用户名: 密码: 验证码:
游泳运动对大鼠骨骼肌生长及PI3K/Akt/mTOR信号通路影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     骨骼肌的生长是一个复杂的调控过程,受营养、激素及机械运动等因素的影响。大量的研究表明适宜的运动训练可以使肌纤维直径和数量增加,引起骨骼肌壮大,从而使骨骼肌的质量和收缩力量均相应增加,但关于运动促进肌肉生长及的肥大的细胞分子机制仍不甚清楚。本研究观察大鼠在不同游泳训练强度下对骨骼肌生长的影响,及其形态结构的变化,并检测PI3K/Akt/mTOR信号蛋白的活性表达,以进一步探讨运动促进肌肉生长提供相关的细胞分子机制。
     方法
     本研究以40只雄性成年SD大鼠为研究对象,适应性饲养一周后随机分成5组:对照组(C组)、无负重游泳组(T0)、5%体重负重游泳组(T5)、10%体重负重游泳组(T10)、15%体重负重游泳组(T15),每组均为8只。对照组不进行训练,运动组大鼠隔日进行间歇游泳训练,每次训练时间为30min(5×6min,间隙时间为6min),实验时间为8周。末次游泳训练结束后禁食12小时后取材,准确称量大鼠体重与两侧腓肠肌和比目鱼肌的质量。采用考马斯亮蓝法测定各组大鼠腓肠肌中蛋白浓度。采用免疫印迹技术检测骨骼肌中PI3K、Akt、mTOR蛋白及磷酸化蛋白含量。
     结果
     1.8周间歇游泳训练后,与对照组相比,10%体重负重游泳组和15%体重负重游泳组大鼠体重非常显著下降(P<0.01);5%体重负重游泳组大鼠的体重有显著性下降(P<0.05)。15%体重负重游泳组大鼠的体重分别与无负重组、5%体重负重组、10%体重负重组相比均有显著性下降(P<0.05)。
     15%体重负重游泳组大鼠的腓肠肌质量指数显著高于对照组(P<0.05),其它四组大鼠的腓肠肌质量指数有提高,但与对照组相比差异性不具有统计学意义。15%体重负重游泳组与无体重负重游泳组,5%体重负重游泳组大鼠的腓肠肌质量指数相比有显著性提高(P<0.05)。
     与对照组相比,无负重游泳组、5%体重负重游泳组,10%体重负重游泳组大鼠的比目鱼肌质量指数有显著性提高(P<0.05),15%体重负重游泳组大鼠比目鱼肌质量指数具有非常显著提高(P<0.01)。15%体重负重游泳组比目鱼肌质量指数分别与无负重游泳组、5%体重负重游泳组和10%体重负重游泳组大鼠相比均有具有显著提高(P<0.05)。
     2.8周间歇体重负重游泳训练后,与对照组相比,5%、10%和15%体重负重游泳组大鼠腓肠肌蛋白浓度OD值均有显著性提高(P<0.05)。10%和15%体重负重游泳组大鼠腓肠肌蛋白浓度OD值与无负重游泳组相比均有显著性提高(P<0.05)。
     3.8周间歇体重负重游泳训练后,与对照组相比,10%和15%体重负重游泳组大鼠腓肠肌中磷酸化的PI3K平均光密度值有非常显著提高(P<0.01)
     与对照组相比,15%体重负重游泳组大鼠骨骼肌中磷酸化Akt的平均光密度值有显著提高(P<0.05)。
     与对照组相比,10%和15%体重负重游泳组大鼠的骨骼肌中磷酸化的mTOR的平均光密度值具有非常显著提高(P<0.01)。与无体重负重游泳组和5%体重负重游泳组相比,10%和15%体重负重游泳组大鼠的腓肠肌中磷酸化的mTOR的平均光密度值具有非常显著提高(P<0.01)。
     结论
     1.游泳训练能够有效地降低大鼠的体重,适宜的运动负荷能促进大鼠骨骼肌的生长。
     2.适宜负荷游泳训练能诱导PI3K/Akt/mTOR信号蛋白磷酸化表达,促进骨骼肌蛋白合成及肌肉的生长。
Objectives:Skeletal muscle growth is a complicated process, the regulation by the nutrition, hormones and mechanical motion factors. A number of studies have suggested that suitable sport training can increase muscle diameter and, thus, causing skeletal muscles grow to the quality of skeletal muscle contraction force all increase with, but about sport promote muscle growth and mast cells molecular mechanism is unclear. This study looked at rats training intensity in different swimming under the influence of skeletal muscle growth, and morphological structure changes, and testing PI3K/Akt/mTOR signaling proteins expressed the activity to discuss further how sport promote muscle growth provide relevant cell and molecular mechanism.
     Methods:This study use 40 adult male SD rats for research object, adaptability to raise a week later randomly divided into 5 groups: control group (group C), no weight loading swimming group (T0), 5% weight weight loading swimming group (T5), 10% weight weight loading swimming group (T10), 15% weight weight loading swimming (T15) groups and each group are 8. The control group didn't exercise group training, rats were intermittent swimming training, scheffe every training time for 30min (5 x 6min, clearance time is 6min), experimental time for 8 weeks. The last time swimming training after 12 hours after fasting, alternately, weighing and bilateral gastrocnemius rat weight and the soleus quality. Using test method for each MaSiLiang blue protein in the rat gastrocnemius concentration. By immune imprinting detection PI3K, Akt, in skeletal muscle mTOR protein and phosphoprotein content.
     Results :1.8 weeks after intermission swimming training, as compared with control, 10% weight weight loading swimming group and 15% weight weight loading swimming rats, weight very significantly (P < 0.01); 5% weight weight loading swimming rats, weight dropped significantly (P < 0.05). 15% weight weight loading swimming rats, weight respectively with no negative restructuring, reorganization, 10% weight negative 5% compared weight negative restructuring significantly sex to decrease (P < 0.05).
     15% weight weight loading swimming rats, significantly higher than the gastrocnemius quality index in control group (P < 0.05), and the other four groups of rats quality index has improved, gastrocnemius compared with control difference but not significant. 15% weight weight loading swimming group with no weight weight loading swimming group, 5% weight weight loading swimming rats, compared the calf muscle mass index improved significantly (P < 0.05).
     Compared with control, no weight loading swimming group, 5% weight weight loading swimming group, 10% weight weight loading swimming rats soleus quality index of improved significantly (P < 0.05), 15% weight weight loading swimming group of rat soleus quality index increase has very significant (P < 0.01). 15% weight weight loading swimming group soleus quality index respectively with no weight loading swimming group, 5% weight weight loading swimming group and 10% weight weight loading swimming rats are compared with improved significantly (P < 0.05). 28 weeks intermittent weight weight loading swimming training, as compared with control, 5%, 10%, 15% weight weight loading swimming rats, gastrocnemius muscle protein concentration OD value were improved significantly (P < 0.05). 5% weight weight loading swimming group than weight loading swimming rats, without the gastrocnemius protein concentration OD value is high, but this was not statistically significant; 10% and 15% weight weight loading swimming rats, gastrocnemius muscle protein concentration OD value without weight loading swimming group compared with are improved significantly (P < 0.05). 5%, 10%, 15% of the weight weight loading swimming between gastrocnemius protein concentration OD value difference was not significant, no statistical significance.
     3.8 weeks intermittent weight weight loading swimming training, as compared with control, 10% and 15% weight weight loading swimming rats in the phosphorylated PI3K gastrocnemius average light density values have very significantly increased (P < 0.01)
     Compared with control, 15% weight weight loading swimming rats in the average phosphorylation of skeletal muscle Akt light density values have improved significantly (P < 0.05).
     Compared with the control, 10% and 15% weight weight loading swimming rats in the skeletal muscles of the phosphorylated mTOR average light density values increase has very significant (P < 0.01). Compared withno weight weight loading swimming group or 5% weight weight loading swimming group, 10% and 15% compared weight weight loading swimming rats in the gastrocnemius mTOR phosphorylation of the average light density values increase has very significant (P < 0.01).
     Conclusion:1. Swimming training can effectively reduce rat weight, promote skeletal muscle growth, and appropriate exercise load relevant.
     2. Appropriate load swimming training can induce PI3K/Akt/mTOR signal protein expression, promote phosphorylation of skeletal muscle protein synthesis and muscle growth.
引文
[1] Wackerhage H,Ratkevicius A.Signal transduction pathways thatregulate muscle growth. Essays Biochem. 2008;44:99-108.
    [2]Adams GR Haddad F,Baldwin KM.Time course of changes in markers of myogrnesis in overloaded rat skeletal muscles. J Appl Physiol 1999;87: 1705-12
    [3]Adams GR,Haddad F.The relationships among IGF-Ⅰ,DNA count,and protein accumulation during skeletal muscle hypertrophy.J Appl Physiol 1996;81:2509-2516
    [4]Adams GR,McCue SA.Localized infusion of IGF-ⅠResults in skeletal muscle hypertrophy in rats.J Appl Physiol 1998;84:1716-22
    [5]Coligan JE, Dunn BM , Speicher D W, et al. Current Protocols in Protein Science [M] . Washingt on: John Wiley & Sons, Inc. 2003: 1403- 1540.
    [6]Bodine SC, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulat or of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo[J].Nat Cell Biol,2001,3(11):1014-1019.
    [7]Kramer k,et al.control of physical exercise of rats in a swimming basin.physical Behav.1993,53(2);271-276
    [8]Dawson .CA and Horvath SM.Swimming in small laboratory animals.Med and scisports.1970,2(2);51-57
    [9]Kniazuk M and Molitor H .The influence of thiamin deficiency on work performance in rats.J pharmacol.Exp Therap.1944.80;362-372
    [10] Geen D.et al.Cardiorascular and hormonal responces to swimming and running in the rat.J Appl physiol.1988.65(1);116-123
    [11]Timson BF:Evaluation of animal models for the study of exercise:一in.duced musele enlargement[J].Appl Physiol 1990;69(6):1935—1945
    [12]Alway SE,Winchester PK,Davis ME,Gonyea WJ:Regionalized ad—aptations and muscle fiber proliferation in stretch—induced enlargement[J].Appl Physiol 1989;66(2):771—781.
    [13]T.S.Wong and F.w.Booth.Skeletal muscle enlargement with weight—lifting exercise by rats.J App1 Physiol,1988,65:950—954.
    [14]T.A Hornberlger Jr and liP Farrar.Physiological hypertrophy of the FHLmusclefollowing 8 weeks ofprogressive resistance exerciseinthe rat.CanJ App1 Physiol,20O4,29(1):16—31
    [15]Lin HK,Yeh S,Kang HY,Chang C.Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen recep2 tor[J].Proc Natl Acad Sci USA,2001,98(13) :7200-5.
    [16]Phillips SM,Tipton KD,Aarsland A,Wolf SE,Wolfe RR.Mixed muscle protein synthesis and breakdown after resistance exercise in humans[J].Am J Physiol Endocrinol Metab,1997,273(1):E99-107.
    [17]Haddad A.Nader and Karyn A.Esser.Inta-acellular signali.g specificity in skeletal muscle in response to diferent triodes of exercise.J Appl Playsiol,2004.90:1936—1942.
    [18] Sukho Lee,Elisabeth R.Barton,H.Lee Sweeney,et a1.Vi eXpl'e8- sion of insulin—like growth factor—Ienhances muscle hypertrophy in iresist,ance—trained rats.J Appl Physiol,2OO4,96:1097一l104.
    [19]Rivero.JL,Talmadge.RJ,and Edgerton.VK,Interrelatiosnships of myofibillar ATPase activity and metabolic properties of myosin heavy chain-based fiber tupes in rat skeletal muscle.Histochem Cell Biol 1999;111;277-287
    [20]Demirel HA,Powers SK,Naito H,Hughes M,Coombes JS.Exercise-induced alterations in skeletal muscle myosin heavy chain phenotype:does-respons Rleationship.J Appl Physiol 1999;86:1002-1008
    [21] Mchugh M.P,Connolly D,Eston R.G,gleim G.W.Exercise-induced muscle damage and potential mechanisms for the repeated about effect.Sport.Med.1999,27(3):157-170
    [22]Staron,R.S,Malicky,E.S,Leonardi,M.J.Muscle hypertrophy and fast fiber type conversions in heavy-resistance-trainined women.Eur.J.Appl. Physiol.1990,60:71-79
    [23]Staron,R.S,.Leonardi,M.J,Malicky,E.S.Resistance and skeletal Muscle adaptations in heavy-resistance-training women after detraining And retaining.J.Appl.physiol.1991,70(2):631-640.
    [24]Tesch,P.A,Komi,P.V,Hakkinen.K.Enzymatic adaptation consequent to Long -term resistance training.Inter.J.Sports.Med.1987,8:66-69.
    [25]Staron,R.S,Karapondo,D,Kramer,W.J.Skeletal muscle adaptations during early phase of heavy-resistance training in men and women .J.Appl.Physiol.76(3):1994,1247-1255.
    [26]Kraemer.W.J,Patton.J.F,Gordon.S.E.Compatibility of high- Intensity resistance and endurance training on hormonal and skeletal Muscle adaptaions.J.Appl.Physiol.1995,78(3):976-989.
    [27]Kimball SR, Farrell PA, Jefferson LS. Invited review: role of insulinin translational control of protein synthesis in skeletal muscle byamino acids or exercise. J Appl Physiol. 2002;93:1168-1180.
    [28]Wong TS, Booth FW. Protein metabolism in rat gastrocnemius muscle after stimulated chronic concentric exercise. Appl Physiol.1990;69: 1709-1717.
    [29] Bodine SC. mTOR signaling and the molecular adaptation to resistance exercise. Med Sci Sports Exerc. 2006;38(11):1950-1957.
    [30]Atherton PJ,Rennie MJ.Protein synthesis a low priority for exercising muscle. J Physiol,2006,573(2):288-289.
    [31]王水泓.抗阻训练导致骨骼肌肥大的细胞和分子机理[J].中国运动医学杂志,2006,26(4):503-506.
    [32]Esmarck B,AndersenJL,Olsen S,etal.Timing of postexercise protein intake is important for muscle hypertrophy with resistancetraining in elderly humans.J.Physiol.2001;535:301-311.
    [33]Glass DJ.Molecular mechanisms modulating muscle mass.Trends Mol Med,2003,9(8):344- 350.
    [34]Sartorelli V,Fulco M.Molecular and cellular determinants of skeletal muscle atrophy and hypertrophy.Sci STKE,2004,2004(244):re11.
    [35] Nader GA. Molecular determinants of skeletal muscle mass:getting the“Akt”together.Int J Biochem Cell Biol,2005,37(10):1985-1996.
    [36]张媛,漆正堂,丁树哲.Akt对骨骼肌质量的作用及运动训练对其影响的分子机制[J].2008,28(3):73-77.
    [37] Fingar DC,Blenis J.Target of rapamycin (TOR):an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression.Oncogene.2004;23:3151-3171.
    [38]WARD SG,FINAN P.Isoform-specific phosphoinositide 3-ki-nase inhibitors as therapeutic agents[J].Curr Opin Pharmacol,2003,3:426-434.
    [38]WACKERHAGE H,RENNIE MJ.How nut rition and exercise musculo skeletal mass[J].J Anat,2006,208:451-458.
    [39]ATHERTON P J ,BABRAJ J ,SMITH K, et al . Selective acti-vation of AMPK-PGC-1αor PKB-TSC-mTOR signaling can explain specific adaptive responses to endurance or resistancet raining-like elect rical muscle stimulation[J].FASEBJ,2005,19(7):786-788.
    [40]COFFEY VG,ZHONG Z,SHIELD A, et al .Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans[J].FASEB J,2006,20:1902192.
    [41] Sakamoto K, irshaman MF,Aschenbach WG, et al.Con-traction regulation of Akt in rat skeletal muscle. J Biol Chem ,2002 ,277 :11910 - 11917.
    [42] Lowe DA,Alway SE:Animal models for inducing muscle hypertrophy arethey relevant for clinical applications in humans?[J]Orthop Sports Phys Ther2002;32(2):36—43.
    [43]Timson BF : Evaluation of animalmodelsforthe study ofexercise—induced muscle enlargement[J].Appl Physiol 1990;69(6):1935—1945.
    [44]Martin Flttck,blagali Kitzmann,Christoph D PP,et a1.Transient induction of cyclin A in loaded chicken skeletal muscle.J Appl Physiol, 2003.95:1664-l671.
    [45]Roy,R.R,I.D.Meadows,K.M.Baldwin,et a1.Functional significance of compensatory overloaded rat fast muscle.J App1 Physiol。1982.52:473—478.
    [46]Hill M,Werning A,Goldspink G. Muscle satellite cell activation during local tissue injury and repair[J].JAnat,2003,203:89-99.
    [47]李玉琳.动生理学的动物实验.中国运动医学杂志, 1986,5(1) : 40-43.
    [48]V.J.Caiozzo,E.bla,S.A.blcCue,E.Smith,et a1.A new animal model for modulating myosin isoform expression by altered mechanical activity.J App1 Physiol,199273:1432—1440.
    [49] Yarashesk i K E,L emon PW R, Gillo teaux J. Effect of Heavy-Resistance Training onM uscle Fiber Compostition in Young rats. J. Appl.Phsiol,1990, 69(2):434-437.
    [50]谢敏毫.小鼠流动水游泳水槽[J].中国运动医学杂志,1998,7(1):38-40.
    [51]LambertM I,Noakes T D. Dissociation of Changes in VO2max,Muscle QO2,and Perfo rmance w ith Training in Rats.J.Appl.Physiol,1989,66(4): 1620-1625.
    [52]Musch T I, Bruno A , Bradfo rd G E,. et al. M easurement of Metabo lic Rate in Rats:a Comparison of Tech-niques.J.Appl.Physiol,1988,65 (2):964-970.
    [53] Russell JC, Ep lingW F,P ierce D, et al. Induction of Voluntary Prolonged Running by Rats.J.Appl.Physiol,1987,63(6):2549-2553.
    [54] Akihiko Ishihara,Roland R.Roy,Yoshlnobu ohira,et a1.Hypertrophy of rat plantaris muscle fibers after voluntary running with increasing loads.J Appl Physiol,1998,84:2183—2189.
    [55]史仍飞,卞玉华,危小焰.振动训练对大鼠骨骼肌质量和肌细胞机械生长因子mRNA表达的影响[J].中国运动医学杂志,2008,28(7):508-510.
    [56] Bodine S C ,Stitt T N,Gonzalez M,et al.Akt/mTOR pa hway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle at rophy in vivo [J] Nat Cell Biol,2001,3:1014-1019.
    [57] Bolster D R ,Kubica N ,Crozier S J ,et al. Immediate response of mammalian target of rapamycin(mTOR)-mediated signaling following acute resistance exercise in rat skeletal muscle [J].J Physiol,2003 ,553 (1):213-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700