用户名: 密码: 验证码:
基于水溶性CdTe纳米晶功能荧光探针的设计、合成及分析应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体纳米晶也称为量子点,是过去十年中出现的一种新的荧光材料。与传统的有机染料相比,具有优良的光学性质。比如激发光谱宽、发射光谱窄且对称、发射波长可通过控制它的大小和组成来调节、不易光解、同一个激发光可以获得波长不同的发射光等优点。因此,半导体纳米材料的合成及分析应用研究受到了人们的广泛关注。
     最早人们是用有机溶剂、高温来合成量子点的。这样得到的量子点只能溶于有机溶剂中,这就限制了它们在分析检测中的实际应用。近年来,水溶性量子点在生物和化学领域中有了越来越多地应用,合成高品质的水溶性量子点,实现它们在化学、生物研究中的实际应用成为人们研究的前沿与热点。
     论文第一部分,我们用“一步”法合成了β-环糊精修饰的CdTe量子点。我们用Cd(Ac)_2、NaHTe、油酸和β-环糊精作为前驱体,在油水两相体系中一步合成。与有机溶剂高温合成量子点相比,这个新方法简单、高效、成本低、合成温度低,而且只需要一步就可以合成;和水相用巯基配体合成量子点相比,这个新方法也很简便,而且不需要合成复杂的巯基配体。此外,这种新配体修饰的纳米晶溶胶在常温下非常稳定。我们所发展的合成方法也为合成其它配体修饰的半导体纳米材料提供了新途径。
     论文第二部分,我们选择谷胱甘肽(GSH)做为配体水相合成了高品质的CdTe量子点。并没有经过光照等预处理,谷胱甘肽修饰的量子点达到了42%的量子产率。这种量子点具有宽范围的光致发光光谱,可以在510~670nm之间荧光光谱可调,而且产品具有很好的光学稳定性。细胞生存实验表明这种量子点有很好的生物相容性。此外,我们将叶酸连接在量子点表面并进行了癌细胞成像。证明了GSH/CdTe量子点是一个有潜在应用价值的荧光纳米材料。
     论文第三部分,我们研究了水溶液中巯基乙酸修饰的CdTe量子点和柠檬酸修饰的Au纳米粒子之间的相互作用。由于两者之间形成的氢键,它们互相吸引,产生了有效地荧光共振能量转移,导致量子点的荧光被淬灭。而F-离子,一个具有强烈亲核能力的阴离子,与连接CdTe和纳米金的桥氢反应,致使纳米金远离1量子点,量子点的荧光恢复。这样,我们在水相中,构建了一个新的、依靠调节氢键强度组装的荧光共振能量转移探针。
     论文最后一部分,我们用氨基二醇修饰CdTe量子点,用巯基苯硼酸修饰纳米金,构建了QDs-diol-MPBA-AuNPs纳米探针。由于苯基硼酸和二醇之间可以形成可逆的硼酸酯键,使得纳米金有效地靠近量子点,共振能量转移发生,量子点的荧光被淬灭。同时,F~-离子﹑作为硬碱,与硬酸硼原子有效地配位,使中心原子硼的杂化态和复合体的构型都发生了变化,又使纳米金远离了量子点,共振能量转移被打断,量子点的荧光恢复。其它阴离子对探针的检测没有干扰。此外这个探针具有较好的生物相容性,并成功地用于活细胞中氟离子的检测。
Semiconductor nanocrystals, or quantum dots (QDs), have emerged as an importantnew class of materials over the past decade. Compared with organic fluorophores,QDs possess many advantages, such as size-tunable fluorescence emission, largeabsorption across a wide spectral range, narrow emission spectra, high brightness,long-term photostability and single-light source excitation for multi-colored QDs.
     Traditionally, these QDs are synthesized in organic solvents using organometallicprecursors at high temperature. In recent years, water-soluble QDs have gainedincreasing attention because QDs have to be water-soluble for biological and mostlychemical applications. So it is necessary to synthesis high quality water soluble QDs.
     Here, the direct synthesisβ-cyclodextrin (CD) coated water-soluble CdTe QDs byusing a new‘one pot’method is reported. At the artificially designed water-oilinterface using Cd(Ac)2, NaHTe, oleic acid andβ-cyclodextrin as precursors, theobtained CdTe QDs were stabilized byβ-CD, which is different from many previousreports. Compared to the organometallic route to obtain water-soluble QDs, the newstrategy is simple, cost-effective, and only need‘one step’. Compared to the aqueoussynthesis route to obtain water-soluble QDs with thiols as stabilizers, our method isalso simple and requires no necessary to synthesize complicated thiols ligands. Thenew synthetic pathway which is easily handled can probably be expanded tosynthesize other receptor modified QDs.
     In this paper, different sizes of glutathione-capped CdTe (GSH/CdTe) QDs havebeen prepared derectly in aqueous solution. The biocompatible QDs have tunablefluorescence in the range of 510~670nm, and they also have high photoluminescencequantum yield (PLQY) without any post preparative treatment. In addition, folic acidwas covalently conjugated to the GSH/CdTe QDs for imaging of cancer cells,demonstrating their potentially broad application as biolabels.
     In a simple mixture solution of thioglycolic acid modified CdTe QDs and citrate-capped gold nanoparticles (AuNPs), fluorescence resonance energy transfer(FRET) was observed and studied. The steady state photoluminescence of CdTe QDsis quenched in the presence of AuNPs. The results suggest that it was hydrogen bondthat connected CdTe QDs and AuNPs together. More interestingly, the formed FRETcan be specificly broken by fluoride anion (F-) due to its unique and strongnucleophilic character. The results present here construct the hydrogen bond basednano-assemblies for the direct determination of F-in aqueous solution, which is highlysimple and practical.
     Since the affinity of boronic acid for diol is well known, a new FRET nanoprobe ofQDs-diol-MPBA-AuNPs was reported in aqueous solution. 3-amino-1,2-propanediol(diol) is selected to bind carboxyl on the surface of CdTe QDs.Mercaptophenyl-boronic acid(MPBA) is selected to modify AuNPs. The highextinction coefficient of AuNPs and the active boronate esters formed betweenphenylborinic acid and diol facilitate the efficient FRET. Meanwhile, F-anion, astrongly hard lewis base, specificly reacts with boron center and disassembles theAuNPs segment, resulting in the fluorescence recovery of the quenched QDs. Thenew nanoprobe responds well to aqueous F-with high selectivity and sensitivity in thepresence of a higher amount of other anions. In addition, the nanoprobe is low toxicityand effective for the highly selective detection of F~-in live cell.
引文
[1] Michalet X, Pinaud F F, Bentolila L A , et al. Quantum Dots for Live Cells,in Vivo Imaging, and Diagnostics [J]. Science, 2005, 307(28):538-544.
    [2]徐海娥,闫翠娥.水溶性量子点的制备及应用[J].化学进展, 2005, 17(5): 800-808.
    [3] Murray C B, Noms D J, Bawendi M G. Synthesis and characterization of nearlymonodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites[J].J , Am. Chem. Soc., 1993, 115(19):8706-8715.
    [4]Bowen Katari J E, Colvin V L, Alivisatos A P. X-ray Photoelectron Spectroscopyof CdSe Nanocrystals with Applications to Studies of the Nanocrystal Surface [J]. J .Phys. Chem., 1994, 98(15):4109-4117.
    [5]Hines M A, and Sionnest G P.Synthesis and Characterization of StronglyLuminescing ZnS-Capped CdSe Nanocrystals[J]. J. Phys. Chem.,1996, 100(2):468-471.
    [6]Dabbousi B O, Rodriguez-Viejo J, Heine J. R, et al . (CdSe)ZnS Core-ShellQuantum Dots: Synthesis and Characterization of a Size Series of HighlyLuminescent Nanocrystallites[J]. J. Phys. Chem. B, 1997, 101(46):9463-9475.
    [7]Peng X G, Schlamp M C, Alivisatos A P, et al . Epitaxial Growth of HighlyLuminescent CdSe/CdS Core/Shell Nanocrystals with Photostability andElectronic Accessibility [J].J. Am. Chem. Soc.,1997,119(30):7019-7029.
    [8]Talapin D V, Rogach A L, Weller H, et al. Highly Luminescent MonodisperseCdSe and CdSe/ZnS Nanocrystals Synthesized in a HexadecylamineTrioctylphosphine Oxide Trioctylphospine Mixture [J]. Nano Lett., 2001(4),1:207-211.
    [9]Talapin D V, Rogach A L, Weller H, et al. (CdSe)ZnS Core-Shell Quantum Dots:Synthesis and Characterization of a Size Series of Highly LuminescentNanocrystallites [J]. J. Phys. Chem. B, 2001,105(12):2260-2263.
    [10]Peng Z A , Peng X G.Formation of High-Quality CdTe, CdSe, and CdSNanocrystals Using CdO as Precursor [J]. J. Am. Chem. Soc., 2001, 123(1):183-184.
    [11]Qu L H, Peng Z A, Peng X G. Alternative Routes toward High Quality CdSeNanocrystals [J]. Nano Lett, 2001, 1(6):333-337.
    [12]Aldana J, Wang Y A, Peng X G.Photochemical Instability of CdSe NanocrystalsCoated by Hydrophilic Thiols[J].J. Am. Chem. Soc., 2001, 123(36):8844-8850.
    [13]Peng X G. Green Chemical Approaches toward High-Quality SemiconductorNanocrystals [J]. Chemistry- A European Journal, 2002, 8(2):334-339.
    [14] Peter R, Bleuse J L, Adam P. Highly Luminescent CdSe/ZnSeCore/Shell Nanocrystals of Low Size Dispersion[J].Nano Lett., 2002, 2(7):781-784.
    [15]Yu W W, Peng X G. Formation of High-Quality CdS and Other II–VISemiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity ofMonomers [J]. Angew. Chem. Int. Ed., 2002 ,41(13):2368-2371.
    [16]Yen B K H , Stott N E , Bawendi M G , et al. A Continuous-Flow MicrocapillaryReactor for the Preparation of a Size Series of CdSe Nanocrystals[J]. Adv. Mater.,2003,15(21):1858-1862.
    [17]Mekis I, Talapin D V, Kornowski A, et al. One-Pot Synthesis of HighlyLuminescent CdSe/CdS Core-Shell Nanocrystals via Organometallic and“Greener”Chemical Approaches [J].J. Phys. Chem. B, 2003, 107(30):7454-7462.
    [18]Li J J, Andrew W, Guo W Z, et al. Large-Scale Synthesis of Nearly MonodisperseCdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents via Successive IonLayer Adsorption and Reaction[J].J. Am. Chem. Soc., 2003, 125(41): 12567-12575.
    [19]Battaglia D, Li J J, Peng X G ,et al. Colloidal Two-Dimensional Systems: CdSeQuantum Shells and Wells[J]. Angew. Chem. Int. Ed., 2003, 42(41): 5035-5039.
    [20]Bailey R E, Nie S M.Alloyed Semiconductor Quantum Dots: Tuning the OpticalProperties without Changing the Particle Size[J].J. Am. Chem. Soc., 2003,125(23):7100-7106.
    [21]Talapin D V, Mekis I , Weller H ,et al. CdSe/CdS/ZnS and CdSe/ZnSe/ZnSCore Shell Shell Nanocrystals [J].J. Phys. Chem. B, 2004, 108(49):18826-18831.
    [22]Deng Z T, Cao L, Tang F Q, et al. A New Route to Zinc-Blende CdSeNanocrystals: Mechanism and Synthesis[J]. J. Phys. Chem. B., 2005,109(35):16671-16675.
    [23]Wang S H, Jarrett B R, Kauzlarich S M, et al. Core/Shell Quantum Dots withHigh Relaxivity and Photoluminescence for Multimodality Imaging[J]. J. Am. Chem.Soc.,2007, 129(13):3848-3856.
    [24] Blackman B, Battaglia D, Peng X G.Bright and Water-Soluble Near IR-EmittingCdSe/CdTe/ZnSe Type-II/Type-I Nanocrystals, Tuning the Efficiency and Stabilityby Growth[J]. Chem. Mater.,2008, 20(15): 4847-4853.
    [25] Thomas P, Lequeux N, Mahler B, et al. Synthesis of Near-Infrared-Emitting,Water-Soluble CdTeSe/CdZnS Core/Shell Quantum Dots[J].Chem. Mater., 2009,21(8): 1418-1424.
    [26] Smith A M, Nie S M.Bright and Compact Alloyed Quantum Dots with BroadlyTunable Near-Infrared Absorption and Fluorescence Spectra through Mercury CationExchange[J]. J. Am. Chem. Soc., 2011, 133 (1):24-26.
    [27]Chan W C W, Nie S M.Quantum Dot Bioconjugates for UltrasensitiveNonisotopic Detection[J].Science, 1998, 281(25), 2016-2018.
    [28]Mitchell G P, Mirkin C A , Letsinger R L, Programmed Assembly of DNAFunctionalized Quantum Dots [J]. J. Am. Chem. Soc., 1999, 121(35): 8122-8123.
    [29]Mattoussi H, Mauro J M, Goldman E R, et al. Self-Assembly of CdSe ZnSQuantum Dot Bioconjugates Using an Engineered Recombinant Protein[J]. J. Am.Chem. Soc., 2000, 122(49):12142-12150.
    [30]Pathak S, Choi S, et al. Hydroxylated Quantum Dots as Luminescent Probes forin Situ Hybridization [J].J. Am. Chem. Soc., 2001, 123(17): 4103-4104.
    [31]Clapp A R, Medintz I L, Bawendi M G, et al. Fluorescence Resonance EnergyTransfer Between Quantum Dot Donors and Dye-Labeled Protein Acceptors[J].J. Am. Chem. Soc., 2004, 126(1):301-310.
    [32]Uyeda H T, Medintz I L, Mattoussi H J, et al. Synthesis of Compact MultidentateLigands to Prepare Stable Hydrophilic Quantum Dot Fluorophores[J].J.Am. Chem.Soc.,2005, 127(11):3870-3878.
    [33]Charvet N, Reiss P, Roget A, et al. Biotinylated CdSe/ZnSe nanocrystals forspecific fluorescent labeling [J]. J. Mater.Chem., 2004,(17):2638-2642.
    [34]Chen C Y,Cheng C T, et al. Potassium ion recognition by 15-crown-5functionalized CdSe/ZnS quantum dots in H2O[J].Chem. Commun., 2006, 263-265.
    [35]Jiang W, Mardyani S, Fischer H, et al.Design and Characterization of LysineCross-Linked Mercapto-Acid Biocompatible Quantum Dots [J].Chem. Mater.,2006(4),18: 872-878.
    [36]Yong K T, Qian J, Roy I, et al. Quantum Rod Bioconjugates as Targeted Probesfor Confocal and Two-Photon Fluorescence Imaging of Cancer Cells [J]. Nano Lett.,2007,7(3):761-765.
    [37]Jiang W, Singhal A, Zheng J N, et al. Optimizing the Synthesis of Red- toNear-IR-Emitting CdS-Capped CdTexSe1-xAlloyed Quantum Dots for BiomedicalImaging [J].Chem. Mater., 2006, 18(20):4845-4854.
    [38]Wisher A C, Bronstein I , Chechik V.Thiolated PAMAM dendrimer-coatedCdSe/ZnSe nanoparticles as protein transfection agents[J]. Chem. Commun.,2006:1637-1639.
    [39] Wilson R, Spiller D G, Beckett A, et al. Highly Stable Dextran-Coated QuantumDots for Biomolecular Detection and Cellular Imaging[J].Chem. Mater., 2010,22(23):6361-6369.
    [40]Wang Y A, Li J J, Peng X G. Stabilization of Inorganic Nanocrystals by OrganicDendrons[J].J. Am. Chem. Soc., 2002, 124(10): 2293-2298.
    [41]Guo W, Li X, Peng X G.Conjugation Chemistry and Bioapplications ofSemiconductor Box Nanocrystals Prepared via Dendrimer Bridging[J]. Chem. Mater.,2003, 15(16): 3125-3133.
    [42]Guo W, Li J J, Peng X G.Luminescent CdSe/CdS Core/Shell Nanocrystals inDendron Boxes: Superior Chemical, Photochemical and Thermal Stability[J].J. Am. Chem. Soc., 2003, 125(13):3901-3909.
    [43]Bruchez M J, Moronne M, Alivisatos A P, et al. Semiconductor Nanocrystals asFluorescent Biological Labels[J]. Science, 1998, 281(25):2013-2016.
    [44]Williams S C, Parak D J, Alivisatos A P, et al..Synthesis and Properties ofBiocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor QuantumDots[J]. J. Phys. Chem. B, 2001, 105(37): 8861-8871.
    [45] Parak W J, Gerion D, Alivisatos A P. et al.Conjugation of DNA to SilanizedColloidal Semiconductor Nanocrystalline Quantum Dots[J].Chem. Mater., 2002,14(5):2113-2119.
    [46]Gerion D, Parak W J , Alivisatos A P , et al. Sorting Fluorescent Nanocrystalswith DNA [J]. J. Am. Chem. Soc., 2002, 124(24):7070-7074.
    [47]Pinaud F , King D, Weiss S, et al. Bioactivation and Cell Targeting ofSemiconductor CdSe/ZnS Nanocrystals with Phytochelatin-Related Peptides[J].J. Am. Chem. Soc., 2004, 126(19):6115-6123.
    [48]Kim S, Bawendi M G. Oligomeric Ligands for Luminescent and StableNanocrystal Quantum Dots[J].J. Am. Chem. Soc., 2003, 125(48):14652-14653.
    [49]Xie M, Liu H H, Chen P, et al. CdSe/ZnS-labeled carboxymethyl chitosan as abioprobe for live cell imaging[J]. Chem. Commun., 2005:5518-5520.
    [50]Wu X Y, Liu H J, Haley K N, et al. Immunofluorescent labeling of cancer markerHer2 and other cellular targets with semiconductor quantum dots[J]. NatureBiotechnology, 2003, 21(1):41-46.
    [51]Pellegrino T, Manna L, Kudera S,et al. Hydrophobic Nanocrystals Coated withan Amphiphilic Polymer Shell: A General Route to Water Soluble Nanocrystals[J].Nano Lett., 2004 ,4(4):703-707.
    [52]Gao X H, Cui Y Y, Nie S M, et al. In vivo cancer targeting and imaging withsemiconductor quantum dots[J]. Nature Biotechnology, 2004, 22(8): 969-976.
    [53] Hu X G, Gao X H. Silica_Polymer Dual Layer-EncapsulatedQuantum Dots with Remarkable Stability[J]. Acs Nano., 2010, 4(10): 6080-6086.
    [54] Dubertret B, Skourides P, Norris D J, et al. In Vivo Imaging of QuantumDots Encapsulated in Phospholipid Micelles [J]. Science, 2002, 298(29): 1759-1762.
    [55]Fan H Y, Leve E W, Scullin C, et al. Surfactant-Assisted Synthesis ofWater-Soluble and Biocompatible Semiconductor Quantum Dot Micelles[J].NanoLett., 2005, 5(4):645-648.
    [56]Osaki F, Kanamori T, Sando S, et al. A Quantum Dot Conjugated Sugar Ball andIts Cellular Uptake. On the Size Effects of Endocytosis in the Subviral Region[J].J. Am. Chem. Soc., 2004, 126(21): 6520- 6521.
    [57]Jin T, Fujii F, Sakata H, et al. Amphiphilic p-sulfonatocalix[4]arene-coatedCdSe/ZnS quantum dots for the optical detection of the neurotransmitteracetylcholine[J]. Chem. Commun., 2005:4300- 4302.
    [58]Sutherland A J. Quantum dots as luminescent probes in biological systems [J].Current Opinion in Solid State and Materials Science, 2002, 6(4):365-370.
    [59]Rajh T,Micic O I,Nozik A J, et al. Synthesis and characterization ofsurface-modified colloidal cadmium telluride quantum dots [J]. J. Phys. Chem., 1993,97(46):11999-12003.
    [60]Vossmeyer T, Katsikas L ,Weller H.CdS Nanoclusters: Synthesis, Characterization,Size Dependent Oscillator Strength, Temperature Shift of the Excitonic TransitionEnergy, and Reversible Absorbance Shift [J].J. Phys. Chem., 1994, 98(31):7665-7673.
    [61]Rogach A L,Katsikas L,Kornowski A,et al. Synthesis and Characterization ofThiol-Stabilized CdTe Nanocrystals[J].Phys. Chem.1996,100(11),1772-1778.
    [62]Gao M Y , Weller H. et al. Strongly Photoluminescent CdTe Nanocrystals byProper Surface Modification[J]. J. Phys. Chem. B, 1998, 102(43):8360-8363.
    [63]Rogach A L, Kornowski A, Weller H, et al. Synthesis and Characterization of aSize Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals[J].J. Phys .Chem.B, 1999,103(16): 3065-3069.
    [64]Rogach1 A L, Harrison M T, Kershaw S V, et al. Colloidally Prepared CdHgTeand HgTe Quantum Dots with Strong Near-Infrared Luminescence[J].Phys. Stat. Sol.(b), 2001(1), 224, 153-158.
    [65]Gaponik N, Talapin D V, Rogach A L, et al. Thiol-Capping of CdTe Nanocrystals:An Alternative to Organometallic Synthetic Routes[J]. J. Phys. Chem. B, 2002,106(29), 7177-7185.
    [66]Gaponik N, Radtchenko I L, Weller H, et al.Toward Encoding CombinatorialLibraries:charge-driven microencapsulation of semiconctor nanocrystals luminescingin the visible and near IR[J]. Adv. Mater., 2002,14(12):879-882.
    [67]Zhang H, Yang B, Gao M Y, et al. The Influence of Carboxyl Groups on thePhotoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles[J].J. Phys. Chem. B, 2003(1), 107:8-13.
    [68]Zhang H, Wang L, Xiong H et al. Hydrothermal Synthesis for High-Quality CdTeNanocrystals[J]. Adv. Mater., 2003, 15(20):1712-1715.
    [69]Shavel A , Gaponik N, Eychmu1ller A.Efficient UV-Blue PhotoluminescingThiol-Stabilized Water-Soluble Alloyed ZnSe(S) Nanocrystals[J]. J. Phys. Chem. B,2004, 108(19):5905-5908.
    [70]Bao H, Gong Y J, Li Z , Gao M Y.Enhancement Effect of Illumination on thePhotoluminescence of Water-Soluble CdTe Nanocrystals:Toward Highly FluorescentCdTe/CdS Core-Shell Structure[J].Chem. Mater., 2004, 16(20):3853-3859.
    [71]Li J, Hong X, Li D, et al. Mixed ligand system of cysteine and thioglycolic acidassisting in the synthesis of highly luminescent water-soluble CdTe nanorods[J].Chem.Commun., 2004:1740-1741.
    [72] Zhang H, Wang D Y , Mohwald H. Ligand-Selective Aqueous Synthesis ofOne-Dimensional CdTe Nanostructures [J]. Angew. Chem. Int. Ed., 2006(5),45:748-751.
    [73]Zhang H, Wang D Y, Yang B, et al. Manipulation of Aqueous Growth of CdTeNanocrystals To Fabricate Colloidally Stable One-Dimensional Nanostructures [J]. J.Am. Chem. Soc.,2006, 128(31):10171-10180.
    [74]Palaniappan K, Hackney S A , Liu J. Supramolecular control of complexationinduced fluorescence change of water-soluble,β-cyclodextrin-modified CdS quantumdots[J]. Chem Commun.,2004:2704-2705.
    [75]Palaniappan K,Xue C H, Arumugam G, et al. Water-Soluble, CyclodextrinModified CdSe-CdS Core-Shell Structured Quantum Dots[J].Chem. Mater.,2006,18(5):1275-1280.
    [76]Li L, Qian H F , Ren J C Rapid synthesis of highly luminescent CdTenanocrystals in the aqueous phase by microwave irradiation with controllabletemperature [J].Chem. Commun., 2005:528-530.
    [77]Qian H F, Qiu X, Li L, et al. Microwave-Assisted Aqueous Synthesis: A RapidApproach to Prepare Highly Luminescent ZnSe(S) Alloyed Quantum Dots[J]. J. Phys.Chem. B, 2006, 110(18): 9034-9040.
    [78]He Y, Lu H T, Sai L M, et al. Synthesis of CdTe Nanocrystals through ProgramProcess of Microwave Irradiation [J]. J. Phys. Chem. B, 2006, 110(27):13352-13356.
    [79]He Y, Lu H T, Sai L M, et al. Microwave-Assisted Growth and Characterizationof Water-Dispersed CdTe/CdS Core Shell Nanocrystals with HighPhotoluminescence [J]. J. Phys. Chem. B, 2006, 110(27):13370-13374.
    [80]Tang B, Yang F, Lin Y, et al. Synthesis and Characterization ofWavelength-Tunable, Water-Soluble, and Near-Infrared-Emitting CdHgTe Nanorods[J].Chem. Mater., 2007(6), 19:1212-1214.
    [81]He Y, Lu H T, Sai L M, et al. Microwave Synthesis of Water-DispersedCdTe/CdS/ZnS Core-Shell-Shell Quantum Dots with Excellent Photostabilityand Biocompatibility[J]. Adv. Mater., 2008, 20:1-6.
    [82] Zhang Y, Li Y, Yan X Ping. Aqueous Layer-by-Layer Epitaxy of Type-IICdTe/CdSe Quantum Dots with Near-Infrared Fluorescence for BioimagingApplications[J]. small, 2009, 5(2):185-189.
    [83]Jing L H, Yang C H, Qiao R R.Highly Fluorescent CdTe@SiO2 ParticlesPrepared via Reverse Microemulsion Method[J]. Chem. Mater., 2010, 22(2):420-427.
    [84]Tian Y, Newton T, Fendler J H, et al. Coupled Composite CdS CdSe andCore Shell Types of (CdS)CdSe and (CdSe)CdS Nanoparticles [J]. J.Phy.Chem.,1996, 100(21):8927-8939.
    [85]Correa-Duarate M A, Giersig M, et al. Stabilization of CdS semiconductornanoparticles against photodegradation by a silica coating procedure[J].Chem.Phys.lett.,1998,286:497-501.
    [86]Rogach A L, Nattatri D, Kotov N A, et al.“Raisin Bun”-Type Composite Spheresof Silica and Semiconductor Nanocrystals [J].Chem. Mater., 2000, 12(9):2676-2685.
    [87]Wang Y ,Tang Z, Koto N A. Multicolor Luminescence Patterning byPhotoactivation of Semiconductor Nanoparticle Films [J]. J. Am. Chem. Soc., 2003,125(10):2830-2831.
    [88]Wang Y,Tang Z Y, Correa-Duarte M A, et al. Mechanism of StrongLuminescence Photoactivation of Citrate-Stabilized Water-Soluble Nanoparticles withCdSe Cores[J].J. Phys. Chem. B, 2004, 108(40):15461-15469.
    [89]Gaponik N, Talapin D V, Weller H.Efficient Phase Transfer of LuminescentThiol-Capped Nanocrystals: From Water to Nonpolar Organic Solvents [J].NanoLett., 2002, 2(8):803-806.
    [90]Tsay J M, Pflughoefft M, Weiss S. Hybrid Approach to the Synthesis of HighlyLuminescent CdTe/ZnS and CdHgTe/ZnS Nanocrystals [J]. J. Am. Chem. Soc., 2004,126(7):1926-1927.
    [91]Chen Y F ,Rosenzweig Z. Luminescent CdS Quantum Dots as Selective IonProbes[J].Anal. Chem.,2002, 74(19):5132-5138.
    [92]Kerim M. Gattás-Asfura, Roger M. L. Peptide-coated CdS quantum dots for theoptical detection of copper(II) and silver(I)[J].Chem. Commun., 2003:2684-2685.
    [93]Liang J G, Ai X P, He Z K, Pang D W.Functionalized CdSe quantum dots asselective silver ion chemodosimeter[J]. Analyst , 2004,129:619-622.
    [94]Tang B, Niu J Y, et al. Highly luminescent water-soluble CdTe nanowires asfluorescent probe to detect copper(II) [J].Chem. Commun., 2005, 4184-4186.
    [95] Lin S Y, Liu S W, Lin C M , Chen C H. Recognition of Potassium Ion in Waterby 15-Crown-5 Functionalized Gold Nanoparticles [J].Anal. Chem., 2002, 74(2),330-335.
    [96]Emril MA, Zheng Y G, et al. Ultrasensitive Pb2+Detection by GlutathioneCapped Quantum Dots[J]. Anal. Chem., 2007, 79(24):9452-9458.
    [97]Jin W J, Jos M C et al. Surface-modified CdSe quantum dots as luminescentprobes for cyanide determination[J].Analytica Chimica Acta, 2004,522: 1-8.
    [98]Jin W J, Mary′a T. F,et al. Photoactivated luminescent CdSe quantum dots assensitive cyanide probes in aqueous solutions[J].Chem. Commun., 2005, 883-885.
    [99] Angeles T V , Emily I S, et al. Selective turn-on fluorescence detection ofcyanide in water using hydrophobic CdSe quantum dots [J].Chem. Commun.,2008:1998-2000.
    [100]Shang L, Zhang L H,et al. Turn-on fluorescent cyanide sensor based on copperion-modified CdTe quantum dots[J]. Analyst, 2009, 134:107-113.
    [101]Li H B, Han C P, Zhang L, et al. Synthesis of cadmium selenide quantum dotsmodified with thiourea type ligands as fluorescent probes for iodide ions[J]. J. Mater.Chem., 2008, 18:4543-4548.
    [102]Ray C. Mulrooney, N S, et al. An‘‘off–on’’sensor for fluoride usingluminescent CdSe/ZnS quantum dots[J]. Chem. Commun., 2009, 686-688.
    [103]Clapp A R, Medintz, I L Mattoussi H.Fluorescence Resonance Energy TransferBetween Quantum Dot Donors and Dye-Labeled Protein Acceptors[J].J. Am. Chem.Soc., 2004, 126(1), 301-310.
    [104]刘玲芝,刘志洪,何治柯,蔡汝秀.量子点:FRET的新发展[J].化学进展,2006,18(2/3): 337-343.
    [105]Dale M W, Lori L C, Jaemyeong J, Alan V O. CdSe ZnS Quantum Dots asResonance Energy Transfer Donors in a Model Protein Protein Binding Assay [J].Nano Lett., 2001,1(9): 469-474.
    [106]Shi L F, Vania D P, Nitsa R, Zeev R. Synthesis and Application of QuantumDots FRET-Based Protease Sensors [J].J. Am. Chem. Soc., 2006, 128(32):10378-10379.
    [107]Peng H, Zhang L J, Kj llman T H, Soeller C,Travas S J.DNA HybridizationDetection with Blue Luminescent Quantum Dots and Dye-Labeled Single-StrandedDNA [J].J. Am. Chem. Soc., 2007, 129(11):3048-3049.
    [108]Lu H C, Oliver S, Ulrike W, Christof M N. Self-Assembled Donor ComprisingQuantum Dots and Fluorescent Proteins for Long-Range Fluorescence ResonanceEnergy Transfer [J].J. Am. Chem. Soc,. 2008, 130(14): 4815-4827.
    [109]Elghanian R, Storhoff J J, Music R C, Letsinger R L,C Mirkin A.SelectiveColorimetric Detection of Polynucleotides Based on the Distance-Dependent OpticalProperties of Gold Nanoparticles Science, 1997, 277(8):1078-1081.
    [110]Thanh N T K , Rosenzweig Z. Development of an Aggregation-BasedImmunoassay for Anti-Protein A Using Gold Nanoparticles [J]. Anal. Chem.,2002,74(7): 1624-1628.
    [111]Dubertret B, Calame M, Libchaber A J. Single-mismatch detection usinggold-quenched fluorescent oligonucleotides [J].Nature Biotech., 2001, 19(4):365-370.
    [112]Chen S J, Chang H T. Nile Red-Adsorbed Gold Nanoparticles for SelectiveDetermination of Thiols Based on Energy Transfer and Aggregation[J]. Anal. Chem.,2004, 76(13):3727-3734.
    [113]Huang C C, Chang H T. Selective Gold-Nanoparticle-Based“Turn-On”Fluorescent Sensors for Detection of Mercury(II) in Aqueous Solution[J]. Anal.Chem., 2006, 78(24): 8332-8338.
    [114]Eunkeu O, Mi Y H, Dohoon L, et al. Inhibition Assay of Biomolecules based onFluorescence Resonance Energy Transfer (FRET) between Quantum Dots and GoldNanoparticles[J]. J. Am. Chem. Soc., 2005, 127(10): 3270-3271.
    [115]Dyadyusha L,Yin H, Jaiswal S, et al. Quenching of CdSe quantum dot emission,a new approach for Biosensing[J].Chem. Commun., 2005, 3201-3203.
    [1] Bruchez M J, Moronne M, Alivisatos A P, et al. Semiconductor Nanocrystals asFluorescent Biological Labels[J]. Science, 1998, 281(25):2013-2016.
    [2]Chan W C W, Nie S M.Quantum Dot Bioconjugates for Ultrasensitive NonisotopicDetection[J]. Science, 1998, 281(25), 2016-2018.
    [3]Dubertret B, Skourides P, Norris D J, et al. In Vivo Imaging of QuantumDots Encapsulated in Phospholipid Micelles [J]. Science, 2002, 298(29): 1759-1762.
    [4]Selvan S T, Tan T T, Ying J Y.Robust. Non-Cytotoxic, Silica-Coated CdSeQuantum Dots with Efficient Photoluminescence [J]. Adv.Mater.,2005, 17(13):1620-1625.
    [5]D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya, J. Y. Ying.Silica-Coated Nanocomposites of Magnetic Nanoparticles and Quantum Dots[J].J.Am. Chem. Soc.,2005, 127(14):4990-4991.
    [6]Wu X Y, Liu H J, Haley K N, et al. Immunofluorescent labeling of cancer markerHer2 and other cellular targets with semiconductor quantum dots[J]. NatureBiotechnology, 2003, 21(1):41-46.
    [7]Gao X H, Cui Y Y, Nie S M, et al. In vivo cancer targeting and imaging withsemiconductor quantum dots[J]. Nature Biotechnology, 2004, 22(8): 969-976.
    [8] Larson D R, Zipfel W R,Williams R M, Clark S W, Bruchez M P, Wise F W, WebbW W. Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo [J].Science, 2003, 300(5624):1434-1436.
    [9] J. K. Jaiswal, H. Mattoussi, J. M. Mauro, S. M. Simon. Long-term multiple colorimaging of live cells using quantum dot bioconjugates[J]. Nat. Biotechnol., 2003,21(1):47-51.
    [10]S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A.Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor,L. H. Cohn, M. G. Bawendi, J. V.Frangioni.Near-infrared fluorescent type II quantum dots for sentinel lymph nodemapping[J]. Nat. Biotechnol.,2004, 22(1):93-97.
    [11]R. Xie, U. Kolb, J. Li, T. Basche, A. Mews. Synthesis and Characterization ofHighly Luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals [J]. J.Am. Chem. Soc., 2005, 127(20):7480-7488.
    [12]Talapin D V, Rogach A L, Mekis I, Haubold S, Kornowski A M, Weller H.Synthesis and surface modification of amino-stabilized CdSe, CdTe and InPnanocrystals[J].Colloids Surf. A, 2002, 202:145-154.
    [13]X. Zhong, M. Han, Z. Dong, T. J. White, W. Knoll. Composition-TunableZnxCd1-xSe Nanocrystals with High Luminescence and Stability[J].J. Am. Chem. Soc.2003, 125(28):8589-8594.
    [14] Gaponik N, Talapin D V, Rogach A L, et al. Thiol-Capping of CdTe Nanocrystals:An Alternative to Organometallic Synthetic Routes[J]. J. Phys. Chem. B, 2002,106(29), 7177-7185.
    [15] Cai W, Shin D, Chen K, Gheysens O,et al.Peptide-Labeled Near-InfraredQuantum Dots for Imaging Tumor Vasculature in Living Subjects[J]. Nano Lett.,2006,6(4): 669-676.
    [16] Sun X L, Cui W, Haller C, Chaikof E L. Site-Specific Multivalent CarbohydrateLabeling of Quantum Dots and Magnetic Beads[J].ChemBioChem 2004,5(11):1593-1596.
    [17]Chen Y, Ji T, Rosenzweig Z. Synthesis of Glyconanospheres ContainingLuminescent CdSe ZnS Quantum Dots [J]. Nano. Lett., 2003, 3(5): 581-584.
    [18]So M K, Xu C, Loening A M, Gambhir S S, Rao J. Self-illuminating quantumdot conjugates for in vivo imaging [J].Nat. Biotechnol.,2006, 24(3):339-343.
    [19] Chakrabarti, R.; Klibanov, A. M. Nanocrystals Modified with Peptide NucleicAcids (PNAs) for Selective Self-Assembly and DNA Detection[J]. J. Am. Chem.Soc. 2003, 125(41), 12531-12540.
    [20] Chen Y F ,Rosenzweig Z. Luminescent CdS Quantum Dots as Selective IonProbes[J]. Anal. Chem.,2002, 74(19):5132-5138.
    [21]Chen C Y,Cheng C T, et al. Potassium ion recognition by 15-crown-5functionalized CdSe/ZnS quantum dots in H2O[J].Chem. Commun., 2006, 263-265.
    [22]Emril MA, Zheng Y G, et al. Ultrasensitive Pb2+Detection by GlutathioneCapped Quantum Dots[J]. Anal. Chem., 2007, 79(24):9452-9458.
    [23] Jin W J, Mary′a T. F,et al. Photoactivated luminescent CdSe quantum dots assensitive cyanide probes in aqueous solutions[J].Chem. Commun., 2005, 883-885.
    [24]Jin T, Fujii F, Sakata H, et al. Amphiphilic p-sulfonatocalix[4]arene-coatedCdSe/ZnS quantum dots for the optical detection of the neurotransmitteracetylcholine[J]. Chem. Commun., 2005:4300-4302.
    [25]Ge J P, Xu S, Zhuang J, et al. Synthesis of CdSe, ZnSe, and ZnxCd1-xSeNanocrystals and Their Silica Sheathed Core/Shell Structures [J].Inorganic Chemistry,2006,45(13):4922-4927.
    [26]Wang Y,Wong J F, Teng X W, et al.“Pulling”Nanoparticles into Water: PhaseTransfer of Oleic Acid Stabilized Monodisperse Nanoparticles into AqueousSolutions ofα-Cyclodextrin[J]. Nano Lett. 2003, 3(11), 1555-1559.
    [27] Li H B, Han C P, Sonochemical Synthesis of Cyclodextrin-Coated QuantumDots for Optical Detection of Pollutant Phenols in Water[J]. Chem. Mater., 2008,20(19): 6053-6059.
    [28] Palaniappan K, Hackney S A , Liu J. Supramolecular control of complexationinduced fluorescence change of water-soluble,β-cyclodextrin-modified CdS quantumdots[J]. Chem Commun.,2004:2704-2705.
    [29]Palaniappan K,Xue C H, Arumugam G, et al. Water-Soluble, CyclodextrinModified CdSe-CdS Core-Shell Structured Quantum Dots[J].Chem. Mater.,2006,18(5):1275-1280.
    [30] Velapoldi R A, T nnesen H H. Corrected emission spectra and quantum yieldsfor a series of fluorescent compounds in the visible spectral region [J].J. Fluoresc.,2004,14(4):465-472.
    [31]Tang B, Yang F, Lin Y, et al. Synthesis and Characterization of WavelengthTunable, Water-Soluble, and Near-Infrared-Emitting CdHgTe Nanorods[J].Chem.Mater., 2007(6), 19:1212-1214.
    [32] Magde D, Rojas G E,Seybold P. Solvent Dependence of the FluorescenceLifetimes of Xanthene Dyes[J].Photochem. Photobiol., 1999,70(5):737-744.
    [33]左超,水溶性量子点和磁性纳米粒子的制备[D].武汉:武汉大学,2004.
    [34] Spencer J N, He Q, Ke X M, Wu Z Q, Fetter E. Complexation of InorganicAnions and Small Organic Molecules with Alpha-Cyclodextrin in Water[J].J. Solut.Chem. 1998, 27(11), 1009-1019.
    [1] Medintz I L, Uyeda HT, Goldman E R, Mattoussi H. Quantum dot bioconjugatesfor imaging, labelling and sensing[J].Nat. Mater., 2005,4:435-446.
    [2] Michalet X, Pinaud F F, Bentolila L A , et al. Quantum Dots for Live Cells,in Vivo Imaging, and Diagnostics [J]. Science, 2005, 307(28):538-544.
    [3]Chan W C W, Nie S M.Quantum Dot Bioconjugates for Ultrasensitive NonisotopicDetection[J].Science, 1998, 281(25), 2016-2018.
    [4]Han M, Gao X H, Su J Z, Nie S M. Quantum-dot-tagged microbeads formultiplexed optical coding of biomolecules [J]. Nat. Biotechnol., 2001,19 () 631-635.
    [5]Murray C B, Noms D J, Bawendi M G. Synthesis and characterization of nearlymonodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites[J].J , Am. Chem. Soc., 1993, 115(19):8706-8715.
    [6]Peng Z A , Peng X G.Formation of High-Quality CdTe, CdSe, and CdSNanocrystals Using CdO as Precursor [J]. J. Am. Chem. Soc., 2001, 123(1):183-184.
    [7] Clapp A R, Medintz I L, Fisher B R, et al. Can Luminescent Quantum Dots BeEfficient Energy Acceptors with Organic Dye Donors? [J]. J. Am. Chem. Soc.,2005,127(4): 1242-1250.
    [8]Jeong S, Achermann M, Nanda J,et al. Effect of the Thiol Thiolate Equilibriumon the Photophysical Properties of Aqueous CdSe/ZnS Nanocrystal Quantum Dots[J].J. Am. Chem. Soc., 2005,127(29):10126-10127.
    [9]Rogach A L,Katsikas L,Kornowski A,et al. Synthesis and Characterization ofThiol-Stabilized CdTe Nanocrystals[J].Phys. Chem.1996,100(11),1772-1778.
    [10]Gaponik N, Talapin D V, Rogach A L, et al. Thiol-Capping of CdTe Nanocrystals:An Alternative to Organometallic Synthetic Routes[J]. J. Phys. Chem. B, 2002,106(29), 7177-7185.
    [11]Bao H, Gong Y J, Li Z , Gao M Y.Enhancement Effect of Illumination on thePhotoluminescence of Water-Soluble CdTe Nanocrystals:Toward Highly FluorescentCdTe/CdS Core-Shell Structure[J].Chem. Mater., 2004, 16(20):3853-3859.
    [12]Zhang H, Yang B, Gao M Y, et al. The Influence of Carboxyl Groups on thePhotoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles[J].J. Phys. Chem. B, 2003(1), 107:8-13.
    [13]Y. F. Liu, J.S.Yu, Selective synthesis of CdTe and high luminescence CdTe/CdSquantum dots:The effect of ligands[J]. Journal of Colloid and Interface Science,2009,333:690-698.
    [14]Rogach A , Kershaw S V , Burt M , et al. Colloidally Prepared HgTeNanocrystals with Strong Room-Temperature Infrared Luminescence[J]. Adv.Mater., 1999,11(7):552-555.
    [15]Zheng Y G, Gao S J, Ying J Y. Synthesis and Cell-Imaging Applications ofGlutathione-Capped CdTe Quantum Dots [J].Adv. Mater., 2007,19: 376-380.
    [16] Velapoldi R A, T nnesen H H. Corrected emission spectra and quantum yieldsfor a series of fluorescent compounds in the visible spectral region [J].J. Fluoresc.,2004,14(4):465-472.
    [17]Tang B, Yang F, Lin Y, et al. Synthesis and Characterization of WavelengthTunable, Water-Soluble, and Near-Infrared-Emitting CdHgTe Nanorods[J].Chem.Mater., 2007(6), 19:1212-1214.
    [18] Magde D, Rojas G E,Seybold P. Solvent Dependence of the FluorescenceLifetimes of Xanthene Dyes[J].Photochem. Photobiol., 1999,70(5):737-744.
    [19]Talapin D V, Rogach A L, Shevchenko E V, et al. Dynamic Distribution ofGrowth Rates within the Ensembles of Colloidal II-VI and III-V SemiconductorNanocrystals as a Factor Governing Their Photoluminescence Efficiency [J]. J. Am.Chem. Soc. 2002,124(20):5782-5790.
    [20]Qian H F, Dong C Q, Weng J F , Ren J C, Facile One-Pot Synthesis ofLuminescent,Water-Soluble, and Biocompatible Glutathione-Coated CdTeNanocrystals[J]. Small, 2006,2(6):747-751.
    [21]Yu W W, Qu L H, Guo W Z, Peng X G. Experimental Determination of theExtinction Coefficient of CdTe, CdSe, and CdS Nanocrystals[J].Chem. Mater.,2003,15(14) 2854-2860.
    [22]Gaponik N, Talapin D V, Weller H.Efficient Phase Transfer of LuminescentThiol-Capped Nanocrystals: From Water to Nonpolar Organic Solvents [J].NanoLett., 2002, 2(8):803-806.
    [23]Li L, Qian H F , Ren J C Rapid synthesis of highly luminescent CdTenanocrystals in the aqueous phase by microwave irradiation with controllabletemperature [J].Chem. Commun., 2005:528-530.
    [24] Hoshino A, Fujioka K, Oku T, et al. Physicochemical Properties and CellularToxicity of Nanocrystal Quantum Dots Depend on Their Surface Modification[J].Nano Lett., 2004, 4 (11): 2163-2169.
    [25] Tan S J, Jana N R, Gao S J, et al.Surface-Ligand-Dependent Cellular Interaction,Subcellular Localization, and Cytotoxicity of Polymer-Coated Quantum Dots[J].Chem. Mater., 2010,22(7):2239-2247.
    [26]Derfus A M, Chan W C W, Bhatia S N.Probing the Cytotoxicity ofSemiconductor Quantum Dots[J].Nano Lett., 2004,4(1):11-18.
    [27]Yuan J P , Guo W W, Yin J Y , Wang E K. Glutathione-capped CdTe quantumdots for the sensitive detection of glucose[J]. Talanta, 2009,77(5):1858-1863.
    [28]Weng J F, Song X T , Li L, et al.Highly luminescent CdTe quantum dots preparedin aqueous phase as an alternative fluorescent probe for cell imaging[J].Talanta,2006, 70(2): 397-402.
    [29] Smith A M , Duan H , Rhyner M N , Ruan G , Nie S M. A systematicexamination of surface coatings on the optical and chemical properties ofsemiconductor quantum dots[J].Phys. Chem. Chem. Phys., 2006,8:3895-3903.
    [30]Bharali D J , Lucey D W, Jayakumar H , et al. Folate-Receptor-MediatedDelivery of InP Quantum Dots for Bioimaging Using Confocal and Two-PhotonMicroscopy [J]. J. Am.Chem. Soc., 2005,127(32) 11364-11371.
    [31] Zhang Z H , Jia J, Lai Y Q , et al. Conjugating folic acid to gold nanoparticlesthrough glutathione for targeting and detecting cancer cells[J]. Bioorganic &Medicinal Chemistry, 2010,18:5528-5534.
    [1] Chan W C W, Maxwell D J , Gao X H, et al. Luminescent quantum dots formultiplexed biological detection and imaging [J].Curr. Opin. Biotech. 2002, 13:40-46.
    [2]Chen Y F ,Rosenzweig Z. Luminescent CdS Quantum Dots as Selective IonProbes[J]. Anal. Chem.,2002, 74(19):5132-5138.
    [3]Liang J G, Ai X P, He Z K, Pang D W.Functionalized CdSe quantum dots asselective silver ion chemodosimeter[J]. Analyst , 2004,129:619-622.
    [4]Tang B, Niu J Y, et al. Highly luminescent water-soluble CdTe nanowires asfluorescent probe to detect copper(II) [J].Chem. Commun., 2005, 4184-4186.
    [5]Emril MA, Zheng Y G, et al. Ultrasensitive Pb2+Detection by Glutathione CappedQuantum Dots[J]. Anal. Chem., 2007, 79(24):9452-9458.
    [6]Jin W J, Mary′a T. F,et al. Photoactivated luminescent CdSe quantum dots assensitive cyanide probes in aqueous solutions[J].Chem. Commun., 2005, 883-885.
    [7]Li H B, Han C P, Zhang L, et al. Synthesis of cadmium selenide quantum dotsmodified with thiourea type ligands as fluorescent probes for iodide ions[J]. J. Mater.Chem., 2008, 18:4543-4548.
    [8]Mulrooney R C, Singh N, Kaur N, Callan J F. An‘‘off–on’’sensor for fluorideusing luminescent CdSe/ZnS quantum dots[J].Chem. Commun., 2009, 686-688.
    [9]Elghanian R, Storhoff J J, Music R C, Letsinger R L,C Mirkin A.SelectiveColorimetric Detection of Polynucleotides Based on the Distance-Dependent OpticalProperties of Gold Nanoparticles [J].Science, 1997, 277(8):1078-1081.
    [10]Thanh N T K , Rosenzweig Z. Development of an Aggregation-BasedImmunoassay for Anti-Protein A Using Gold Nanoparticles [J]. Anal. Chem.,2002,74(7): 1624-1628.
    [11]Link S, El-Sayed M A.Spectral Properties and Relaxation Dynamics of SurfacePlasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods[J].J. Phys.Chem. B., 1999, 103(40):8410-8426.
    [12]Sutherland A J. Quantum dots as luminescent probes in biological systems [J].Current Opinion in Solid State and Materials Science, 2002, 6(4):365-370.
    [13]Eunkeu O, Mi Y H, Dohoon L, et al. Inhibition Assay of Biomolecules based onFluorescence Resonance Energy Transfer (FRET) between Quantum Dots and GoldNanoparticles[J]. J. Am. Chem. Soc., 2005, 127(10): 3270-3271.
    [14] B.Tang, L. H.Cao, K. H.Xu, et al.L. A New Nanobiosensor for Glucose withHigh Sensitivity and Selectivity in Serum Based on Fluorescence Resonance EnergyTransfer (FRET) between CdTe Quantum Dots and Au Nanoparticles[J].Chem. Eur. J.2008, 14:3637-3644.
    [15]Dyadyusha L,Yin H, Jaiswal S, et al. Quenching of CdSe quantum dot emission, anew approach for Biosensing[J].Chem. Commun., 2005, 3201-3203.
    [16]Wargnier R, Baranov A W, Maslow V G,et al. Energy Transfer in AqueousSolutions of Oppositely Charged CdSe/ZnS Core/Shell Quantum Dots and inQuantum Dot Nanogold Assemblies [J].Nano Lett. 2004, 4(3):451-457.
    [17] Tang J, Birkedal H, McFarland E W,Stucky G D. Self-assembly of CdSe/CdSquantum dots by hydrogen bonding on Au surfaces for photoreception[J].Chem.Commun.,2003,2278-2279.
    [18] Pons T, Medintz I L, Sapsford K E, et al. On the Quenching of SemiconductorQuantum Dot Photoluminescence by Proximal Gold Nanoparticles[J].Nano Lett.,2007,7(10):3157-3164.
    [19] Yamaguchi S, Akiyama S , Tamao K. Colorimetric Fluoride Ion Sensing byBoron-Containingπ-Electron Systems [J]. J. Am. Chem. Soc., 2001, 123(46):11372-11375.
    [20]Cho E J, Ryu B J, Lee Y J, Nam K C. Visible Colorimetric Fluoride Ion Sensors[J].Org. Lett. 2005, 7(13):2607-2609.
    [21]Lin Z H, Ou S J, Duan C Y,et al. Naked-eye detection of fluoride ion in water: aremarkably selective easy-to-prepare test paper[J].Chem.Commun. 2006(6):624-626.
    [22]Tang B, Yang F, Lin Y, et al. Synthesis and Characterization of WavelengthTunable, Water-Soluble, and Near-Infrared-Emitting CdHgTe Nanorods [J].Chem.Mater., 2007(6), 19:1212-1214.
    [23]Yu W W, Qu L H, Guo W Z, Peng X G. Experimental Determination of theExtinction Coefficient of CdTe, CdSe, and CdS Nanocrystals[J].Chem. Mater.2003,15(14), 2854-2860.
    [24]Frens G. Controlled nucleation for the regulation of the particle size inmonodisperse gold solution [J]. Nat. Phys. Sci., 1973, 241(105): 20-22.
    [25]Chen S J, Chang H T. Nile Red-Adsorbed Gold Nanoparticles for SelectiveDetermination of Thiols Based on Energy Transfer and Aggregation[J]. Anal. Chem.,2004, 76(13):3727-3734.
    [26]Gaponik N, Talapin D V, Weller H.Efficient Phase Transfer of LuminescentThiol-Capped Nanocrystals: From Water to Nonpolar Organic Solvents [J].NanoLett., 2002, 2(8):803-806.
    [27] Lakowicz J R. Principles of Fluorescence Spectroscopy[M]. 2nd ed., NewYork:Plenum Press, 1999:237.
    [28]Zhang H, Yang B, Gao M Y, et al. The Influence of Carboxyl Groups on thePhotoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles[J].J. Phys. Chem. B, 2003(1):107:8-13.
    [1] Frisch M J, Trucks G W,Schlegel H B,et al. Gaussian03[M]. revision B.03;Gaussian, Inc.: Wallingford, CT, 2004.
    [2]Bartolottiand L J,Fluchick, K. Reviews in Computational Chemistry[M].NewYork:Lipkowitz, K. B., Boyd, B. D., Eds.; VCH,1996:187-216.
    [3] Becke A D. Density-functional thermochemistry. III. The role of exactexchange[J].J. Chem. Phys.,1993, 98(7):5648-5652.
    [4] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energyformula into a functional of the electron density[J].Phys. Rev. B,1988, 37:785-789.
    [5]Wiberg K. Application of the pople-santry-segal CNDO method to thecyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane[J]. Tetrahedron,,1968,24(3):1083-1096.
    [6] Foster J P, Weinhold F. Natural hybrid orbitals [J]. J. Am. Chem. Soc.,1980,102(24):7211-7218.
    [1]McQuaker N R,Gurney M. Determination of total fluoride in soil and vegetationusing an alkali fusion-selective ion electrode technique [J].Anal. Chem.,1977, 49(1):53-56.
    [2]Hawkings R C,Corriveau L P V,Kushneriuk S A,Wong P Y. Dynamic response ofthe fluoride ion-selective electrode [J]. Anal. Chim. Acta 1978, 102:61-83.
    [3]Cho E J,Ryu B J, Lee Y J,Nam K C. Visible Colorimetric Fluoride Ion Sensors[J].Org. Lett., 2005, 7(13) :2607-2609.
    [4]Lee M H, Agou T, Kobayashi J, et al. Fluoride ion complexation by a cationicborane in aqueous solution [J].Chem. Commun. 2007(11) :1133-1135.
    [5]Chen Y F ,Rosenzweig Z. Luminescent CdS Quantum Dots as Selective IonProbes[J]. Anal. Chem.,2002, 74(19):5132-5138.
    [6]Liang J G, Ai X P, He Z K, Pang D W.Functionalized CdSe quantum dots asselective silver ion chemodosimeter[J]. Analyst , 2004,129:619-622.
    [7]Emril MA, Zheng Y G, et al. Ultrasensitive Pb2+Detection by Glutathione CappedQuantum Dots[J]. Anal. Chem., 2007, 79(24):9452-9458.
    [8]Yuan J P,Guo W W,Wang E K. Utilizing a CdTe Quantum Dots-Enzyme HybridSystem for the Determination of Both Phenolic Compounds and HydrogenPeroxide[J]. Anal. Chem.,2008, 80(4):1141-1145.
    [9]Cordes D B,Gamsey S,Singaram B. Fluorescent Quantum Dots with Boronic AcidSubstituted Viologens To Sense Glucose in Aqueous Solution[J]. Angew. Chem. Int.Ed. 2006, 45(23): 3829-3832.
    [10]Ji X, Zheng J, Xu J, et al. (CdSe)ZnS Quantum Dots and OrganophosphorusHydrolase Bioconjugate as Biosensors for Detection of Paraoxon [J].J. Phys. Chem.B,2005, 109(9):3793-3799.
    [11]Jin W J, Mary′a T. F,et al. Photoactivated luminescent CdSe quantum dots assensitive cyanide probes in aqueous solutions[J].Chem. Commun., 2005, 883-885.
    [12]Li H B, Han C P, Zhang L, et al. Synthesis of cadmium selenide quantum dotsmodified with thiourea type ligands as fluorescent probes for iodide ions[J]. J. Mater.Chem., 2008, 18:4543-4548.
    [13]Peng H, Zhang L J, Kj llman T H, Soeller C,Travas S J.DNA HybridizationDetection with Blue Luminescent Quantum Dots and Dye-Labeled Single-StrandedDNA [J].J. Am. Chem. Soc., 2007, 129(11):3048-3049.
    [14] Shi L,Rosenzweig N,Rosenzweig Z. Luminescent Quantum Dots FluorescenceResonance Energy Transfer-Based Probes for Enzymatic Activity and EnzymeInhibitors [J]. Anal. Chem., 2007, 79(1):208-214.
    [15]Shi L F, Vania D P, Nitsa R, Zeev R. Synthesis and Application of Quantum DotsFRET-Based Protease Sensors [J].J. Am. Chem. Soc., 2006, 128(32): 10378-10379.
    [16]Zhang C Y, Yeh H C,Kuroki M T,Wang T H. Single-quantum-dot-based DNAnanosensor [J].Nat. Mater., 2005, 4(11):826-831.
    [17]Chen S J, Chang H T. Nile Red-Adsorbed Gold Nanoparticles for SelectiveDetermination of Thiols Based on Energy Transfer and Aggregation[J]. Anal. Chem.,2004, 76(13):3727-3734.
    [18]Wargnier R, Baranov A W, Maslow V G,et al. Energy Transfer in AqueousSolutions of Oppositely Charged CdSe/ZnS Core/Shell Quantum Dots and inQuantum Dot-Nanogold Assemblies [J]. Nano Lett. 2004, 4(3):451- 457.
    [19]Tang B, Zhang N,Chen Z Z,et al. Probing Hydroxyl Radicals and Their Imagingin Living Cells by Use of FAM–DNA–Au Nanoparticles[J].Chem. Eur. J.,2008,14:522-528.
    [20]Eunkeu O, Mi Y H, Dohoon L, et al. Inhibition Assay of Biomolecules based onFluorescence Resonance Energy Transfer (FRET) between Quantum Dots and GoldNanoparticles[J]. J. Am. Chem. Soc., 2005, 127(10): 3270-3271.
    [21] B.Tang, L. H.Cao, K. H.Xu, et al.L. A New Nanobiosensor for Glucose withHigh Sensitivity and Selectivity in Serum Based on Fluorescence Resonance EnergyTransfer (FRET) between CdTe Quantum Dots and Au Nanoparticles[J].Chem. Eur. J.2008, 14:3637-3644.
    [22]Dyadyusha L,Yin H, Jaiswal S, et al. Quenching of CdSe quantum dot emission, anew approach for Biosensing[J].Chem. Commun., 2005, 3201-3203.
    [23]Frens G. Controlled nucleation for the regulation of the particle size inmonodisperse gold solution [J]. Nat. Phys. Sci., 1973, 241(105): 20-22.
    [24]Yu W W, Qu L H, Guo W Z, Peng X G. Experimental Determination of theExtinction Coefficient of CdTe, CdSe, and CdS Nanocrystals[J].Chem. Mater.2003,15(14), 2854-2860.
    [25]Arimori S, Ward C J, James T D. A D-glucose selective fluorescent assay[J].Tetrahedron Lett., 2002, 43(2):303-305.
    [26]Springsteen G, Wang B H. Alizarin Red S. as a general optical reporter forstudying the binding of boronic acids with carbohydrates[J].Chem. Commun.2001(17): 1608-1609.
    [27] Lakowicz J R. Principles of Fluorescence Spectroscopy[M]. 2nd ed., NewYork:Plenum Press, 1999:237.
    [28] Koskela S J M, Fylesb T M, James T D. A ditopic fluorescent sensor forpotassium fluoride[J]. Chem. Commun., 2005, 945-947.
    [29]Badugua R, Lakowicz J R, Geddes C D. A wavelength–ratiometricfluoride-sensitive probe based on the quinolinium nucleus and boronic acid moiety[J].Sensors and Actuators B, 2005, 104:103-110.
    [30]Lorand J P, Edwards J O. Polyol Complexes and Structure of theBenzeneboronate Ion [J]. J. Org. Chem., 1959, 24:769-774.
    [31] Hoshino A, Fujioka K, Oku T, et al. Physicochemical Properties and CellularToxicity of Nanocrystal Quantum Dots Depend on Their Surface Modification [J].Nano Lett., 2004, 4(11):2163-2169.
    [32] Tan S J, Jana N R, Gao S J, Patra P K, Ying J Y. Surface-Ligand-DependentCellular Interaction, Subcellular Localization, and Cytotoxicity of Polymer-CoatedQuantum Dots[J]. Chem. Mater., 2010,22(7), 2239-2247.
    [1] Frisch M J, Trucks G W,Schlegel H B,et al. Gaussian03[M]. revision B.03;Gaussian, Inc.: Wallingford, CT, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700