用户名: 密码: 验证码:
基于石墨烯纳米带和碳化硅纳米带的材料设计和计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石墨烯在实验上得以成功分离,基于碳的纳米材料家族,包括富勒烯、碳纳米管、石墨烯纳米带等,成为了化学、物理学、生物学、材料学等学科的实验与理论研究的重要交叉点,这其中,石墨烯与其一维同素异形体石墨烯纳米带无疑是当下最耀眼的成员。在日益进步的计算模拟方法和飞速提升的计算机性能的双重推动下,人们现在已经可以对更具实际意义的低维纳米材料的结构和物理化学性质在原子水平上进行更精确的设计和研究。本论文借助系统的密度泛函理论(DFT)计算,研究了不同的表面修饰手段下石墨烯纳米带及其无机类似物碳化硅纳米带的几何结构、电学性质、磁学性质和稳定性,并通过考察某些典型缺陷结构的存在对这些性质的影响,进一步提升相关纳米材料在未来多功能自旋纳米器件中的实际应用价值。
     首先,本文提出了一种能够简便而有效地调控锯齿型石墨烯纳米带的电学和磁学性质的新型非共价表面修饰方法。利用单个或多个C≡C桥连两条聚二炔长链而成离域性优良的π共轭骨架,改性的梯形聚二炔衍生物能借助π π相互作用稳定吸附到纳米带上,并通过长链上不同拉/推电子功能基团之间电荷转移诱导出的偶极场打破原本锯齿型石墨烯纳米带能带结构的能量简并边缘态,将其变成半金属或金属。逐步改变纳米带的宽度或聚二炔衍生物的桥链中C≡C的数目会影响诱导偶极场的作用,进而在体系中实现自旋无带隙半导体性半金属性金属性以及反铁磁态到铁磁态的丰富电学和磁学性质转变。甚至当锯齿型石墨烯纳米带的边缘发生57重构而变形时,仍然能在聚二炔衍生物的作用下观察到体系展现反铁磁态自旋无带隙半导体铁磁态半金属反铁磁态金属非磁态金属的多重性质变化。进一步,通过对锯齿型石墨烯纳米带的57重构边缘进行氢化,能够消除边缘重构对体系性质的影响,使其大致恢复到基于代表其中剩余未氢化部分的相应的窄的边缘光滑氢饱和锯齿型石墨烯纳米带的体系的性质,并针对一系列宽度的纳米带得到类似的自旋无带隙半导体行为半金属行为的电学性质转变。
     受启发于石墨烯长期积累的广泛研究和无机纳米材料发展的日新月异,本论文接下来主要考察了石墨烯纳米带的一类无机类似物碳化硅纳米带分别在典型的共价表面修饰手段氢化和典型的拓扑缺陷Stone-Wales(SW)缺陷的作用下其电学和磁学性质可能发生的变化,分别着重阐述了氢化的不同模式和比例以及SW缺陷的不同方向和位置对碳化硅纳米带的电学和磁学行为的影响。首先,计算结果表明,全氢化的碳化硅纳米带以其椅式构型较船式和马镫式构型更为稳定。无论边缘是扶手椅型还是锯齿型,全氢化的碳化硅纳米带均展现非磁性的半导体行为,带隙随宽度增加呈现降低趋势。随着氢化分别从纳米带的硅边、碳边和两边开始以及氢化比例的一步步增加,我们能够在锯齿型碳化硅纳米带中准确地实现一系列丰富的电学和磁学行为:半金属、自旋无带隙半导体、金属、宽带半导体及有磁性、无磁性,甚至有一些部分氢化的碳化硅纳米带结构能展现与其剩余未氢化的纯碳化硅纳米带部分几乎完全相同的性质,这能为实验上制造“窄”的碳化硅纳米带提供一些有益的思路。通过计算氢化的碳化硅纳米带的形成能和氢原子在碳化硅纳米带表面受到的束缚能可知,所有这些结构都具有很高的热力学稳定性,论证了它们能通过氢化纯的碳化硅纳米带的方式在实验上得以实现的可能性。
     众所周知,各种缺陷的产生是纳米材料在生长、分离和处理过程中不可避免的,而SW缺陷就是其中一种典型的拓扑缺陷,因为完美结构中的某个键发生90°旋转而产生。我们通过计算发现,当SW缺陷在碳化硅纳米带中(按照硅碳键相对于碳化硅纳米带周期性方向的取向不同,分别以SW-1和SW-2表示平行/垂直于和倾斜于其周期性方向的两种SW缺陷)形成时,无论缺陷方向如何,都会因为引入杂化态能带而显著降低扶手椅型碳化硅纳米带的带隙,但不影响其原有的非磁性半导体行为;与之类似,带有SW缺陷的锯齿型碳化硅纳米带依旧表现出能量简并的铁磁态和反铁磁态以及各自分别对应的金属性和半金属性,而在某些结构中,半金属行为能在铁磁态和反铁磁态同时观察到。这会有助于保护半金属性避免在外界微扰影响下减弱甚至消失的危险。计算结果同时表明,SW缺陷在碳化硅纳米带中的形成能具有方向和位置依赖性。无论边缘手性如何,SW缺陷位于纳米带中心时其形成能随宽度增加而增大;相比之下,位于锯齿型碳化硅纳米带边缘的SW缺陷其形成能总体较中心时降低,而SW-2总比SW-1在能量上更有利。通过考察SW缺陷形成的动态过程,我们发现,相比于已经在实验上观察到SW缺陷的石墨,存在于碳化硅纳米带中的SW缺陷具有明显更低的计算能垒,以及相当大的逆向能垒以稳定形成后的缺陷,这进一步论证了它们在碳化硅纳米带中存在的可能性。
The family of carbon-based nanomaterials, including fullerene, carbon nanotubes,and graphene nanoribbons, has become the crucial intersection linkinginterpdisciplinary researches of chemistry, physics, biology, and material science fromboth the experimental and theoretical viewpoints ever since the successful fabricationof graphene in experiment. Amongst, graphene, along with its one-dimensionalallotrope graphene nanoribbons, is undoubtedly the brightest star instantly. Driven bythe more advanced computational methods and more upgraded computer capacity, thegeometric structures and physicochemical properties of more practicallow-dimensional nanostructures can be designed and studied at atomic level moreprecisely right now. With employing systematic density functional theory (DFT)computations, here, we have investigated the geometry, electronic and magneticfeatures, as well as the stabilities for graphene nanoribbons and the inorganicanalogue silicon carbide nanoribbons under different surface-modification strategies,where the effects of the formation of some typical defects on these performances havebeen explored, aiming at further facilitating the practical application potentials ofrelevant nanomaterials in the future multi-functional and spintronic nanodevices.
     Initially, we identified a new noncovalent surface-modification strategy toconveniently and effectively modulate the electronic and magnetic properties ofzigzag graphene nanoribbons (zGNRs). Taking advantage of the excellent delocalizedπ–conjugated backbone with single/multiple C≡C bonds bridging twopolydiacetylene (PDA) chains, the modified ladder-structure PDA derivatives canphysisorb stably on zGNRs via π π interactions, and more interestingly, break theenergetically degenerated edge states in the original band structures of zGNRs by thedipole field induced through the charge transfer between different acceptor/donor groups that decorate the PDA chains, rendering them half-metallic or metallic. Byaltering the width of zGNRs or the number of C≡C bond in the linking bridge ofPDA, the effect of the induced dipole field can be altered, leading to the abundantelectronic transition of spin gapless semiconductor (SGS) half-metal metal alongwith the magnetic conversion of antiferromagnetic ferromagnetic. Even with the57-reconstruction at the zGNR edges, multiple transformation of antiferromagneticSGS ferromagnetic half-metal antiferromagnetic metal nonmagnetic metal can alsobe observed with the PDA functionalization. Further, hydrogenation at the57-reconstructed edges of zGNRs can eliminate the effect of the edge-reconstructionand generally recover their properties to those based on the corresponding perfectnarrow H-terminated zGNRs representing the remaining pristine zGNRs inside,realizing similar SGS half-metal transition for zGNRs with a series of widths.
     Inspired by the accumulated extensive researches in graphene and rapidlyadvanced cognition in the inorganic nanomaterials, subsequently, we mainlyaddressed how the electronic and magnetic properties of silicon carbide nanoribbons(SiCNRs), one inorganic counterpart of graphene nanoribbons, may be affected underthe functionalization of hydrogenation one typical covalent surface-modificationstrategy and the formation of Stone-Wales (SW) defects one typical topologicaldefect, respectively, focusing on elaborating the effects of different hydrogenationpatterns/ratios and different defect orientations/sites on the relevant performances.Initially, the computed results reveal that the fully hydrogenated SiCNRs favor thechair configuration over boat and stirrup, where they are all nonmagneticsemiconductors with a descending trend of their band gaps as a function of the ribbonwidth, regardless of the edge chirality. With hydrogenation starting from the Si edge,C edge, and both edges of zSiCNRs, respectively, a series of substantial electronic andmagnetic behaviors can be precisely achieved as increasing the hydrogenation ratio:half-metal, SGS, metal, wide-band-gap semiconductor, magnetic, and nonmagneticfeatures. There even exist some structures among the partially hydrogenated zSiCNRsexhibiting almost the same electronic and magnetic behaviors as that of the remainingpristine zSiCNRs without hydrogenation, which may provide some useful insights into producing “narrow” SiCNRs in experiment. As inferred from the computedformation energies and binding energies per hydrogen atom to the SiCNRs, all ofthese hydrogenated SiCNRs present high thermodynamic stability, stronglysuggesting the feasibility to realize these structures by hydrogenating the pristineSiCNRs experimentally.
     It’s well-known that the formation of various defects is inevitable during thegrowth, fabrication, and processing of nanomaterials, amongst, SW defects is onetypical class of topological defects, created through rotating one bond of the pristinestructure by90°. It’s inferred from the computed results that when SW defects occurin SiCNRs (According to the different orientations of Si C bond relative to theperiodical direction of the nanoribbon, SW-1and SW-2are labeled to differentiate theSW defects with parallel/vertical and slanted orientations, respectively), the band gapsof aSiCNRs can be significantly reduced due to the inpurity band states introduced bythe defects, independent of the defect orientation, yet the original nonmagnetic andsemiconducting features are not affected; similarly, the SW-defective zSiCNRs stillexhibit energetically degenerated ferromagnetic and antiferromagnetic states with thecorresponding metallic and half-metallic behaviors, respectively, even half-metallicitymay be observed in both states, simultaneously. This can be advantageous for theprotection of the intriguing half-metallicity, inhibiting the drawback of beingvulnerable or even removed under small extra disturbances. Meanwhile, it’s foundthat the formation energies of SW defects in SiCNRs have defect orientation-andsite-dependency. Regardless of the edge chirality, the formation energies of SWdefects in the center of SiCNRs increase as widening the ribbon; comparatively, SWdefects at the edges of zSiCNRs generally present lower formation energies than thosein the center, yet the formation of SW-2is always energetically more favored thanSW-1. Moreover, we infer from the kinetic process of the formation of SW defects inSiCNRs that its barrier is remarkably lower than that computed for SW defects ingraphite, which has already been observed experimentally. Along with the largereverse energy barriers to stabilize the formed SW defects, these results can furthervalidate the possibility of the existence of SW defects in SiCNRs.
引文
[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect inatomically thin carbon films [J]. Science,2004,306(5696):666-669.
    [2] KROTO H W, HEATH J R, O'BRIEN S C, et al. C60: Buckminsterfullerene [J].Nature,1985,318:162-163.
    [3] IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56-58.
    [4] GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nature Materials,2007,6(3):183-191.
    [5] BOEHM H P, SETTON R, STUMPP E. Nomenclature and terminology ofgraphite intercalation compounds [J]. Pure Appl Chem,1994,66(9):1893-1901.
    [6] NOVOSELOV K S, JIANG Z, ZHANG Y, et al. Room-temperature quantum halleffect in graphene [J]. Science,2007,315(5817):1379-1379.
    [7] LEE C, WEI X D, KYSAR J W, et al. Measurement of the elastic properties andintrinsic strength of monolayer graphene [J]. Science,2008,321(5887):385-388.
    [8] MOROZOV S V, NOVOSELOV K S, KATSNELSON M I, et al. Giant intrinsiccarrier mobilities in graphene and its bilayer [J]. Physical Review Letters,2008,100(1):016602.
    [9] ZHANG Y B, TAN Y W, STORMER H L, et al. Experimental observation of thequantum Hall effect and Berry's phase in graphene [J]. Nature,2005,438(7065):201-204.
    [10] KOHLSCH TTER V, HAENNI P. Zur Kenntnis des Graphitischen Kohlenstoffsund der Graphits ure [J]. Zeitschrift für anorganische und allgemeine Chemie,1919,105(1):121-144.
    [11] WALLACE P R. The Band Theory of Graphite [J]. Physical Review,1947,71(9):622-634.
    [12] RUESS G, VOGT F. H chstlamellarer Kohlenstoff aus Graphitoxyhydroxyd [J].Monatshefte für Chemie und verwandte Teile anderer Wissenschaften,1948,78(3-4):222-242.
    [13] Landau L D. Zur Theorie der Phasenumwandlungen II [J]. Phys ZeitsSowjetunion,1937,11:26-35.
    [14] E P R. Quelques proprietes typiques des corpses solides [J]. Ann Inst HenriPoincare,1935,5:177-222.
    [15] NOVOSELOV K S, JIANG D, SCHEDIN F, et al. Two-dimensional atomiccrystals [J]. Proceedings of the National Academy of Sciences of the UnitedStates of America,2005,102(30):10451-10453.
    [16] BERGER C, SONG Z M, LI T B, et al. Ultrathin epitaxial graphite:2D electrongas properties and a route toward graphene-based nanoelectronics [J]. Journal ofPhysical Chemistry B,2004,108(52):19912-19916.
    [17] SUTTER P. EPITAXIAL GRAPHENE How silicon leaves the scene [J]. NatureMaterials,2009,8(3):171-172.
    [18] SUTTER P W, FLEGE J I, SUTTER E A. Epitaxial graphene on ruthenium [J].Nature Materials,2008,7(5):406-411.
    [19] CORAUX J, N'DIAYE A T, ENGLER M, et al. Growth of graphene on Ir(111)[J]. New Journal of Physics,2009,11:023006.
    [20] N’DIAYE A T, BLEIKAMP S, FEIBELMAN P J, et al. Two-Dimensional IrCluster Lattice on a Graphene Moiré on Ir(111)[J]. Physical Review Letters,2006,97(21):215501.
    [21] VARYKHALOV A, SANCHEZ-BARRIGA J, SHIKIN A M, et al. Electronic andMagnetic Properties of Quasifreestanding Graphene on Ni [J]. Physical ReviewLetters,2008,101(15):157601.
    [22] LI X S, CAI W W, AN J H, et al. Large-Area Synthesis of High-Quality andUniform Graphene Films on Copper Foils [J]. Science,2009,324(5932):1312-1314.
    [23] HAMILTON C E, LOMEDA J R, SUN Z, et al. High-Yield Organic Dispersionsof Unfunctionalized Graphene [J]. Nano Letters,2009,9(10):3460-3462.
    [24] CHOUCAIR M, THORDARSON P, STRIDE J A. Gram-scale production ofgraphene based on solvothermal synthesis and sonication [J]. NatureNanotechnology,2008,4:30-33.
    [25] MEYER J C, GEIM A K, KATSNELSON M I, et al. The structure of suspendedgraphene sheets [J]. Nature,2007,446(7131):60-63.
    [26] FASOLINO A, LOS J H, KATSNELSON M I. Intrinsic ripples in graphene [J].Nature Materials,2007,6(11):858-861.
    [27] SCHEDIN F, GEIM A K, MOROZOV S V, et al. Detection of individual gasmolecules adsorbed on graphene [J]. Nature Materials,2007,6(9):652-655.
    [28] CHEN Z G, ZOU J, LIU G, et al. Novel Boron Nitride Hollow Nanoribbons [J].Acs Nano,2008,2(10):2183-2191.
    [29] CORSO M, AUWARTER W, MUNTWILER M, et al. Boron nitride nanomesh[J]. Science,2004,303(5655):217-220.
    [30] MEYER J C, CHUVILIN A, ALGARA-SILLER G, et al. Selective Sputteringand Atomic Resolution Imaging of Atomically Thin Boron Nitride Membranes[J]. Nano Letters,2009,9(7):2683-2689.
    [31] ZENG H B, ZHI C Y, ZHANG Z H, et al."White Graphenes": Boron NitrideNanoribbons via Boron Nitride Nanotube Unwrapping [J]. Nano Letters,2010,10(12):5049-5055.
    [32] ZHI C Y, BANDO Y, TANG C C, et al. Large-Scale Fabrication of Boron NitrideNanosheets and Their Utilization in Polymeric Composites with ImprovedThermal and Mechanical Properties [J]. Advanced Materials,2009,21(28):2889-2893.
    [33] ZHU Y C, BANDO Y, YIN L W, et al. Field nanoemitters: Ultrathin BNnanosheets protruding from Si3N4nanowires [J]. Nano Letters,2006,6(12):2982-2986.
    [34] BEKAROGLU E, TOPSAKAL M, CAHANGIROV S, et al. First-principlesstudy of defects and adatoms in silicon carbide honeycomb structures [J].Physical Review B,2010,81(7):075433.
    [35] LOU P, LEE J Y. Band Structures of Narrow Zigzag Silicon Carbon Nanoribbons[J]. Journal of Physical Chemistry C,2009,113(29):12637-12640.
    [36] SUN L, LI Y F, LI Z Y, et al. Electronic structures of SiC nanoribbons [J].Journal of Chemical Physics,2008,129(17):174114.
    [37] LI Y F, ZHOU Z, ZHANG S B, et al. MoS2Nanoribbons: High Stability andUnusual Electronic and Magnetic Properties [J]. Journal of the AmericanChemical Society,2008,130(49):16739-16744.
    [38] SEO J W, JUN Y W, PARK S W, et al. Two-dimensional nanosheet crystals [J].Angewandte Chemie-International Edition,2007,46(46):8828-8831.
    [39] AVOURIS P, CHEN Z H, PEREBEINOS V. Carbon-based electronics [J]. NatureNanotechnology,2007,2(10):605-615.
    [40] CASTRO NETO A H, GUINEA F, PERES N M R, et al. The electronicproperties of graphene [J]. Reviews of Modern Physics,2009,81(1):109-162.
    [41] SEMENOFF G W. Condensed-matter simulation of a three-dimensional anomaly[J]. Physical Review Letters,1984,53:2449-2452.
    [42] GUSYNIN V P, SHARAPOV S G. Unconventional integer quantum Hall effectin graphene [J]. Physical Review Letters,2005,95(14):146801.
    [43] SHENG L, SHENG D N, HALDANE F D M, et al. Odd-integer quantum Halleffect in graphene: Interaction and disorder effects [J]. Physical Review Letters,2007,99(19):196802.
    [44] ZHENG Y S, ANDO T. Hall conductivity of a two-dimensional graphite system[J]. Physical Review B,2002,65(24):245420.
    [45] MCCANN E, KECHEDZHI K, FAL'KO V I, et al. Weak-localizationmagnetoresistance and valley symmetry in graphene [J]. Physical Review Letters,2006,97(14):146805.
    [46] MOROZOV S V, NOVOSELOV K S, KATSNELSON M I, et al. Strongsuppression of weak localization in graphene [J]. Physical Review Letters,2006,97(1):016801.
    [47] KATSNELSON M I, NOVOSELOV K S, GEIM A K. Chiral tunnelling and theKlein paradox in graphene [J]. Nature Physics,2006,2(9):620-625.
    [48] KATSNELSON M I. Zitterbewegung, chirality, and minimal conductivity ingraphene [J]. European Physical Journal B,2006,51(2):157-160.
    [49] WANG Y, HUANG Y, SONG Y, et al. Room-Temperature Ferromagnetism ofGraphene [J]. Nano Letters,2009,9(1):220-224.
    [50] YAZYEV O V, HELM L. Defect-induced magnetism in graphene [J]. PhysicalReview B,2007,75(12):125408.
    [51] TOMBROS N, JOZSA C, POPINCIUC M, et al. Electronic spin transport andspin precession in single graphene layers at room temperature [J]. Nature,2007,448(7153):571-U574.
    [52] CHO S J, CHEN Y F, FUHRER M S. Gate-tunable graphene spin valve [J].Applied Physics Letters,2007,91(12):123105.
    [53] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas ofmassless Dirac fermions in graphene [J]. Nature,2005,438(7065):197-200.
    [54] CHEN J H, JANG C, XIAO S D, et al. Intrinsic and extrinsic performance limitsof graphene devices on SiO2[J]. Nature Nanotechnology,2008,3(4):206-209.
    [55] BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility insuspended graphene [J]. Solid State Communications,2008,146(9-10):351-355.
    [56] LIN Y M, DIMITRAKOPOULOS C, JENKINS K A, et al.100-GHz Transistorsfrom Wafer-Scale Epitaxial Graphene [J]. Science,2010,327(5966):662-662.
    [57] KUZMENKO A B, VAN HEUMEN E, CARBONE F, et al. Universal opticalconductance of graphite [J]. Physical Review Letters,2008,100(11):117401.
    [58] NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constantdefines visual transparency of graphene [J]. Science,2008,320(5881):1308-1308.
    [59] WANG F, ZHANG Y B, TIAN C S, et al. Gate-variable optical transitions ingraphene [J]. Science,2008,320(5873):206-209.
    [60] SINGH V, JOUNG D, ZHAI L, et al. Graphene based materials: Past, presentand future [J]. Progress in Materials Science,2011,56(8):1178-1271.
    [61] TSOUKLERI G, PARTHENIOS J, PAPAGELIS K, et al. Subjecting a GrapheneMonolayer to Tension and Compression [J]. Small,2009,5(21):2397-2402.
    [62] LEE C, WEI X D, LI Q Y, et al. Elastic and frictional properties of graphene [J].Physica Status Solidi B-Basic Solid State Physics,2009,246(11-12):2562-2567.
    [63] RAMANATHAN T, ABDALA A A, STANKOVICH S, et al. Functionalizedgraphene sheets for polymer nanocomposites [J]. Nature Nanotechnology,2008,3(6):327-331.
    [64] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors [J]. NatureMaterials,2008,7(11):845-854.
    [65] STOLLER M D, PARK S J, ZHU Y W, et al. Graphene-Based Ultracapacitors [J].Nano Letters,2008,8(10):3498-3502.
    [66] FUJITA M, WAKABAYASHI K, NAKADA K, et al. Peculiar Localized State atZigzag Graphite Edge [J]. Journal of the Physical Society of Japan,1996,65(7):1920-1923.
    [67] NAKADA K, FUJITA M, DRESSELHAUS G, et al. Edge state in grapheneribbons: Nanometer size effect and edge shape dependence [J]. Physical ReviewB,1996,54(24):17954-17961.
    [68] WAKABAYASHI K, FUJITA M, AJIKI H, et al. Electronic and magneticproperties of nanographite ribbons [J]. Physical Review B,1999,59(12):8271-8282.
    [69] WAKABAYASHI K, SIGRIST M, FUJITA M. Spin Wave Mode ofEdge-Localized Magnetic States in Nanographite Zigzag Ribbons [J]. Journal ofthe Physical Society of Japan,1998,67(6):2089-2093.
    [70] KAWAI T, MIYAMOTO Y, SUGINO O, et al. Graphitic ribbons withouthydrogen-termination: Electronic structures and stabilities [J]. Physical ReviewB,2000,62(24): R16349-R16352.
    [71] MIYAMOTO Y, NAKADA K, FUJITA M. First-principles study of edge statesof H-terminated graphitic ribbons [J]. Physical Review B,1999,59(15):9858-9861.
    [72] SON Y W, COHEN M L, LOUIE S G. Energy gaps in graphene nanoribbons [J].Physical Review Letters,2006,97(21):216803.
    [73] BARONE V, HOD O, SCUSERIA G E. Electronic structure and stability ofsemiconducting graphene nanoribbons [J]. Nano Letters,2006,6(12):2748-2754.
    [74] HAN M Y, OZYILMAZ B, ZHANG Y B, et al. Energy band-gap engineering ofgraphene nanoribbons [J]. Physical Review Letters,2007,98(20):206805.
    [75] LI X L, WANG X R, ZHANG L, et al. Chemically derived, ultrasmoothgraphene nanoribbon semiconductors [J]. Science,2008,319(5867):1229-1232.
    [76] DUTTA S, PATI S K. Half-metallicity in undoped and boron doped graphenenanoribbons in the presence of semilocal exchange-correlation interactions [J].Journal of Physical Chemistry B,2008,112(5):1333-1335.
    [77] SON Y W, COHEN M L, LOUIE S G. Half-metallic graphene nanoribbons [J].Nature,2006,444(7117):347-349.
    [78] HOD O, BARONE V, PERALTA J E, et al. Enhanced half-metallicity inedge-oxidized zigzag graphene nanoribbons [J]. Nano Letters,2007,7(8):2295-2299.
    [79] KAN E J, LI Z Y, YANG J L, et al. Half-metallicity in edge-modified zigzaggraphene nanoribbons [J]. Journal of the American Chemical Society,2008,130(13):4224-4225.
    [80] WU M H, WU X J, ZENG X C. Exploration of Half Metallicity inEdge-Modified Graphene Nanoribbons [J]. Journal of Physical Chemistry C,2010,114(9):3937-3944.
    [81] LI Y F, ZHOU Z, SHEN P W, et al. Spin GaplessSemiconductor-Metal-Half-Metal Properties in Nitrogen-Doped ZigzagGraphene Nanoribbons [J]. Acs Nano,2009,3(7):1952-1958.
    [82] WANG X L. Proposal for a new class of materials: Spin gapless semiconductors[J]. Physical Review Letters,2008,100(15):156404.
    [83] WANG X L, DOU S X, ZHANG C. Zero-gap materials for future spintronics,electronics and optics [J]. Npg Asia Materials,2010,2(1):31-38.
    [84] CHEN S W, HUANG S C, GUO G Y, et al. Gapless band structure of PbPdO2: Acombined first principles calculation and experimental study [J]. Applied PhysicsLetters,2011,99(1):012103.
    [85] LEE K J, CHOO S M, YOON J B, et al. Magnetic properties of gaplesssemiconductors: PbPdO2and PbPd0.9Co0.1O2[J]. Journal of Applied Physics,2010,107(9):09C306.
    [86] LEE Y L, KIM S, PARK C, et al. Controlling Half-Metallicity of GrapheneNanoribbons by Using a Ferroelectric Polymer [J]. Acs Nano,2010,4(3):1345-1350.
    [87] KOSYNKIN D V, HIGGINBOTHAM A L, SINITSKII A, et al. Longitudinalunzipping of carbon nanotubes to form graphene nanoribbons [J]. Nature,2009,458(7240):872-U875.
    [88] JIAO L Y, ZHANG L, WANG X R, et al. Narrow graphene nanoribbons fromcarbon nanotubes [J]. Nature,2009,458(7240):877-880.
    [89] YANG X Y, DOU X, ROUHANIPOUR A, et al. Two-dimensional graphenenanoribbons [J]. Journal of the American Chemical Society,2008,130(13):4216-4217.
    [90] CAI J M, RUFFIEUX P, JAAFAR R, et al. Atomically precise bottom-upfabrication of graphene nanoribbons [J]. Nature,2010,466(7305):470-473.
    [91] JIA X T, HOFMANN M, MEUNIER V, et al. Controlled Formation of SharpZigzag and Armchair Edges in Graphitic Nanoribbons [J]. Science,2009,323(5922):1701-1705.
    [92] OSADA M, SASAKI T. Exfoliated oxide nanosheets: new solution tonanoelectronics [J]. Journal of Materials Chemistry,2009,19(17):2503-2511.
    [93] PARK C H, LOUIE S G. Energy gaps and Stark effect in boron nitridenanoribbons [J]. Nano Letters,2008,8(8):2200-2203.
    [94] BARONE V, PERALTA J E. Magnetic boron nitride nanoribbons with tunableelectronic properties [J]. Nano Letters,2008,8(8):2210-2214.
    [95] CHEN W, LI Y F, YU G T, et al. Hydrogenation: A Simple Approach To RealizeSemiconductor-Half-Metal-Metal Transition in Boron Nitride Nanoribbons [J].Journal of the American Chemical Society,2010,132(5):1699-1705.
    [96] DING Y, WANG Y L, NI J. The stabilities of boron nitride nanoribbons withdifferent hydrogen-terminated edges [J]. Applied Physics Letters,2009,94(23):233107.
    [97] CHEN W, LI Y F, YU G T, et al. Electronic Structure and Reactivity of BoronNitride Nanoribbons with Stone-Wales Defects [J]. Journal of Chemical Theoryand Computation,2009,5(11):3088-3095.
    [98] WU X J, WU M H, ZENG C. Chemically decorated boron-nitride nanoribbons[J]. Frontiers of Physics in China,2009,4(3):367-372.
    [99] ZHANG Z H, GUO W L. Energy-gap modulation of BN ribbons by transverseelectric fields: First-principles calculations [J]. Physical Review B,2008,77(7):075403.
    [100] QI J S, QIAN X F, QI L, et al. Strain-Engineering of Band Gaps in PiezoelectricBoron Nitride Nanoribbons [J]. Nano Letters,2012,12(3):1224-1228.
    [101] DING Y, YANG X, NI J. Electronic structures of boron nanoribbons [J].Applied Physics Letters,2008,93(4):043107.
    [102] DING Y, WANG Y L, NI J. Electronic structures of BC3nanoribbons [J].Applied Physics Letters,2009,94(7):073111.
    [103] WU X J, PEI Y, ZENG X C. B2C Graphene, Nanotubes, and Nanoribbons [J].Nano Letters,2009,9(4):1577-1582.
    [104] BOTELLO-MENDEZ A R, LOPEZ-URIAS F, TERRONES M, et al. Magneticbehavior in zinc oxide zigzag nanoribbons [J]. Nano Letters,2008,8(6):1562-1565.
    [105] NARUSHIMA T, GOTO T, HIRAI T, et al. High-Temperature Oxidation ofSilicon Carbide and Silicon Nitride [J]. Materials Transactions, JIM,1997,38(10):821-835.
    [106] WANG S Z, XU L Y, SHU B Y, et al. Physical properties, bulk growth, andapplications of SiC single crystal [J]. Journal of Inorganic Materials,1999,14(4):527-534.
    [107] WATARI K. High thermal conductivity non-oxide ceramics [J]. Journal of theCeramic Society of Japan,2001,109(1): S7-S16.
    [108] ZHAN G D, KUNTZ J D, DUAN R G, et al. Spark-plasma sintering of siliconcarbide whiskers (SiC(w)) reinforced nanocrystalline alumina [J]. Journal of theAmerican Ceramic Society,2004,87(12):2297-2300.
    [109] KELNER G, SHUR M. SiC Devices and Ohmic Contacts [M]//HARRIS G L.Properties of Silicon Carbide. London; INSPEC, Institution of ElectricalEngineers.1995.
    [110] LEBEDEV A A. Heterojunctions and superlattices based on silicon carbide [J].Semiconductor Science and Technology,2006,21(6): R17-R34.
    [111] MEHREGANY M, ZORMAN C A, ROY S, et al. Silicon carbide formicroelectromechanical systems [J]. International Materials Reviews,2000,45(3):85-108.
    [112] WILLANDER M, FRIESEL M, WAHAB Q U, et al. Silicon carbide anddiamond for high temperature device applications [J]. Journal of MaterialsScience-Materials in Electronics,2006,17(1):1-25.
    [113] SALAMA I A, QUICK N R, KAR A. Laser synthesis of carbon-rich SiCnanoribbons [J]. Journal of Applied Physics,2003,93(11):9275-9281.
    [114] WU R B, WU L L, YANG G Y, et al. Fabrication and photoluminescence ofbicrystalline SiC nanobelts [J]. Journal of Physics D-Applied Physics,2007,40(12):3697-3701.
    [115] XI G C, PENG Y Y, WAN S M, et al. Lithium-assisted synthesis andcharacterization of crystalline3C-SiC nanobelts [J]. Journal of PhysicalChemistry B,2004,108(52):20102-20104.
    [116] ZHANG H A, DING W Q, HE K, et al. Synthesis and Characterization ofCrystalline Silicon Carbide Nanoribbons [J]. Nanoscale Research Letters,2010,5(8):1264-1271.
    [117] LOU P. Edge reconstruction effect in pristine and H-passivated zigzag siliconcarbide nanoribbons [J]. Physical Chemistry Chemical Physics,2011,13(38):17194-17204.
    [118] LOU P. Boron and nitrogen substitutional impurities inducing magnetic andhalf-metallic behavior in zigzag silicon carbon nanoribbons [J]. Physica StatusSolidi B-Basic Solid State Physics,2012,249(1):91-98.
    [119] LOU P, LEE J Y. Electrical Control of Magnetization in Narrow Zigzag SiliconCarbon Nanoribbons [J]. Journal of Physical Chemistry C,2009,113(50):21213-21217.
    [120] LOU P, LEE J Y. Spin Controlling in Narrow Zigzag Silicon CarbonNanoribbons by Carrier Doping [J]. Journal of Physical Chemistry C,2010,114(24):10947-10951.
    [121] ZHENG F L, ZHANG Y, ZHANG J M, et al. Bandgap modulations of siliconcarbon nanoribbons by transverse electric fields: A theoretical study [J]. PhysicaStatus Solidi B-Basic Solid State Physics,2011,248(7):1676-1681.
    [122] LI Y F, ZHOU Z, SHEN P W, et al. Structural and Electronic Properties ofGraphane Nanoribbons [J]. Journal of Physical Chemistry C,2009,113(33):15043-15045.
    [123] LI Y F, CHEN Z F. Patterned Partially Hydrogenated Graphene (C4H) and ItsOne-Dimensional Analogues: A Computational Study [J]. Journal of PhysicalChemistry C,2012,116(7):4526-4534.
    [124] SINGH A K, YAKOBSON B I. Electronics and Magnetism of PatternedGraphene Nanoroads [J]. Nano Letters,2009,9(4):1540-1543.
    [125] XIANG H J, KAN E J, WEI S H, et al."Narrow" Graphene Nanoribbons MadeEasier by Partial Hydrogenation [J]. Nano Letters,2009,9(12):4025-4030.
    [126] MEYER J C, KISIELOWSKI C, ERNI R, et al. Direct Imaging of LatticeAtoms and Topological Defects in Graphene Membranes [J]. Nano Letters,2008,8(11):3582-3586.
    [127] KOTAKOSKI J, KRASHENINNIKOV A V, KAISER U, et al. From PointDefects in Graphene to Two-Dimensional Amorphous Carbon [J]. PhysicalReview Letters,2011,106(10):105505.
    [128] UGEDA M M, BRIHUEGA I, GUINEA F, et al. Missing Atom as a Source ofCarbon Magnetism [J]. Physical Review Letters,2010,104(9):096804.
    [129] HASHIMOTO A, SUENAGA K, GLOTER A, et al. Direct evidence for atomicdefects in graphene layers [J]. Nature,2004,430(7002):870-873.
    [130] PANCHOKARLA L S, SUBRAHMANYAM K S, SAHA S K, et al. Synthesis,Structure, and Properties of Boron-and Nitrogen-Doped Graphene [J].Advanced Materials,2009,21(46):4726-4730.
    [131] WEI D C, LIU Y Q, WANG Y, et al. Synthesis of N-Doped Graphene byChemical Vapor Deposition and Its Electrical Properties [J]. Nano Letters,2009,9(5):1752-1758.
    [132] GIRIT C O, MEYER J C, ERNI R, et al. Graphene at the Edge: Stability andDynamics [J]. Science,2009,323(5922):1705-1708.
    [133] CORAUX J, N'DIAYE A T, BUSSE C, et al. Structural coherency of grapheneon Ir(111)[J]. Nano Letters,2008,8(2):565-570.
    [134] HUANG P Y, RUIZ-VARGAS C S, VAN DER ZANDE A M, et al. Grains andgrain boundaries in single-layer graphene atomic patchwork quilts [J]. Nature,2011,469(7330):389-392.
    [135] APPELHANS D J, CARR L D, LUSK M T. Embedded ribbons of grapheneallotropes: an extended defect perspective [J]. New Journal of Physics,2010,12:125006.
    [136] FUJIMOTO Y, SAITO S. Formation, stabilities, and electronic properties ofnitrogen defects in graphene [J]. Physical Review B,2011,84(24):245446.
    [137] PENG X Y, AHUJA R. Symmetry Breaking Induced Bandgap in EpitaxialGraphene Layers on SiC [J]. Nano Letters,2008,8(12):4464-4468.
    [138] LIN X Q, NI J. Half-metallicity in graphene nanoribbons with topological linedefects [J]. Physical Review B,2011,84(7):075461.
    [139] TOPSAKAL M, AKTURK E, SEVINCLI H, et al. First-principles approach tomonitoring the band gap and magnetic state of a graphene nanoribbon via itsvacancies [J]. Physical Review B,2008,78(23):235435.
    [140] GRACIA-ESPINO E, LOPEZ-URIAS F, TERRONES H, et al. Doping(10,0)-Semiconductor Nanotubes with Nitrogen and Vacancy Defects [J].Materials Express,2011,1(2):127-135.
    [141] NEVIDOMSKYY A H, CSANYI G, PAYNE M C. Chemically activesubstitutional nitrogen impurity in carbon nanotubes [J]. Physical ReviewLetters,2003,91(10):105502.
    [142] PARTOVI-AZAR P, NAMIRANIAN A. The effect of the orientation of theStone-Wales defects on the bands structure of carbon nanotubes [M]//OSIPOVV, NESTERENKO V, SHUKRINOV Y. International Conference onTheoretical Physics Dubna-Nano2010.2010.
    [143] ZENG H, ZHAO J, HU H F, et al. Atomic vacancy defects in the electronicproperties of semi-metallic carbon nanotubes [J]. Journal of Applied Physics,2011,109(8):083716.
    [144] STONE A J, WALES D J. Theoretical studies of icosahedral C60and somerelated species [J]. Chemical Physics Letters,1986,128(5-6):501-503.
    [145] LU P, ZHANG Z H, GUO W L. Electronic and magnetic properties of zigzagedge graphene nanoribbons with Stone-Wales defects [J]. Physics Letters A,2009,373(37):3354-3358.
    [146] OUYANG F P, HUANG B, LI Z Y, et al. Chemical functionalization ofgraphene nanoribbons by carboxyl groups on Stone-Wales defects [J]. Journalof Physical Chemistry C,2008,112(31):12003-12007.
    [147] CHEN Y K, LIU L V, WANG Y A. Density Functional Study of Interaction ofAtomic Pt with Pristine and Stone-Wales-Defective Single-Walled BoronNitride Nanotubes [J]. Journal of Physical Chemistry C,2010,114(29):12382-12388.
    [148] LI Y F, ZHOU Z, GOLBERG D, et al. Stone-wales defects in single-walledboron nitride nanotubes: Formation energies, electronic structures, andreactivity [J]. Journal of Physical Chemistry C,2008,112(5):1365-1370.
    [149] PAN L J, SHEN Z G, JIA Y, et al. First-principles study of electronic and elasticproperties of Stone-Wales defective zigzag carbon nanotubes [J]. PhysicaB-Condensed Matter,2012,407(14):2763-2767.
    [150] WANG C C, ZHOU G, LIU H T, et al. Chemical functionalization of carbonnanotubes by carboxyl groups on Stone-Wales defects: A density functionaltheory study [J]. Journal of Physical Chemistry B,2006,110(21):10266-10271.
    [151] PARTOVI-AZAR P, NAMIRANIAN A. Stone-Wales defects can cause ametal-semiconductor transition in carbon nanotubes depending on theirorientation [J]. Journal of Physics-Condensed Matter,2012,24(3):035301.
    [152] ZHOU X, TIAN W Q. Sensitivity of (5,5) SWSiCNTs and SWSiCNTs withStone-Wales Defects toward Hazardous Molecules [J]. Journal of PhysicalChemistry C,2011,115(23):11493-11499.
    [153] SCHR DINGER E. An Undulatory Theory of the Mechanics of Atoms andMolecules [J]. Physical Review,1926,28(6):1049-1070.
    [154] BORN M, OPPENHEIMER R. Zur Quantentheorie der Molekeln [J]. Annalender Physik,1927,389(20):457-484.
    [155] HARTREE D R. The Wave Mechanics of an Atom with a Non-CoulombCentral Field. Part I. Theory and Methods [J]. Mathematical Proceedings of theCambridge Philosophical Society,1928,24(01):89-110.
    [156]封继康.基础量子化学原理[M].高等教育出版社,1987.
    [157] THOMAS L H. The calculation of atomic fields [J]. Mathematical Proceedingsof the Cambridge Philosophical Society,1927,23(05):542-548.
    [158] FERMI E. Un metodo statistico per la determinantione di alcune priorietadell'atome [J]. Rend Accad Naz Lincei,1927,6:602.
    [159] DIRAC P A M. Note on exchange phenomena in the Thomas atom [J]. ProcCamb Phil Soc,1930,26:376-385.
    [160] HOHENBERG P, KOHN W. Inhomogeneous Electron Gas [J]. Physical Review,1964,136(3B): B864-B871.
    [161] KOHN W, SHAM L J. Self-Consistent Equations Including Exchange andCorrelation Effects [J]. Physical Review,1965,140(4A): A1133-A1138.
    [162] JONES R O, GUNNARSSON O. The density functional formalism, itsapplications and prospects [J]. Reviews of Modern Physics,1989,61(3):689-746.
    [163] CEPERLEY D M, ALDER B J. Ground state of the electron gas by a stochasticmethod [J]. Phys.Rev.Lett.,1980,45:556-559.
    [164] PERDEW J P, WANG Y. Accurate and simple analytic representation of theelectron-gas correlation energy [J]. Physical Review B,1992,45(23):13244-13249.
    [165] LEVY M, PERDEW J P. Density functionals for exchange and correlationenergies: Exact conditions and comparison of approximations [J]. InternationalJournal of Quantum Chemistry,1994,49(4):539-548.
    [166] PERDEW J P, BURKE K, ERNZERHOF M. Generalized GradientApproximation Made Simple [Phys. Rev. Lett.77,3865(1996)][J]. PhysicalReview Letters,1997,78(7):1396-1396.
    [167] LEE C, YANG W, PARR R G. Development of the Colle-Salvetticorrelation-energy formula into a functional of the electron density [J]. PhysicalReview B,1988,37(2):785-789.
    [168] PERDEW J P, YUE W. Accurate and simple density functional for theelectronic exchange energy: Generalized gradient approximation [J]. PhysicalReview B,1986,33(12):8800-8802.
    [169] BECKE A D. A new mixing of Hartree--Fock and local density-functionaltheories [J]. The Journal of Chemical Physics,1993,98(2):1372-1377.
    [170] PERDEW J P. Density-functional approximation for the correlation energy ofthe inhomogeneous electron gas [J]. Physical Review B,1986,33(12):8822-8824.
    [171] HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on ascreened Coulomb potential [J]. The Journal of Chemical Physics,2003,118(18):8207-8215.
    [172] BECKE A D. Density-functional thermochemistry. III. The role of exactexchange [J]. The Journal of Chemical Physics,1993,98(7):5648-5652.
    [173] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B,1976,13(12):5188-5192.
    [174] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals [J].Physical Review B,1993,47(1):558-561.
    [175] VANDERBILT D. Soft self-consistent pseudopotentials in a generalizedeigenvalue formalism [J]. Physical Review B,1990,41(11):7892-7895.
    [176] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projectoraugmented-wave method [J]. Physical Review B,1999,59(3):1758-1775.
    [177] BL CHL P E. Projector augmented-wave method [J]. Physical Review B,1994,50(24):17953-17979.
    [178] ALLEN M J, TUNG V C, KANER R B. Honeycomb Carbon: A Review ofGraphene [J]. Chemical Reviews,2010,110(1):132-145.
    [179] BRUMFIEL G. Graphene gets ready for the big time [J]. Nature,2009,458(7237):390-391.
    [180] LI D, KANER R B. Materials science-Graphene-based materials [J]. Science,2008,320(5880):1170-1171.
    [181] ROGERS J A. Electronic materials-Making graphene for macroelectronics [J].Nature Nanotechnology,2008,3(5):254-255.
    [182] SERVICE R F. MATERIALS SCIENCE Carbon Sheets an Atom Thick GiveRise to Graphene Dreams [J]. Science,2009,324(5929):875-877.
    [183] BERGER C, SONG Z M, LI X B, et al. Electronic confinement and coherencein patterned epitaxial graphene [J]. Science,2006,312(5777):1191-1196.
    [184] KATSNELSON M I, NOVOSELOV K S. Graphene: New bridge betweencondensed matter physics and quantum electrodynamics [J]. Solid StateCommunications,2007,143(1-2):3-13.
    [185] PONOMARENKO L A, SCHEDIN F, KATSNELSON M I, et al. Chaotic diracbilliard in graphene quantum dots [J]. Science,2008,320(5874):356-358.
    [186] BOTELLO-MENDEZ A R, CRUZ-SILVA E, ROMO-HERRERA J M, et al.Quantum Transport in Graphene Nanonetworks [J]. Nano Letters,2011,11(8):3058-3064.
    [187] BOUKHVALOV D W, KATSNELSON M I. Chemical Functionalization ofGraphene with Defects [J]. Nano Letters,2008,8(12):4373-4379.
    [188] CHEN J H, CULLEN W G, JANG C, et al. Defect Scattering in Graphene [J].Physical Review Letters,2009,102(23):236805.
    [189] CHEN W, CHEN S, QI D C, et al. Surface transfer p-type doping of epitaxialgraphene [J]. Journal of the American Chemical Society,2007,129(34):10418-10422.
    [190] DU A J, SMITH S C. Electronic Functionality in Graphene-BasedNanoarchitectures: Discovery and Design via First-Principles Modeling [J].Journal of Physical Chemistry Letters,2011,2(2):73-80.
    [191] ELIAS D C, NAIR R R, MOHIUDDIN T M G, et al. Control of Graphene'sProperties by Reversible Hydrogenation: Evidence for Graphane [J]. Science,2009,323(5914):610-613.
    [192] HIURA H F. Tailoring graphite layers by scanning tunneling microscopy [J].Applied Surface Science,2004,222(1-4):374-381.
    [193] JIA X T, CAMPOS-DELGADO J, TERRONES M, et al. Graphene edges: areview of their fabrication and characterization [J]. Nanoscale,2011,3(1):86-95.
    [194] JIANG D E, SUMPTER B G, DAI S. Unique chemical reactivity of a graphenenanoribbon's zigzag edge [J]. Journal of Chemical Physics,2007,126(13):134701.
    [195] JIANG D E, SUMPTER B G, DAI S. First principles study of magnetism innanographenes [J]. Journal of Chemical Physics,2007,127(12):124703.
    [196] KOZLOV S M, VINES F, GORLING A. Bandgap Engineering of Graphene byPhysisorbed Adsorbates [J]. Advanced Materials,2011,23(22-23):2638-2643.
    [197] LU N, LI Z Y, YANG J L. Electronic Structure Engineering via On-PlaneChemical Functionalization: A Comparison Study on Two-DimensionalPolysilane and Graphane [J]. Journal of Physical Chemistry C,2009,113(38):16741-16746.
    [198] RITTER K A, LYDING J W. The influence of edge structure on the electronicproperties of graphene quantum dots and nanoribbons [J]. Nature Materials,2009,8(3):235-242.
    [199] TERRONES M, BOTELLO-MENDEZ A R, CAMPOS-DELGADO J, et al.Graphene and graphite nanoribbons: Morphology, properties, synthesis, defectsand applications [J]. Nano Today,2010,5(4):351-372.
    [200] WASSMANN T, SEITSONEN A P, SAITTA A M, et al. Structure, stability,edge states, and aromaticity of graphene ribbons [J]. Physical Review Letters,2008,101(9):096402.
    [201] ZHOU S Y, GWEON G H, FEDOROV A V, et al. Substrate-induced bandgapopening in epitaxial graphene [J]. Nature Materials,2007,6(10):770-775.
    [202] KUDIN K N. Zigzag graphene nanoribbons with saturated edges [J]. Acs Nano,2008,2(3):516-522.
    [203] DUTTA S, PATI S K. Novel properties of graphene nanoribbons: a review [J].Journal of Materials Chemistry,2010,20(38):8207-8223.
    [204] DALOSTO S D, LEVINE Z H. Controlling the band gap in zigzag graphenenanoribbons with an electric field induced by a polar molecule [J]. Journal ofPhysical Chemistry C,2008,112(22):8196-8199.
    [205] DUTTA S, MANNA A K, PATI S K. Intrinsic Half-Metallicity in ModifiedGraphene Nanoribbons [J]. Physical Review Letters,2009,102(9):096601.
    [206] KUNSTMANN J, OZDOGAN C, QUANDT A, et al. Stability of edge statesand edge magnetism in graphene nanoribbons [J]. Physical Review B,2011,83(4):045414.
    [207] LI Z Y, HUANG B, DUAN W H. The Half-Metallicity of Zigzag GrapheneNanoribbons with Asymmetric Edge Terminations [J]. Journal of Nanoscienceand Nanotechnology,2010,10(8):5374-5378.
    [208] LIU Y L, WU X J, ZHAO Y, et al. Half-Metallicity in Hybrid Graphene/BoronNitride Nanoribbons with Dihydrogenated Edges [J]. Journal of PhysicalChemistry C,2011,115(19):9442-9450.
    [209] NDUWIMANA A, WANG X Q. Energy Gaps in SupramolecularFunctionalized Graphene Nanoribbons [J]. Acs Nano,2009,3(7):1995-1999.
    [210] PARK H, LEE J Y, SHIN S. Tuning of the Band Structures of Zigzag GrapheneNanoribbons by an Electric Field and Adsorption of Pyridine and BF3: A DFTStudy [J]. Journal of Physical Chemistry C,2012,116(37):20054-20061.
    [211] SONG L L, ZHENG X H, WANG R L, et al. Dangling Bond States, EdgeMagnetism, and Edge Reconstruction in Pristine and B/N-Terminated ZigzagGraphene Nanoribbons [J]. Journal of Physical Chemistry C,2010,114(28):12145-12150.
    [212] WU M H, WU X J, GAO Y, et al. Materials design of half-metallic grapheneand graphene nanoribbons [J]. Applied Physics Letters,2009,94(22):223111.
    [213] ZHENG X H, WANG X L, ABTEW T A, et al. Building Half-Metallicity inGraphene Nanoribbons by Direct Control over Edge States Occupation [J].Journal of Physical Chemistry C,2010,114(9):4190-4193.
    [214] MATSUZAWA H, OKADA S, MATSUDA H, et al. Synthesis and opticalproperties of polydiacetylenes from dodecahexayne derivatives [J]. Proc SPIE,1996,2851:14-25.
    [215] INAYAMA S, TATEWAKI Y, OKADA S. Solid-state polymerization ofconjugated hexayne derivatives with different end groups [J]. Polymer Journal,2010,42(3):201-207.
    [216] OKADA S, NAKANISHI H, MATSUZAWA H, et al. Improved third-ordernonlinear optical properties of polydiacetylene derivatives [J]. Proc SPIE,1999,3796:76-87.
    [217] OKADA S, HAYAMIZU K, MATSUDA H, et al. Solid-State Polymerization of15,17,19,21,23,25-Tetracontahexayne [J]. Macromolecules,1994,27(22):6259-6266.
    [218] WEGNER. G. Z Naturforsch,1969,24b:824.
    [219] LIANG J J, HUANG L, LI N, et al. Electromechanical Actuator withControllable Motion, Fast Response Rate, and High-Frequency ResonanceBased on Graphene and Polydiacetylene [J]. Acs Nano,2012,6(5):4508-4519.
    [220] AKAI-KASAYA M, SHIMIZU K, WATANABE Y, et al. Electronic structure ofa polydiacetylene nanowire fabricated on highly ordered pyrolytic graphite [J].Physical Review Letters,2003,91(25):255501.
    [221] AKAI-KASAYA M, YAMAMOTO Y, SAITO A, et al. Polaron injection intoone-dimensional polydiacetylene nanowire [J]. Japanese Journal of AppliedPhysics Part1-Regular Papers Brief Communications&Review Papers,2006,45(3B):2049-2052.
    [222] GIRIDHARAGOPAL R, KELLY K F. Substrate-dependent properties ofpolydiacetylene nanowires on graphite and MoS2[J]. Acs Nano,2008,2(8):1571-1580.
    [223] CHEN W, YU G T, GU F L, et al. Investigation on nonlinear optical propertiesof ladder-structure polydiacetylenes derivatives by using the elongationfinite-field method [J]. Chemical Physics Letters,2009,474(1-3):175-179.
    [224] PERDEW J P, BURKE K, ERNZERHOF M. Generalized GradientApproximation Made Simple [J]. Physical Review Letters,1996,77(18):3865-3868.
    [225] GRIMME S. Semiempirical GGA-type density functional constructed with along-range dispersion correction [J]. Journal of Computational Chemistry,2006,27(15):1787-1799.
    [226] WU X, VARGAS M C, NAYAK S, et al. Towards extending the applicability ofdensity functional theory to weakly bound systems [J]. Journal of ChemicalPhysics,2001,115(19):8748-8757.
    [227] KRESSE G, FURTHM LLER J. Efficiency of ab-initio total energy calculationsfor metals and semiconductors using a plane-wave basis set [J]. ComputationalMaterials Science,1996,6(1):15-50.
    [228] KRESSE G, FURTHM LLER J. Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set [J]. Physical Review B,1996,54(16):11169.
    [229] KRESSE G, HAFNER J. Ab initio molecular-dynamics simulation of theliquid-metal–amorphous-semiconductor transition in germanium [J]. PhysicalReview B,1994,49(20):14251.
    [230] CHUVILIN A, MEYER J C, ALGARA-SILLER G, et al. From grapheneconstrictions to single carbon chains [J]. New Journal of Physics,2009,11:083019.
    [231] KOSKINEN P, MALOLA S, HAKKINEN H. Evidence for graphene edgesbeyond zigzag and armchair [J]. Physical Review B,2009,80(7):073401.
    [232] DUTTA S, PATI S K. Edge reconstructions induce magnetic and metallicbehavior in zigzag graphene nanoribbons [J]. Carbon,2010,48(15):4409-4413.
    [233] HUANG B, LIU M, SU N H, et al. Quantum Manifestations of Graphene EdgeStress and Edge Instability: A First-Principles Study [J]. Physical ReviewLetters,2009,102(16):166404.
    [234] KOSKINEN P, MALOLA S, HAKKINEN H. Self-passivating edgereconstructions of graphene [J]. Physical Review Letters,2008,101(11):115502.
    [235] KROES J M H, AKHUKOV M A, LOS J H, et al. Mechanism and free-energybarrier of the type-57reconstruction of the zigzag edge of graphene [J].Physical Review B,2011,83(16):165411.
    [236] NGUYEN L T, PHAM C H, NGUYEN V L. Electronic band structures ofgraphene nanoribbons with self-passivating edge reconstructions [J]. Journal ofPhysics-Condensed Matter,2011,23(29):295503.
    [237] BLAKE P, BRIMICOMBE P D, NAIR R R, et al. Graphene-based liquidcrystal device [J]. Nano Letters,2008,8(6):1704-1708.
    [238] HABERER D, GIUSCA C E, WANG Y, et al. Evidence for a NewTwo-Dimensional C4H-Type Polymer Based on Hydrogenated Graphene [J].Advanced Materials,2011,23(39):4497-4503.
    [239] JAISWAL M, LIM C H Y X, BAO Q L, et al. Controlled Hydrogenation ofGraphene Sheets and Nanoribbons [J]. Acs Nano,2011,5(2):888-896.
    [240] MARTINS T B, MIWA R H, DA SILVA A J R, et al. Electronic and transportproperties of boron-doped graphene nanoribbons [J]. Physical Review Letters,2007,98(19):196803.
    [241] RYU S, HAN M Y, MAULTZSCH J, et al. Reversible Basal PlaneHydrogenation of Graphene [J]. Nano Letters,2008,8(12):4597-4602.
    [242] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids,and surfaces: Applications of the generalized gradient approximation forexchange and correlation [J]. Physical Review B,1992,46(11):6671-6687.
    [243] GUAN J, CHEN W, LI Y F, et al. An Effective Approach to Achieve a SpinGapless SemiconductorHalf-MetalMetal Transition in Zigzag GrapheneNanoribbons: Attaching A Floating Induced Dipole Field via Interactions [J].Advanced Functional Materials,2013,23(12):1507-1518.
    [244] DING Y, WANG Y L. Electronic structures of zigzag SiC nanoribbons withasymmetric hydrogen-terminations [J]. Applied Physics Letters,2012,101(1):013102.
    [245] GUAN J, CHEN W, ZHAO X J, et al. Successive hydrogenation starting fromthe edge(s): an effective approach to fine-tune the electronic and magneticbehaviors of SiC nanoribbons [J]. Journal of Materials Chemistry,2012,22(45):24166-24172.
    [246] KAXIRAS E, PANDEY K C. Energetics of defects and diffusion mechanismsin graphite [J]. Physical Review Letters,1988,61(23):2693-2696.
    [247] LI L, REICH S, ROBERTSON J. Defect energies of graphite:Density-functional calculations [J]. Physical Review B,2005,72(18):184109.
    [248] BHATTACHARYA A, BHATTACHARYA S, MAJUMDER C, et al. Firstprinciples prediction of the third conformer of hydrogenated BN sheet [J].physica status solidi (RRL)–Rapid Research Letters,2010,4(12):368-370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700