Luminescent carbon nanodots: Emergent nanolights [J].Angew Chem Int Ed,2010,49:67266744.
    [23] LI H T, KANG Z H, LIU Y, et al. Carbon nanodots: Synthesis, properties andapplications [J]. J Mater Chem,2012,22:2423024253.
    [24] MA Z, ZHANG Y L, WANG L, et al. Bioinspired photoelectric conversion systembased on carbon-quantum-dot-doped dye-semiconductor complex [J]. ACS Appl MaterInterfaces,2013,5:50805084.
    [25] ZHANG Y L, WANG L, ZHANG H C, et al. Graphitic carbon quantum dots as afluorescent sensing platform for highly efficient detection of Fe3+ions [J]. RSC Adv,2013,3:37333738.
    [26] ZHANG X Y, ZHANG Y, WANG Y, et al. Color-switchable electroluminescence ofcarbon dot light-emitting diodes [J]. ACS Nano,2013,7:1123411241.
    [27] ZHANG W F, ZHU H, YU S F, et al. Observation of lasing emission from carbonnanodots in organic solvents [J]. Adv Mater,2012,24:22632267.
    [28] CHIEN C T, LI S S, LAI W J, et al. Tunable photoluminescence from graphene oxide[J]. Angew Chem Int Ed,2012,51:66626666.
    [29] EDA G, LIN Y Y, MATTEVI C, et al. Blue photoluminescence from chemically derivedgraphene oxide [J]. Adv Mater,2010,22:505509.
    [30] GAN Z X, XIONG S J, WU X L, et al. Mechanism of photoluminescence fromchemically derived graphene oxide: Role of chemical reduction [J]. Adv Opt Mater,2013,1:926932.
    [31] GALANDE C, MOHITE A D, NAUMOV A V, et al. Quasi-molecular fluorescencefrom graphene oxide [J]. Scientific Reports,2011,1:85.
    [32] MATTEVI C, EDA G, AGNOLI S, et al. Evolution of electrical, chemical, andstructural properties of transparent and conducting chemically derived graphene thinfilms [J]. Adv Funct Mater,2009,19:25772583.
    [33] KOZAWA D, MIYAUCHI Y, MOURI S, et al. Exploring the origin of blue andultraviolet fluorescence in graphene oxide [J]. J Phys Chem Lett,2013,4:20352040.
    [34] KONKENA B, VASUDEVAN S, Spectral migration of fluorescence in graphene oxideaqueous dispersions: Evidence for excited-state proton transfer [J]. J Phys Chem Lett,2014,5:17.
    [35] ERICKSON K, ERNI R, LEE Z, et al. Determination of the local chemical structure ofgraphene oxide and reduced graphene oxied [J]. Adv Mater,2010,22:44674472.
    [36] PAN D Y, GUO L, ZHANG J C, et al. Cutting sp2clusters in graphene sheets intocolloidal graphene quantum dots with strong green fluorescence [J]. J Mater Chem,2012,22:33143318.
    [37] ZHU S J, MENG Q N, WANG L, et al. Highly photoluminescence carbon dots formulticolor patterning, sensors, and bioimaging [J]. Angew Chem Int Ed,2013,52:39533957.
    [38] QU S N, WANG X Y, LU Q P, et al. Abiocompatible fluorescent ink based onwater-soluble luminescent carbon nanodots [J]. Angew Chem Int Ed,2012,51:1221512218.
    [39] PAN D Y, ZHANG J C, LI Z, et al. Obervation of pH-,solvent-, spin-, andexcitation-dependent blue photoluminescence from carbon nanoparticles [J]. ChemCommun,2010,46:36813683.
    [40] ZHU S J, ZHANG J H, LIU X, et al. Graphene quantum dots with controllable surfaceoxidation, tunable fluorescence and up-conversion emission [J]. RSC Adv,2012,2:27172720.
    [41] ZHUO S J, SHAO M W, LEE S T, Upconversion and downconversion fluorescentgraphene quantum dots: Ultrasonic preparation and phtocatalysis [J]. ACS Nano,2012,6:10591064.
    [42] PAN D Y, ZHANG J C, LI Z, et al. Hydrothermal route for cutting graphene sheets intoblue-luminescent graphene quantum dots [J]. Adv Mater,2010,22:734738.
    [43] SUN Y P, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorfulphotoluminescence [J]. J Am Chem Soc,2006,128:77567757.
    [44] LI H T, HE X D, KANG Z H, et al. Water-soluble fluorescent carbon quantum dots andphotocatalyst design [J]. Angew Chem Int Ed,2010,49:44304434.
    [45] PENG J, GAO W, GUPTA B K, et al. Graphene quantum dots derived from carbonfibers [J]. Nano Lett,2012,12:844849.
    [46] LI L L, JI J, FEI R, et al. A facile microwave avenue to electrochemiluminescenttwo-color graphene quantum dots [J]. Adv Funct Mater,2012,22:29712979.
    [47] ZHU S J, ZHANG J H, QIAO C Y, et al. Strongly green-photoluminescent graphenequantum dots for bioimaging applications [J]. Chem Commun,2011,47:68586860.
    [48] ZHU S J, ZHANG J H, TANG S J, et al. Surface chemistry routes to modulate thephotoluminescence of graphene quantum dots: From fluorescence mechanism toup-conversion bioimaging applications [J]. Adv Funct Mater,2012,22:47324740.
    [49] WANG X, CAO L, YANG S T, et al. Bandgap-like strong fluorescence in functionalizedcarbon nanoparticles [J]. Angew Chem,2010,122:54385442.
    [50] LINGAM K, PODILA R, QIAN H J, et al. Optical tunable amino-functionalizedgarphene quantum dots [J]. Adv Mater,2012,24:53335338.
    [52] TANG L B, JI R B, LI X M, et al. Energy-level structure of nitrogen-doped graphenequantum dots [J]. J Mater Chem C,2013,1:49084915.
    [53] LI Y, ZHAO Y, CHENG H H, et al. Nitrogen-doped graphene quantum dots withoxygen-rich functional groups [J]. J Am Chem Soc,2012,134:1518.
    [54] KANIYANKANDY S, ACHARY S N, RAWALEKAR S, et al. Ultrafast relaxationdynamics in graphene oxide: Evidence of electron trapping [J]. J Phys Chem C,2011,115:1911019116.
    [55] LIU Z B, ZHAO X, ZHANG X L, et al. Ultrafast dynamics and nonlinear opticalresponses from sp2-and sp3-hydridized domains in graphene oxide [J]. J Phys ChemLett,2011,2:19721977.
    [56] EXARHOS A L, TURK M E, KIKKAWA J M, Ultrafast spectral migration ofphotoluminescence in graphene oxide [J]. Nano Lett,2013,13:344349.
    [57] ZHANG Q, ZHENG H J, GENG Z G, et al. The realistic domain structure ofas-synthesized graphene oxide from ultrafast spectroscopy [J]. J Am Chem Soc,2013,135:1246812474.
    [58] SHANG J Z, MA L, LI J W, et al. Intrinsic and extrinsic fluorescence in carbonnanodots: Ultrafast time-resolved fluorescence and carrier dynamics [J]. Adv Opt Mater,2013,1:173178.
    [60] GEIM A K, NOVOSELOV K S, The rise of graphene [J]. Nat Mater,2007,6:183-191.
    [61] ZHANG Y L, GUO L, WEI S, et al. Direct imprinting of microcircuits on grapheneoxides film by femtosecond laser reduction [J]. Nano Today,2010,5:1520.
    [62] GUPTA V, CHAUDHARY N, SRIVASTAVA R, et al. Luminscent graphene quantumdots for organic photovoltaic devices [J]. J Am Chem Soc,2011,133:99609963.
    [63] YAN X, CUI X, LI L S, Synthesis of large, stable colloidal graphene quantum dots withtunable size [J]. J Am Chem Soc,2010,132:59445945.
    [64] TANG L B, JI R B, CAO X K, et al. Deep ultraviolet photoluminescence ofwater-soluble self-passivated graphene quantum dots [J]. ACS Nano,2012,6:51025110.
    [65] MUELLER M L, YAN X, DRAGNEA B, et al. Slow hot-carrier relaxation in colloidalgraphene quantum dots [J]. Nano Lett,2011,11:5660.
    [66] MUELLER M L, YAN X, MCGUIRE J A, et al. Triplet states and electronic relaxationin photoexcited graphene quantum dots [J]. Nano Lett,2010,10:26792682.
    [67] GAO B R, WANG H Y, HAO Y W, et al. Time-resolved fluorescence study ofaggregation-induced emission enhancement by restriction of intramolecular chargetransfer state [J]. J Phys Chem B,2010,114:128134.
    [68] LU J, YEO P S E, GAN C K, et al. Transforming C60molecules into graphene quantumdots [J]. Nat Nanotechnol,2011,6:247252.
    [69] LI Y, HU Y, ZHAO Y, et al. An electrochemical avenue to green-luminescent graphenequantum dots as potential electron-acceptors for photovoltaics [J]. Adv Mater,2011,23:776780.
    [70] GIRIT C O, MEYER J C, ERNI R, et al. Graphene at the edge: Stability and dynamics[J]. Science,2009,323:17051708.
    [71] SHEN J H, ZHU Y H, CHEN C, et al. Facile preparation and upconversionluminescence of graphene quantum dots [J]. Chem Commun,2011,47:25802582.
    [72] LOGUNOV S, GREEN T, MARGUET S, et al. Interfacial carriers dynamics of CdSnanoparticles [J]. J Phys Chem A,1998,102:56525658.
    [73] DOHNALOVá K, PODDUBNY A N, PROKOFIEV A A, et al. Surface brightens upSi quantum dots: Direct bandgap-like size-tunable emission [J]. Light: Science&Applications,2013,2: e47.
    [74] LAKOWICZ J R, Principles of Fluorescence Spectroscopy [M].3rd ed. Springer: NewYork,2006, Page361and367.
    [75] SEGUR J B, OBERSTAR H E, Viscosity of glycerol and its aqueous solutions [J]. IndEng Chem,1951,43:21172120.
    [76] WANG D, WANG L, DONG X Y, et al. Chemically tailoring graphene oxides intofluorescent nanosheets for Fe3+ion detection [J]. Carbon2012,50:21472154.
    [77] MEI Q S, ZHANG K, GUAN G J, et al. Highly efficient photoluminescent grapheneoxide with tunable surface properties [J]. Chem Commun,2010,46:73197321.
    [78] ZHANG Y L, CHEN Q D, XIA H, et al. Designable3D nanofabrication byfemtosecond laser direct writing [J]. Nano Today,2010,5:435448.
    [79] ZHANG Y L, CHEN Q D, JIN Z, et al. Biomimetic graphene films and their properties[J]. Nanoscale,2012,4:48584869.
    [80] JI Q M, HONMA I, PAEK S M, et al. Layer-by-layer films of graphene and ionicliquids for highly selective gas sensing [J]. Angew Chem Int Ed,2010,49:97379739.
    [81] WEI Z Q, WANG D B, KIM S, et al. Nanoscale tunable reduction of graphene oxidefor graphene electronics [J]. Science,2010,328:13731376.
    [82] WANG X, ZHI L J, MüLLEN K, Transparent, conductive graphene electrodes fordye-sensitized solar cells [J]. Nano Lett,2008,8:323327.
    [83] SU Q, PANG S P, ALIJANI V, et al. Composites of graphene with large aromaticmolecules [J]. Adv Mater,2009,21:31913195.
    [84] XU Y F, LIU Z B, ZHANG X L, et al. A graphene hybrid material covalentlyfunctionalized with porphyrin: Synthesis and optical limiting property [J]. Adv Mater,2009,21:12751279.
    [85] DE MIGUEL M, áLVARO M, GARCíA H, Graphene as a quencher of electronicexcited states of photochemical probes [J]. Langmuir,2012,28:28492857.
    [86] HILL C M, ZHU Y, PAN S L, Fluorescence and electroluminescence quenchingevidence of interfacial charge transfer in poly(3-hexylthiophene): Graphene oxide bulkheterojunction photovoltaic devices [J]. ACS Nano,2011,5:942951.
    [87] KUILLA T, BHADRA S, YAO D H, et al. Recent advances in graphene based polymercomposites [J]. Prog Polym Sci,2010,35:13501375.
    [88] ZHANG Z, CHEN H H, XING C Y, et al. Sodium citrate: A universal reducing agentfor reductin/decoration of graphene oxide with Au nanoparticles [J]. Nano Res,2011,4:599611.
    [89] LIGHTCAP I V, KAMAT P V, Fortification of CdSe quantum dots with grapheneoxide. Excited state ineractions and ligh energy conversion [J]. J Am Chem Soc,2012,134:71097116.
    [90] KATSUKIS G, MALIG J, SCHULZ-DROST C, et al. Toward combining graphene andQDs: Assembling CdTe QDs to exfoliated graphite and nanographene in water [J]. ACSNano,2012,6:19151924.
    [91] GILJE S, HAN S, WANG M S, et al. A chemical route to graphene for deviceapplications [J]. Nano Lett,2007,7:33943398.
    [92] GóMEZ-NAVARRO C, WEITZ R T, BITTNER A M, et al. Electronic transportproperties of individual chemically reduced graphene oxide sheets [J]. Nano Lett,2007,7:34993503.
    [93] GóMEZ-NAVARRO C, MEYER J C, SUNDARAM R S, et al. Atomic structure ofreduced graphene oxide [J]. Nano Lett,2010,10:11441148.
    [94] BOUKHVALOV D W, KATSNELSON M I, Modeling of graphite oxide [J]. J AmChem Soc,2008,130:1069710701.
    [95] YAN J A, XIAN L D, CHOU M Y, Strucutural and electronic properties of oxidizedgraphene [J]. Phys Rev Lett,2009,103:086802.
    [96] LAHAYE R J W E, JEONG H K, PARK C Y, et al. Density functional theory study ofgraphite oxide for different oxidation levels [J]. Phys Rev B,2009,79:125435.
    [97] GAO W, ALEMANY L B, CI L J, et al. New insights into the structure and reduction ofgraphite oxide [J]. Nature Chem,2009,1:403408.
    [98] BAGRI A, MATTEVI C, ACIK M, et al. Structural evolution during the reduction ofchemically derived graphene oxide [J]. Nature Chem,2010,2:581587.
    [99] JOHARI P, SHENOY V B, Modulating optical properties of graphene oxide: Role ofprominent functional groups [J]. ACS Nano,2011,5:76407647.
    [100] KUMAR P V, BERNARDI M, GROSSMAN J C, The impact of functionalization onthe stability. Work function, and photoluminescence of reduced graphene oxide [J].ACS Nano,2013,7:16381645.
    [101] WANG S, TANG L A L, BAO Q L, et al. Room-temperature synthesis of solublecarbon nanotubes by the sonication of graphene oxide nanosheets [J]. J Am Chem Soc,2009,131:1683216837.
    [102] LU J, YANG J X, WANG J Z, et al. One-pot synthesis of fluorescent carbonnanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids[J]. ACS Nano,2009,3:23672375.
    [103] HAO Y W, WANG H Y, JIANG Y, et al. Hybrid-state dynamics of gold nanorods/dyeJ-aggregates under strong coupling [J]. Angew Chem Int Ed,2011,50:78247828.
    [104] YEH T F, CHEN S J, YEH C S, et al. Tuning the electronic structure of graphite oxidetrhough ammonia treatment for photocatalytic generation of H2and O2from watersplitting [J]. J Phys Chem C,2013,117:65166524.
    [105] HUANG L B, HARTLAND G V, CHU L Q, et al. Ultrafast transient absorptionmicroscopy studies of carrier dynamics in epitaxial graphene [J]. Nano Lett,2010,10:13081313.
    [106] STRAIT J H, WANG H N, SHIVARAMAN S, et al. Very slow cooling dynamics ofphotoexcited carriers in graphene observed by optical-pump terahertz-probespectroscopy [J]. Nano Lett,2011,11:49024906.
    [107] SUN D, AIVAZIAN G, JONES A M, et al. Ultrafast hot-carrier-dominated photocurrentin graphene [J]. Nature Nanotech,2012,7:114118.
    [108] WINNERL S, ORLITA M, PLOCHOCKA P, et al. Carrier relaxation in epitaxialgraphene photoexcied near the dirac point [J]. Phys Rev Lett,2011,107:237401.
    [109] PRECHTEL L, SONG L, SCHUH D, et al. Time-resolved ultrafast photocurrents andterahertz generation in freely suspended graphene [J]. Nature Commun,2012,3:646.
    [110] XIE S Y, LI X B, SUN Y Y, et al. Theoretical characterization of reduction dynamicsfor graphene oxide by alkaline-earth metals [J]. Carbon,2013,52:122127.
    [111] MATHIOUDAKIS C, KOPIDAKIS G, KELIRES P C, et al. Electronic and opticalproperties of a-C from tight-binding molecular dynamics simulations [J]. Thin SolidFilms,2005,482:151155.
    [112] EDA G, MATTEVI C, YAMAGUCHI H, et al. Insulator to semimetal transition ingraphene oxide [J]. J Phys Chem C,2009,113:1576815771.
    [113] CAO L, MEZIANI M J, SAHU S, et al. Photoluminesence properties of grapheneversus other carbon nanomaterials [J]. Account Chem Res,2013,46:171180.
    [114] DE BOER W D A M, TIMMERMAN D, DOHNALOVá K, et al. Red spectral shiftand enhanced quantum efficiency in phonon-free photoluminescence from siliconnanocrystals [J]. Nature Nanotech,2010,5:878884.
    [115] WANG J, WANG C F, CHEN S, Amphiphilic egg-derived carbon dots: Rapid plasmafabrication, pyrolysis process, and multicolor printing patterns [J]. Angew Chem Int Ed,2012,51:92979301.
    [116] ZHU C Z, ZHAI J F, DONG S J, et al. Bifunctional fluorescent carbon nanodots: Greensynthesis via soy milk and application as metal-free electrocatalysts for oxygenreduction [J]. Chem Commun,2012,48:93679369.
    [117] KONG B, ZHU A W, DING C Q, et al. Carbon dot-based inorganic organicnanosystem for two-photon imaging and biosensing of pH variation in living cells andtissues [J]. Adv Mater,2012,24:58445848.
    [118] MIRTCHEV P, HENDERSON E J, SOHEILNIA N, et al. Solution phase synthesis ofcarbon quantum dots as sensitizers for nanocrystalline TiO2solar cells [J]. J MaterChem,2012,22:12651269.
    [119] WANG F, CHEN Y H, LIU C Y, et al. White light-emitting devices based on carbondots’ electroluminescence [J]. Chem Commun,2011,47:35023504.
    [120] GUO X, WANG C F, YU Z. Y, et al. Facile access to versatile fluorescent carbon dotstoward light-emitting diodes [J]. Chem Commun,2012,48:26922694.
    [121] ZHANG W F, TANG L B, YU S F, et al. Observation of white-light amplifiedspontaneous emission from carbon nanodots under laser excitation [J]. Opt MaterExpress,2012,2:490495.
    [122] LIU F, JANG M H, HA H D, et al. Facile synthetic method for pristine graphenequantum dots and graphene oxide quantum dots: Origin of blue and green luminescence[J]. Adv Mater,2013,25:36573662.
    [123] WANG X, CAO L, LU F S, et al. Photoinduced electron transfers with carbon dots [J].Chem Commun,2009,37743776.
    [124] LIN F, PEI D J, HE W N, et al. Electron transfer quenching by nitroxide radicals of thefluorescence of carbon dots [J]. J Mater Chem,2012,22:1180111807.
    [125] BAO L, ZHANG Z L, TIAN Z Q, et al. Electrochemical tuning of luminescent carbonnanodots: From preparation to luminescence mechanism [J]. Adv Mater,2011,23:58015806.
    [126] YU P, WEN X M, TOH Y R, et al. Temperature-dependent fluorescence in carbon dots[J]. J Phys Chem C,2012,116:2555225557.
    [127] MüLLER C D, FALCOU A, RECKFUSS N, et al. Multi-colour organic light-emittingdisplays by solution processing [J]. Nature,2003,421:829833.
    [128] PEET J, HEEGER A J, BAZAN G C,“Plastic” solar cells: self-assembly of bulkheterojunction nanomaterials by spontaneous phase separation [J]. Acc Chem Res,2009,42:17001708.
    [129] THOMAS S W, JOLY G D, SWAGER T M, Chemical sensors based on amplifyingfluorescent conjugated polymers [J]. Chem Rev,2007,107:13391386.
    [130] BARDEEN C, Exciton quenching and migration in single conjugated polymers [J].Science,2011,331:544545.
    [131] YANG X N, LOOS J, Toward high-performance polymer solar cells: The importanceof morphology control [J]. Macromolecules,2007,40:13531362.
    [132] BOLINGER J C, TRAUB M C, ADACHI T, et al. Ultralong-range polaron-inducedquenching of excitons in isolated conjugated polymers [J]. Science,2011,331:565567.
    [133] VOGELSANG J, ADACHI T, BRAZARD J, et al. Self-assembly of highly orderedconjugated polymer aggregates with long-range energy transfer [J]. Nat Mater,2011,10:942946.
    [134] MARKOV D E, AMSTERDAM E, BLOM P W M, et al. Accurate measurement of theexciton diffusion length in a conjugated polymer using a heterostructure with aside-chain cross-linked fullerene layer [J]. J Phys Chem A,2005,109:52665274.
    [135] BELJONNE D, POURTOIS G, SILVA C, et al. Inerchain vs. Intrachain energy transferin acceptor-capped conjugated polymers [J]. Proc Natl Acad Sci, USA,2002,99:1098210987.
    [136] DOGARIU A, VACAR D, HEEGER A J, Picosecond time-resolved spectroscopy ofthe excited state in a soluble derivative of poly(phenylene vinylene): Origin of thebimolecular decay [J]. Phys Rev B,2001,58:1021810224.
    [137] MCNEILL C R, WESTENHOFF S, GROVES C, et al. Influence of nanoscale phaseseparation on the charge generation dynamics and photovoltaic performance ofconjugated polymer blends: Balancing charge generation and separation [J]. J PhysChem C,2007,111:1915319160.
    [138] BRéDAS J L, NORTON J E, CORNIL J, et al. Molecular understanding of organicsolar cells: The challenges [J]. Acc Chem Res,2009,42:16911699.
    [139] ARIAS A C, MACKENZIE J D, STEVENSON R, et al. Photovoltaic performance andmorphology of polyfluorene blends: A combined microscopic and photovoltaicinvestigation [J]. Macromolecules,2001,34:60056013.
    [140] KIETZKE T, NEHER D, LANDFESTER K, et al. Novel approaches to polymer blendsbased on polymer nanoparticles [J]. Nat. Mater,2003,2:408412.
    [141] CHAPPELL J, LIDZEY D G, JUKES P C, et al. Correlating structure with fluorescenceemission in phase-separated conjugated-polymer blends [J]. Nat Mater,2003,2:616621.
    [142] PALACIOS P E, FAN F R F, GREY J K, et al. Charging and discharging of singleconjugated-polymer nanoparticles [J]. Nat Mater,2007,6:680685.
    [143] COLLINI E, SCHOLES G D, Coherent intrachain energy migration in a conjugatedpolymer at room temperature [J]. Science,2009,323:369373.
    [144] YU J B, WU C F, TIAN Z Y, et al. Tracking of single charge carriers in a conjugatedpolymer nanoparticle [J]. Nano Lett,2012,12:13001306.
    [145] WU C F, BULL B, SZYMANSKI C, et al. Multicolor conjugated polymer dots forbiological fluorescence imaging [J]. ACS Nano,2008,2:24152423.
    [146] WU C F, HANSEN S J, HOU Q, et al. Design of highly emissive polymer dotbioconjugates for in vivo tumor targeting [J]. Angew Chem Int Ed,2011,50:34303434.
    [147] WU C F, MCNEILL J., Swelling-controlled polymer phase and fluorescence propertiesof polymer nanoparticles [J]. Langmuir,2008,24:58555861.
    [148] SHAW P E, RUSECKAS A, PEET J, et al. Exciton-exciton annihilation in mixed-phasepolyfluorene films [J]. Adv Funct Mater,2010,20:155161.
    [149] WANG H, WANG H Y, GAO B R, et al. Exciton diffusion and charge transferdynamics in nano phase-separated P3HT/PCBM blend films [J]. Nanoscale,2011,3:22802285.
    [150] LEATHERDALE C A, WOO W K, MIKULEC F V, et al. On the absorption crosssection of CdSe nanocrystal quantum dots [J]. J Phys Chem B,2002,106:76197622.
    [151] STEVENS M A, SILVA C, RUSSELL D M, et al. Exciton dissociation mechanisms inthe polymeric semiconductors poly(9,9-dioctylfluorene) and poly(9,9-dioctylfluorene-co-benzothiadiazole)[J]. Phys Rev B,2001,63:165213.
    [152] BRüTTING W, Physics of Organic Semiconductors [M]. Wiley-VCH, Weinheim,Germany2005, Ch.7.
    [153] RUSECKAS A, SHAW P E, SAMUEL I D W, Probing the nanoscale phase separationin binary photovoltaic blends of poly(3-hexylthiophene) and methanofullerene byenergy transfer [J]. Dalton Trans,2009,45:1004010043.
    [154] PECHER J, MECHING S, Nanoparticles of conjugated polymers [J]. Chem Rev,2010,110:62606279.
    [155] HOU Q, XU Y S, YANG W, et al. Novel red-emitting fluorene-based copolymers [J]. JMater Chem,2002,12:28872892.
    [156] ZHANG X J, YU J B, WU C F, et al. Importance of having low-density functionalgroups for generating high-performance semiconducting polymer dots [J]. ACS Nano,2012,6:54295439.
    [157] WU C F, PENG H S, JIANG Y F, et al. Energy transfer mediated fluorescence fromblended conjugated polymer nanoparticles [J]. J Phys Chem B,2006,110:1414814154.
    [158] CHU T Y, LU J P, BEAUPRé S, et al. Effects of the molecular weight and theside-chain length on the photovoltaic performance of dithienosilole/thienopyrrolodionecopolymers [J]. Adv Funct Mater,2012,22:23452351.
    [159] COLLINI E, WONG C Y, WILK K E, et al. Coherently wired light-harvesting inphotosynthetic marine algae at ambient temperature [J]. Nature,2010,463:644647.
    [160] DONG H, XU D Z, HUANG J F, et al. Coherent excitation transfer via the dark-statechannel in a bionic system [J]. Light: Science&Applications,2012,1: e2.
    [161] NOZIK A J, Spectroscopy and hot electron relaxation dynamics in semiconductorquantum wells and quantum dots [J]. Annu Rev Phys Chem,2001,52:193231.
    [162] WANG H Y, DONEGá C M, MEIJERINK A, et al. Ultrafast exciton dynamics in CdSequantum dots studied from bleaching recovery and fluorescence transients [J] J PhysChem B,2006,110:733737.
    [163] ELLINGSON R J, BEARD M C, JOHNSON J C, et al. Highly efficient multipleexciton generation in colloidal PbSe and PbS quantum dots [J]. Nano Lett,2005,5:865871.
    [164] ORON D, KAZES M, BANIN U, Multiexcitons in type-II colloidal semiconductorquantum dots [J]. Phys Rev B,2007,75:035330.
    [165] MICHLER P, KIRAZ A, BECHER C, et al. A quantum dot single-photon turnstiledevice [J]. Science,2000,290:22822284.
    [166] GUR I, FROMER N A, GEIER M L, et al. Air-stable all-inorganic nanocrystal solarcells processed from solution [J]. Science,2005,310:462465.
    [167] BRUCHEZ JR M, MORONNE M, GIN P, et al. Semiconductor nanocrystals asfluorescent biological labels [J] Science,1998,281:20132015.
    [168] SMITH A M, MOHS A M, NIE S, Tuning the optical and electronic properties ofcolloidal nanocrystals by lattice strain [J]. Nature Nanotechnology,2009,4:5663.
    [169] LIN C, ZHEN Y L, LI A Z, Study of AlGaAsSb:InGaAsSb strained quantum wellgrown by molecular beam epitaxy on GaSb(100)[J]. Materials Science and EngineeringB,2000,75:170–173
    [170] OHDAIRA K, MURATA H, KOH S, et al. Control of type-I and type-II bandalignments in AlInAs/AlGaAs self-assembled quantum dots by changing algaascompositions [J]. Physica E,2004,21:308311.
    [171] GRüNING H, KLAR P J, HEIMBRODT W, et al. Evidence for a type I to type IItransition in (Ga,In)(N,As)/Ga(N,As) quantum well structures [J]. Physica E,2004,21:666670.
    [172] SCHLICHENMAIER C, GRüNING H, THR NHARDT A, et al. Type I-type IItransition in InGaAs–GaNAs heterostructures,[J]. Appl Phys Lett,2005,86:081903.
    [173] HANTKE K, HEBER J D, SCHLICHENMAIER C, et al. Time-resolvedphotoluminescence of type-I and type-II (GaIn)As/Ga(NAs) heterostructures [J]. PhysRev B,2005,71:165320.
    [174] DENG Z T, SCHULZ O, LIN S, et al. Aqueous synthesis of zinc blende CdTe/CdSmagic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable tonear-infrared [J]. J Am Chem Soc,2010,132:55925593.
    [175] KRAUSS T D, PETERSON J J, Bright future for fluorescence blinking in semiconductornanocrystals [J]. J Phys Chem Lett,2010,1:1377–1382.
    [176] NILES D W, H CHST H, Band offsets and interfacial properties of cubic CdS grownby molecular-beam epitaxy on CdTe(110)[J]. Phys Rev B,1990,41:1271012719.
    [177] GU Z Y, ZOU L, FANG Z, et al. One-pot synthesis of highly luminescent CdTe/CdScore/shell nanocrystals in aqueous phase [J]. Nanotechnology,2008,19:135604.
    [178] DORFS D, FRANZL T, OSOVSKY R, et al. Type-I and type-II nanoscaleheterostructures based on CdTe nanocrystals: A comparative study [J]. Small,2008,4:11481152.
    [179] WEI S H, ZHANG S B, ZUNGER A, First-principles calculation of band offsets,optical bowings, and defects in CdS, CdSe, CdTe, and their alloys [J]. J Appl Phys,2000,87:13041311.
    [180] ZENG Q H, KONG X G, SUN Y J, et al. Synthesis and optical properties of type IICdTe/CdS core/shell quantum dots in aqueous solution via successive ion layeradsorption and reaction [J]. J Phys Chem C,2008,112:85878593.
    [181] SCH PS O, LE THOMAS N, WOGGON U, et al. Recombination dynamics ofCdTe/CdS core-shell nanocrystals [J]. J Phys Chem B,2006,110:20742079.
    [182] RAWALEKAR S, KANIYANKANDY S, VERMA S, et al. Ultrafast charge carrierrelaxation and charge transfer dynamics of CdTe/CdS core-shell quantum dots asstudied by femtosecond transient absorption spectroscopy [J]. J Phys Chem C,2010,114:14601466.
    [183] NONOGUCHI Y, NAKASHIMA T, KAWAI T, Tuning band offsets of core/shellCdS/CdTe nanocrystals [J]. Small,2009,5:24032406.
    [184] DOOLEY C J, DIMITROV S D, FIEBIG T, Ultrafast electron transfer dynamics inCdSe/CdTe donor-acceptor nanorods [J]. J Phys Chem C,2008,112:1207412076.
    [185] NEMCHINOV A, KIRSANOVA M, HEWA-KASAKARAGE N N, et al. Synthesisand characterization of type II ZnSe/CdS core/shell nanocrystals [J]. J Phys Chem C,2008,112:93019307.
    [186] JONES M, KUMAR S, LO S S, et al. Exciton trapping and recombination in type IICdSe/CdTe nanorod heterostructures [J]. J Phys Chem C,2008,112:54235431.
    [187] YANG S Y, PRENDERGAST D, NEATON J B, Strain-induced band gap modificationin coherent core/shell nanostructures [J]. Nano Lett,2010,10:31563162.
    [188] LI J J, WANG Y A, GUO W Z, et al. Large-scale synthesis of nearly monodisperseCdSe-CdS core-shell nanocrystals using air-stable reagents via successive ion layeradsorption and reaction [J]. J Am Chem Soc,2003,125:1256712575.
    [189] CHUANG C H, LO S S, SCHOLES G D, et al. Charge separation and recombination inCdTe/CdSe core/shell nanocrystals as a function of shell coverage: Probing the onset ofthe quasi type-II regime [J]. J Phys Chem Lett,2010,1:25302535.
    [190] O'REAGEN B, GR TZEL M, A low-cost, high-efficiency solar cell based ondye-sensitized solloidal TiO2films [J]. Nature,1991,353:737740.
    [191] YU Q J, WANG Y H, YI Z H, et al. High-efficiency dye-sensitized solar cells: Theinfluence of lithium ions on exciton dissociation, charge recombination, and surfacestates [J]. ACS Nano,2010,4:60326038.
    [192] GRATZEL M, Dye-sensitized solar cells [J]. J Photochem Photobiol C,2003,4:145153.
    [193] DURRANT J R, HAQUE S A, PALOMARES E, Towards optimisation of electrontransfer processes in dye sensitized solar cells [J]. Coord Chem Rev,2004,248:12471257.
    [194] ARDO S, MEYER G J, Photodriven heterogeneous charge transfer with transition-metalcompounds anchored to TiO2semiconductor surfaces [J]. Chem Soc Rev,2009,38:115164.
    [195] WANG H Y, LIN S, ALLEN J P, et al. Protein dynamics control the kinetics of initialelectron transfer in photosynthesis [J]. Science,2007,316:747750.
    [196] TRACHIBANA Y, HAQUE S A, MERCER I P, et al. Electron injection andrecombination in dye sensitized nanocrystalline titanium dioxide films: A comparison ofruthenium bipyridyl and porphyrin sensitizer dyes [J]. J Phys Chem B,2000,104:11981205.
    [197] MYAHKOSTUPOV M, PIOTROWIAK P, WANG D, et al. Ru(II)-bpy complexesbound to nanocrystalline TiO2films through phenyleneethynylene (OPE) linkers: Effectof the linkers length on electron injection rates [J]. J Phys Chem C,2007,111:28272829.
    [198] ASBURY J B, WANG Y Q, LIAN T Q, Multiple-exponential electron injection inRu(dcbpy)2(SCN)2sensitized ZnO nanocrystalline thin films [J]. J Phys Chem B,1999,103:66436647.
    [199] AI X, ANDERSON N A, GUO J C, et al. Electron injection dynamics of Ru Polypyridylcomplexes on SnO2nanocrystalline thin films [J]. J Phys Chem B,2005,109:70887094.
    [200] GUO J C, STOCKWELL D, AI X, et al. Electron-transfer dynamics from Ru polypyridylcomplexes to In2O3nanocrystlline thin films [J]. J Phys Chem B,2006,110:52385244.
    [201] HAQUE S A, PALOMARES E, CHO B M, et al. Charge separation versusrecombination in dye-sensitized nanocrystalline solar cells: The minimization of kineticredundancy [J]/J Am Chem Soc,2005,127:34563462.
    [202] LI R Z, LV X J, SHI D, et al. Dye-sensitized solar cells based on organic sensitizerswith different conjugated linkers: Furan, bifuran, thiophene, bithiophene, selenophene,and biselenophene [J]. J Phys Chem C,2009,113:74697479.
    [203] LI R Z, LIU J Y, CAI N, et al. Synchronously reduced surface states, chargerecombination, and light absorption length for high-performance organic dye-sensitizedsolar cells [J]. J Phys Chem B,2010,114:44614464.
    [204] LI R Z, LIU D X, ZHOU D F, et al. Influence of the electrolyte cation in organicdye-sensitized solar cells: Lithium versus dimethylimidazolium [J] Energy Environ Sci,2010,3:17651772.
    [205] YU W W, PENG X G, Formation of high-quality CdS and other II-VI semiconductornanocrystals in noncoordinating solvents: Tunable reactivity of monomers [J]. AngewChem Int Ed,2002,41:23682371.
    [206] FUKE N, HOCH L B, KOPOSOV A Y, et al. CdSe quantum-dot-sensitized solar cellswith~100%internal quantum efficiency [J]. ACS Nano,2010,4:63776386.
    [207] LIU J Y, LI R Z, SI X Y, et al. Oligothiophene dye-sensitized solar cells [J]. EnergyEnviron Sci,2010,3:19241928.
    [208] TACHIBANA Y, RUBTSOV I V, MONTANARI I, et al. Transient luminescence studiesof electron injection in dye sensitised nanocrystalline TiO2films [J]. J PhotochemPhotobiol A,2001,142:215220.
    [209] HUSS A S, BIERBAUM A, CHITTA R, et al. Tuning electron transfer rates viasystematic shifts in the acceptor state density using size-selected ZnO colloids [J]. J AmChem Soc,2010,132:1396313965.
    [210] ROBEL I, KUNO M, KAMAT P V, Size-dependent electron injection from excitedCdSe quantum dots into TiO2nanoparticles [J]. J Am Chem Soc,2007,129:41364137.
    [211] KONGKANAND A, TVRDY K, TAKECHI K, et al. Quantum dot solar cells. Tuningphotoresponse through size and shape control of CdSe-TiO2architecture [J]. J AmChem Soc,2008,130:40074015.
    [212] GHOSH H N, ASBURY J B, LIAN T Q, Direct observation of ultrafast electroninjection from coumarin343to TiO2nanoparticles by femtosecond infraredspectroscopy [J]. J Phys Chem B,1998,102:64826486.
    [213] HILGENDORFF M, SUNDSTR M V, Ultrafast electron injection dan recombinationdynamics of dye sensitised TiO2particles [J]. Chem Phys Lett,1998,287:709713.
    [214] KAMAT P V, Photochemistry on nonreactive and reactive (semiconductor) surfaces [J].Chem Rev,1993,93:267300.
    [215] YU W W, QU L H, GUO W Z, et al. Experimental determination of the extinctioncoefficient of CdTe, CdSe, and CdS nanocrystals [J]. Chem Mater,2003,15:28542860.
    [216] ANDERSON N A, LIAN T Q, Ultrafast electron transfer at the molecule-semiconductornanoparticle interface [J]. Annu. Rev Phys Chem,2005,56:491519.
    [217] ENRIGHT B, FITZMAURICE D, Spectroscopic determination of electron and holeeffective masses in a nanocrytalline semiconductor film [J]. J Phys Chem,1996,100:10271035.
    [218] HUYNH W U, DITTMER J J, ALIVISATOS A P, Hybrid nanorod-polymer solar cells[J]. Science,2002,295:24252427.
    [219] ZHOU Y F, ECK M, KRüGER M, Bulk-heterojunction hybrid solar cells based oncolloidal nanocrystals and conjugated polymers [J]. Energy Environ Sci,2010,3:18511864.
    [220] HUYNH W U, PENG X G, ALIVISATOS A P, CdSe nanocrystalrods/poly(3-hexylthiophene) composite photovoltaic devices [J]. Adv Mater,1999,11:923927.
    [221] GUNES S, SARICIFTCI N S, Hybrid solar cells [J]. Inorganica Chimica Acta,2008,361:581588.
    [222] HOLGER B, Elementary processes and limiting factors in hybrid polymer/nanoparticlesolar cells [J]. Energy Environ. Sci,2010,3:16821694.
    [223] GAO F, REN S Q, WANG J P, The renaissance of hybrid solar cells: Progresses,challenges, and perspectives [J]. Energy Environ Sci,2013,6:20202040.
    [224] HE M, QIU F, LIN Z Q, Toward high-performance organic-inorganic hybrid solar cells:Bringing conjugated polymers and inorganic nanocrystals in close contact [J]. J PhysChem Lett,2013,4:17881796.
    [225] LEVENTIS H C, KING S P, SUDLOW A, et al. Nanostructured hybridpolymer-inorganic solar cell active layers formed by controllable in situ growth ofsemiconducting sulfide networks [J]. Nano Lett,2010,10:12531258.
    [226] FU W F, SHI Y, QIU W M, et al. High efficiency hybrid solar cells usingpost-deposition ligand exchange by monothiols [J]. Phys Chem Chem Phys,2012,14:1209412098.
    [227] ZHOU Y F, RIEHLE F S, YUAN Y, et al. Improved efficiency of hybrid solar cellsbased on non-ligand-exchanged CdSe quantum dots and poly(3-hexylthiophene)[J].Appl Phys Lett,2010,96:013304.
    [228] ZHOU R J, STALDER R, XIE D P, et al. Enhancing the efficiency of solution-processedpolymer:colloidal nanocrystal hybrid photovoltaic cells using ethanedithiol treatment [J].ACS Nano,2013,7:48464854.
    [229] CHEN H C, LAI C W, WU I C, et al. Enhanced performance and air stability of3.2%hybrid solar cells: how the functional polymer and CdTe nanostructure boost the solarcell efficiency [J]. Adv Mater,2011,23:54515455.
    [230] GREENHAM N C, PENG X G, ALIVISATOS A P, Charge separation and transport inconjugated-polymer/semiconductor-nanocrystal composites studied byphotoluminescence quenching and photoconductivity [J]. Phys Rev B,1996,54:1762817637.
    [231] LUTICH A A, JIANG G X, SUSHA A S, et al. Energy transfer versus chargeseparation in type-II hybrid organic-inorganic nanocomposites [J], Nano Lett,2009,9:26362640.
    [232] ALBERO J, MARTíNEZ-FERRERO E, AJURIA J, et al. Photo-induced electronrecombination dynamics in CdSe/P3HT hybrid heterojunctions [J]. Phys Chem ChemPhys,2009,11:96449647.
    [233] HEINEMANN M D, VON MAYDELL K, ZUTZ F, et al. Photo-induced chargetransfer and relaxation of persistent charge carriers in polymer/nanocrystal compositesfor applications in hybrid solar cells [J]. Adv Funct Mater,2009,19:37883795.
    [234] DAYAL S, KOPIDAKIS N, OLSON D C, et al. Photovoltaic devices with a low bandgap polymer and CdSe nanostructures exceeding3%efficiency [J]. Nano Lett,2010,10:239242.
    [235] ZHOU Y F, ECK M, VEIT C, et al. Efficiency enhancement for bulk-heterojunctionhybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymerPCPDTBT [J]. Energy Mater Sol Cells,2011,95:12321237.
    [236] REN S Q, CHANG L Y, LIM S K, et al. Inorganic-organic hybrid solar cell: Bridgingquantum dots to conjugated polymer nanowires [J]. Nano Lett,2011,11:39984002.
    [237] JELTSCH K F, SCH DEL M, BONEKAMP J B, et al. Efficiency enhanced hybridsolar cells using a blend of quantum dots and nanorods [J]. Adv Funct Mater,2012,22:397404.
    [238] WU Y, ZHANG G Q, Performance enhancement of hybrid solar cells through chemicalvapor annealing [J]. Nano Lett,2010,10:16281631.
    [239] LEE J M, KWON B H, PARK H I, et al. Exciton dissociation and charge-transportenhancement in organic solar cells with quantum-dot/N-doped CNT hybridnanomaterials [J]. Adv. Mater.2013,25:20112017.
    [240] Brandenburg J E, Jin X, Kruszynska M, et al. Influence of particle size in hybrid solarcells composed of CdSe nanocrystals and poly(3-hexylthiophene)[J]. J Appl Phys,2011,110:064509.
    [241] MOULE A, CHANG L L, THAMBIDURAI C, et al. Hybrid solar cells: Basicprinciples and the role of ligands [J.] J Mater Chem,2012,22:23512368.
    [242] NOONE K M, SUBRAMANIYAN S, ZHANG Q F, et al. Photoinduced charge transferand polaron dynamics in polymer and hybrid photovoltaic thin films: Oranic vsinorganic acceptors [J]. J Phys Chem C,2011,115:2440324410.
    [243] RADYCHEV N, LOKTEVA I, WITT F, et al. Physical origin of the impact of differentnanocrystal surface modifications on the performance of CdSe/P3HT hybrid solar cells[J]. J Phys Chem C,2011,115:1411114122.
    [244] QIAO Q Q, MCLESKEY J T, Water-soluble polythiophene/nanocrystalline TiO2solarcells [J]. Appl Phys Lett,2005,86:153501.
    [245] FAN Z X, ZHANG H, YU W L, et al. Aqueous-solution-processed hybrid solar cellsfrom poly(1,4-naphthalenevinylene) and CdTe nanocrystals [J]. ACS Appl MaterInterfaces,2011,3:29192923.
    [246] WEI H T, ZHANG H, SUN H Z, et al. Preparation of polymer-nanocrystals hybridsolar cells through aqueous approaches [J]. Nano Today,2012,7:316326.
    [247] CHEN Z L, ZHANG H, XING Z Y, et al. Aqueous-solution-processed hybrid solarcells with good thermal and morphological stability [J]. Sol Energy Mater Sol Cells,2013,109:254261.
    [248] YU W L, ZHANG H, TIAN H R, et al. Correlation between annealing-induced growthof nanocrystals and the performance of polymer: Nanocrystals haybrid solar cells [J]. JPhys Chem C,2012,116:13221328.
    [249] WEI H T, ZHANG H, SUN H Z, et al. Aqueous-solution-processed PPV-CdxHg1-xTehybrid solar cells with a significant near-infrared contribution [J]. J Mater Chem,2012,22:1782717832.
    [250] YU W L, ZHANG H, FAN Z X, et al. Efficient polymer/nanocrystal hybrid solar cellsfabricated from aqueous materials [J]. Energy Environ Sci,2011,4:28312834.
    [251] CHEN Z L, ZHANG H, YU W L, et al. Inverted hybrid solar cells from aqueousmaterials with a PCE of3.61%[J]. Adv Energy Mater,2013,3:433437.
    [252] CHEN Z L, ZHANG H, DU X H, et al. From planar-heterojunction to n-i structure: Anefficient strategy to improve short-circuit current and power conversion efficiency ofaqueous-solution-processed hybrid solar cells [J]. Energy Environ Sci,2013,6:15971603.
    [253] WEI H T, ZHANG H, JIN G, et al. Coordinatable and high charge-carrier-mobilitywater-soluble conjugated copolymers for effective aqueous-processed polymer-nanocrystal hybrid solar cells and OFET applications [J]. Adv Funct Mater,2013,23:40354042.
    [254] THOMSEN C, STRAIT J, VARDENY Z, et al. Coherent phonon generation anddetection by picosecond light pulses [J]. Phys Rev Lett,1984,53:989992.
    [255] KANNER G S, VARDENY Z V, HESS B C, Picosecond acoustics in polythiophenethin films [J]. Phys Rev B,1990,42:54035406.
    [256] LOIUDICE A, RIZZO A, DE MARCO L, et al. Organic photovoltaic devices withcolloidal TiO2nanorods as key functional components [J]. Phys Chem Chem Phys,2012,14:39873995.
    [257] GIANSANTE C, CARBONE L, GIANNINI C, et al. Colloidal arenethiolate-cappedPbS quantum dots: Optoelectronic properties, self-assembly, and application insolution-cast photovoltaics [J]. J Phys Chem C,2013,117:1330513317.
    [258] CHEN X, JIA B H, ZHANG Y N, et al. Exceeding the limit of plasmonic light trappingin textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphenesheets [J]. Light: Sci. Appl.2013,2: e92.
    [259] YUN J M, YEO J S, KIM J, et al. Solution-processable reduced graphene oxide as anovel alternative to PEDOT:PSS hole transport layers for highly efficient and stablepolymer solar cells [J]. Adv Mater,2011,23:49234928.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700