用户名: 密码: 验证码:
胆固醇改性壳聚糖的生物学评价及其矿化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳聚糖(CS)及其衍生物在组织修复中的应用研究报道很多,也非常系统,其中壳聚糖的生物功能化是目前国内外研究的热点。本研究以壳聚糖为基材,创新性的利用功能特异的胆固醇对其进行仿生功能化,并系统研究改性壳聚糖的生物相容性和矿化性能,为开辟一类新型的骨组织修复材料奠定了基础。
     本研究首先将胆固醇与卵磷脂掺入到壳聚糖和羟基磷灰石的水溶液中,经过浇铸成膜,碱液中和、陈化处理后,考察胆固醇和卵磷脂含量对羟基磷灰石微结构的影响。结果表明,卵磷脂与胆固醇的比例增加,羟基磷灰石可由球状转变为棒状,当卵磷脂/胆固醇为5:1时,体系中的羟基磷灰石形貌与尺寸与天然骨组织接近;而无胆固醇与卵磷脂作用的壳聚糖模板中主要以无定形的片状为主。此结果表明胆固醇、卵磷脂具有改变羟基磷灰石微结构的功能。
     本研究还借助琥珀酸酐将胆固醇接枝到壳聚糖氨基上,合成了具有不同接枝率的胆固醇-g-壳聚糖(CHCS)。研究表明,胆固醇在壳聚糖上的接枝率随着胆固醇投料量的提高略有增加,并呈非线性关系。当投料摩尔比为15:1,10:1和5:1时(壳聚糖糖环数比胆固醇分子),接枝率(胆固醇分子数/100个壳聚糖糖环)分别为3.71,4.02与5.94。胆固醇改性壳聚糖的疏水性随着接枝率的增加而增大,壳聚糖膜接触角为72.1°,而接枝率为3.71,4.02与5.94的CHCS膜接触角依次为76.6°,81°与85.8°。白蛋白在膜材上的吸附也是随着接枝率的增加而增大,壳聚糖膜上的蛋白吸附量为0.354μg,而接枝率为3.71,4.02与5.94的CHCS膜上的蛋白吸附量依次为7.664μg,8.248μg,16.815μg。同时,研究结果还表明改性后的壳聚糖具有促进成纤维3T3细胞黏附、增殖的效果。3T3细胞在壳聚糖及不同改性程度的胆固醇-g-壳聚糖膜上培养一天后,改性后材料上细胞的铺展明显比纯壳聚糖膜上充分,且有较多的板状伪足与丝状伪足伸出。在支架材料上培养三天后,CHCS材料上的细胞分泌较多的细胞外基质,且随着改性程度的提高,纤维状细胞外基质越明显。
     模拟体液仿生矿化表明,本研究研制的CHCS所沉积的钙磷盐稳定性更好。支架材料的快速矿化结果表明,24h内钙磷盐在改性后的材料上呈球状,在壳聚糖材料上呈无定形状。48h后,壳聚糖材料上所沉积的钙磷盐为颗粒状与无定形状,而低接枝率的CHCS支架上钙磷盐呈现海岛针状,高接枝率的CHCS材料上钙磷盐呈现有序化片状堆积。与成骨细胞的相互作用研究表明,改性后材料比纯壳聚糖具有更好的促进细胞黏附、增殖的效果。细胞在改性后的材料上伸出的伪足更为丰富,成骨细胞的特征形态维持得更好。细胞在改性后的材料上更容易地呈有序性黏附与增殖。特别是高接枝率的CHCS在一定时间内具有促进成骨细胞增殖和抑制分化的趋势,而7天后则是促进成骨细胞的分化。
Chitosan and its derivates have been studying systematically as tissue repairmaterials, especially the biological functionality are focused in current chitosan research.A series of novel chitosan derivates were prepared by innovative cholesterol modificationin this study. The biocompatibility and mineralization of the cholesterol-g-chitosan(CHCS) were explored in detail. The obtained data and theories are hoped to be used forR&P of new bone repair materials.
     To investigate the effects of the cholesterol and lecithin contents on themicrostructure of hydroxyapatite, cholesterol and lecithin with certain ratio were added tochitosan and hydroxyapatite mix water solution. Then membranes were prepared by thecommon solution cast method and ageing in the lye. The microscopic structure ofhydroxyapatite in the composite membrane was investigated by SEM and TEM. Theresults show that with the increasing proportions of cholesterol and lecithin in thecomposites, the hydroxyapatite morphology changed from the spherical to the rod-likeform. As the mass ratio of lecithin and cholesterol was5:1, the morphology and size ofthe hydroxyapatite in composite materials were close to nature bone tissue. But in thecontrol system without lecithin and cholesterol, the microscopic structures ofhydroxyapatite were almost lamellate. The results revealed that the cholesterol andlecithin would affect the microscopic structure of hydroxyapatite.
     Cholesterol-g-chitosan (CHCS) was synthesized with succinyl linkages and thechemical composition was verified by Fourier transforms infrared (FTIR) and protonnuclear magnetic resonance (1~H NMR) spectra. The grafting ratio of cholesterol wascharacterized by elemental analysis. The results show that the grafting ratio ofcholesterol on chitosan chain was increased slightly with the quantity raw material ofcholesteryl hemisuccinate (CHS) increasing, but there were no linear correlation.When the raw molar ratio (the number of chitosan sugar ring compare to the numberof cholesterol molecule) were15:1,10:1and5:1, the grafting ratio (the number ofcholesterol molecule connected on100chitosan sugar ring) were3.71,4.02and5.94.The hydrophobility of CHCS was increased with the grafting ratio of cholesterol increasing as well. The contact angle of chitosan membrane was72.1°, but thecontact angles of the CHCS membranes were76.7°,81°and85.8°respective withthe grafting ratio increasing. The mass of BSA absorption on membrane materialsincreased with the grafting ratio increasing. The mass of BSA absorption on chitosanmembrane was0.354μg, but the value increased from7.664μg to16.815μg on CHCSmembrane with the grafting ratio increasing. The results also demonstrate that3T3cells adhesion and proliferation on CHCS were quicker than that on chitosanmembrane. Furthermore lamellipodia and filopodia of fibroblast3T3cells on CHCSmembrane spread out more fully than that on chitosan membrane after cultured1day.Extracellular matrix express on CHCS scaffold more than on chitosan scaffold after3days and the threadiness extracellular matrix increasingly with the graft ratioincreasing.
     Two biomimetic mineralization systems were performed in this study tocharacterize the mineralize ability of the products: in simulated body fluids (SBF) andrapid mineralization. In the first system, the calcium phosphate apatite precipitated onCHCS membrane was more stable than that on chitosan membrane. In the latter system,spherical granulates were observed on different graft ratio CHCS scaffold at24h bySEM, and on chitosan scaffold was amorphous. After rapid mineralization48h, theshape of calcium phosphate apatite were island needle-like on low graft ratio CHCSscaffold, and ordering lamellar accumulate on high graft ratio CHCS scaffolds. Theresults of the interaction between CHCS and osteoblast show that osteoblast attach andproliferation more ordering, easily and quickly on CHCS membrane than that onchitosan membrane. The feature morphology of osteoblast on CHCS membranemaintain better, and there are more osteoblast pseudopodia stretch out on CHCSmembrane than on chitosan membrane. Especially, high graft ratio CHCS have thetendency of promoting osteoblast proliferation and restraining osteoblast differentiationin certain time, and facilitating osteoblast differentiation after7days.
引文
[1]沈家骢.超分子层状结构——组装与功能.第一版.2004;科学出版社:247.
    [2] Ranieri JP, Bellamkonda R, Jacob J, Vargo TG, Gardella JA, Aebischer P. Selective neuronal cellattachment to a covalently patterned monoamine on fluorinated ethylene propylene films. Journal ofBiomedical Materials Research.1993;27:917-25.
    [3] Gabriel SE, Brigman KN, Koller BH, Boucher RC, Stutts MJ. Cystic fibrosis heterozygote resistance tocholera toxin in the cystic fibrosis mouse model.1994. p.107-9.
    [4] Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro-andnano-structured surfaces on cell behavior. Biomaterials.1999;20:573-88.
    [5] J L Dewez, J B Lhoest, E Detrait, V Berger, C C Dupont-Gillain, L M Vincent. Adhesion of mammaliancells to polymer surfaces: from physical chemistry of surfaces to selective adhesion on defined patterns.Biomaterials.1998;19:1441-5.
    [6]戴志飞,岳秀丽,王金锐.仿生膜材料与技术.北京:科学出版社,2010.2010:111-28.
    [7] Crane GM, Ishaug SL, Mikos AG. Bone tissue engineering. Nature Medicine.1995:1322-4.
    [8]韩金祥.骨分子生物学.北京:科学出版社.2010:3-14.
    [9] Bone structure.2004:http://www.engin.umich.edu/class/bme456/bonestructure/bonestructure.htm.
    [10] Bonucci E. Calcification in Biological Systems. CRC Press, Boca Raton.1992:406-8.
    [11] Cameron DA.18The Fine Structure of Bone and Calcified Cartilage A Critical Review of theContribution of Electron Microscopy to the Understanding of Osteogenesis.1963. p.199-230.
    [12] Wuthier RE. A Review of the Primary Mechanism of Endochondral Calcification with SpecialEmphasis on the Role of Cells, Mitochondria and Matrix Vesicles.1982. p.219-42.
    [13] Boskey AL, Posner AS. In vitro nucleation of hydroxyapatite by a bonecalcium-phospholipid-phosphate complex. Calcified Tissue International.1976;22:197-01.
    [14] Boyan BD, Schwartz Z, Swain LD, Khare A. Role of lipids in calcification of cartilage. TheAnatomical Record.1989;224:211-9.
    [15] Boyan BD, Lohmann CH, Dean DD, Sylvia VL, Cochran DL, Schwartz Z. Mechanisms involved inosteoblast response to implant surface morphology.2001. p.357-71.
    [16] Bonucci E. Role of collagen fibril in calcification, in:E. Bonucci(Ed.),Calcification in BiologicalSystems. CRC Press, Boca Raton.1992:19-20.
    [17] Sela J, Bab IA, A. Muhlrad. Primary bone-formation in normal and neoplastic condition associatedwith matrix vesicle and calcospherite formation. Calcif Tissue Int.1979;27:42-0.
    [18] Shepard N. Role of proteoglycans in calcification. in: E Bonucci (Ed), Calcification in BiologicalSystems, CRC Press, Boca Raton.1992:41-2.
    [19] Nanci A. Content and Distribution of Noncollagenous Matrix Proteins in Bone and Cementum:Relationship to Speed of Formation and Collagen Packing Density. Journal of Structural Biology.1999;126:256-69.
    [20] Eppell SJ, Tong W, Katz JL, Kuhn L, Glimcher MJ. Shape and size of isolated bone mineralitesmeasured using atomic force microscopy. Journal of Orthopaedic Research.2001;19:1027-34.
    [21] Weaver DS. Skeletal tissue mechanics. American Journal of Physical Anthropology.2000;112:435-6.
    [22] Hassenkam T, Fantner GE, Cutroni JA, Weaver JC, Morse DE, Hansma PK. High-resolution AFMimaging of intact and fractured trabecular bone. Bone.2004;35:4-10.
    [23] Benezra Rosen V, Hobbs LW, Spector M. The ultrastructure of anorganic bovine bone and selectedsynthetic hyroxyapatites used as bone graft substitute materials. Biomaterials.2002;23:921-8.
    [24] WSS J. Integrated Bone Tissue Physiology: Anatomy and Physiology in Bone Mechanics Handbook.SC Cowin, Ed.2001;CRC Press.
    [25] Saltel Fdr, Destaing O, Bard Fdr, Eichert D, Jurdic P. Apatite-mediated Actin Dynamics in ResorbingOsteoclasts. Molecular Biology of the Cell.2004;15:5231-41.
    [26]韩金祥.骨分子生物学.北京:科学出版社.2010:76-7.
    [27] Marin R, Farjanel J, Eichenberger D, Colige A, Kessler E, Hulmes DJS,Giraud-Guille MM. Liquidcrystalline ordering of procollagen as a determinant of threedimensional extracellular matrix architecture.Journal of Molecular Biology.2000;301:11-7.
    [28] Giraudguille M M. Twisted Plywood Architecture of Collagen Fibrils in Human Compact-BoneOsteons. Calcified Tissue International1988;42:167-80.
    [29] Traub W, Arad T, Weiner S. Three-dimensional ordered distribution of crystals in turkey tendoncollagen fibers. pROC Natl Acad Sci1989;86:9822-6.
    [30] Robinson RA, Watson ML. Collagen-crystal relationships in bone as seen in the electron microscope.The Anatomical Record.1952;114:383-409.
    [31] Jackson SA, Cartwright AG, Lewis D. The morphology of bone mineral crystals. Calcified TissueInternational.1978;25:217-22.
    [32] Bagambisa FB, Joos U, Schilli W. A scanning electron microscope study of the ultrastructuralorganization of bone mineral. Cells Mater.1993;3:93-102.
    [33] Run-rong LI, Xuan M, Qi-cong Y. Proeparation of bioactive nanohydroxyapatite coating for artificialcornea. Current Applied Physics.2007;7:85-9.
    [34] Zhen-jun W, Li-ping H, Zong-zhang C. Fabrication and characterization of hydroxyapatite/Al2O3biocomposite coating to titanium. Trans Nonferrous Met Soc China2006;16:259-66.
    [35] Chai C S, Ben-nissan B. Bioactive nanocrystalline sol-gel hydroxyapatite coatings. J Mat Sci Mat inMed.1999;10:465-9.
    [36]于方丽,周永强,张卫珂.羟基磷灰石生物材料的研究现状、制备及发展前景.陶瓷.2006;23:6-11.
    [37]李明,沈毅,张欣欣,刘岚.柠檬酸作分散剂制备HAP超细粉的研究.硅酸盐通报.2006:101-4.
    [38] Suchaneka WL, Shuka P, Byrappaa K, Rimana RE, S K, TenHuisenb. Mechanochemical–hydrothermalsynthesis of carbonated apatite powders at room temperature. Biomaterials.2002;23:699-710.
    [39] Jillavenkatesa A, SR RAC. Sol-gel processing of hydroxyapatite. Journal of Materials Science.1998;33:4111-9.
    [40]任卫,李世普,王友发.微乳液法制备纳米羟基磷灰石的机理.材料研究学报.2004;18:257-64.
    [41]杨正文,蒋引珊,王安平,李芳菲.微波法快速制备高稳定性纳米羟基磷灰石.无机材料学报.2004;19:839-44.
    [42] Chen G, Ushida T, Tateishi T. Poly(DL-lactic-co-glycolic acid) sponge hybridized with collagenmicrosponges and deposited apatite particulates. Journal of Biomedical Materials Research.2001;57:8-14.
    [43]赵铭,郑启新,王金光,王运涛,郝杰. PLGA仿生矿化对骨髓基质干细胞黏附率的影响.国际生物医学工程杂志.2006;29:1-4.
    [44] Amaral IF, Lamghari M, Sousa SR, Sampaio P, Barbosa MA. Rat bone marrow stromal cell osteogenicdifferentiation and fibronectin adsorption on chitosan membranes: The effect of the degree of acetylation.Journal of Biomedical Materials Research Part A.2005;75A:387-97.
    [45] García Cruz DM, Gomes M, Reis RL, Moratal D, Salmerón-Sánchez M, Gómez Ribelles JL.Differentiation of mesenchymal stem cells in chitosan scaffolds with double micro and macroporosity.Journal of Biomedical Materials Research Part A.95A:1182-93.
    [46] Sashiwa H, Saimoto H, Shigemasa Y, Ogawa R, Tokura S. Lysozyme susceptibility of partiallydeacetylated chitin. Int J Biol Macromol.1990;12:295-6.
    [47] Shigemasa Y, Saito K, Sashiwa H, Saimoto H. Enzymatic degradation of chitins and partiallydeacetylated chitins. Int J Biol Macromol1994;16:43-9.
    [48] Mori T, Okumura M, Matsuura M, Ueno K, Tokura S, Okamoto Y, Minami S, Fujinaga T. Effects ofchitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro. Biomaterials1997;18:947-51.
    [49] Tokura S, Ueno K, Miyazaki S, Nishi N. Molecular weight dependent antimicrobial activity bychitosan. Macromol Symp.1997;20:1-9.
    [50] Kweon DK, Song SB, Park YY. Preparation of water-soluble chitosan/heparin complex and itsapplication as wound healing accelerator. Biomaterials.2003;24:1595-601.
    [51] Khnor E, Lim L. Implantated applications of chitin and chitosan. Biomaterials.2003;24:2339-49.
    [52] Sato T, Ishii T, Okahata Y. In vitro gene delivery mediated by chitosan. Biomaterials.2001;22:2075-80.
    [53] Mao JS, Liu HF, Yin YJ, Yao KD. The properties of chitosan-gelatin membranes and scaffoldsmodified with hyaluronic acid by different method. Biomaterials.2003;24:1621-9.
    [54] Gingras M, Paradis I, Berthod F. Nerve regeneration in a collagen-chitosan tissue-engineered skintransplanted on nude mice. Biomaterials2003;24:1653-61.
    [55] Wang YC, Lin MC, Wang DM, Hsieh HJ. Fabrication of a novel porous PGA-chitosan hybrid matrixfor tissue engineering. Biomaterials.2003;24:1047-57.
    [56] Hall LD, Yalpani M. Formation of branched-chain, soluble polysaccharides from chitosan. Journal ofthe Chemical Society, Chemical Communications.1980:1153-4.
    [57] Yalpani M, Hall LD. Some chemical and analytical aspects of polysaccharide modifications. III.Formation of branched-chain, soluble chitosan derivatives. Macromolecules.1984;17:272-81.
    [58] Morimoto M, Saimoto H, Usui H, Okamoto Y, Minami S, Shigemasa Y. Biological Activities ofCarbohydrate-Branched Chitosan Derivatives. Biomacromolecules.2001;2:1133-6.
    [59] Morimoto M, Saimoto H, Shigemasa Y. Control of Functions of Chitin and Chitosan by ChemicalModification. ChemInform.2002;14(28):205-22.
    [60] Li X, Tushima Y, Morimoto M, Saimoto H, Okamoto Y, Minami S. Biological activity ofchitosan–sugar hybrids: specific interaction with lectin. Polymers for Advanced Technologies.2000;11:176-9.
    [61] Li X, Morimoto M, Sashiwa H, Saimoto H, Okamoto Y, Minami S. Synthesis of chitosan–sugar hybridand evaluation of its bioactivity. Polymers for Advanced Technologies.1999;10:455-8.
    [62] Kato Y, Onishi H, Machida Y. Biological characteristics of lactosaminated N-succinyl-chitosan as aliver-specific drug carrier in mice. Journal of Controlled Release.2001;70:295-307.
    [63] Kato Y, Onishi H, Machida Y. Lactosaminated and intact N-succinyl-chitosans as drug carriers in livermetastasis. International Journal of Pharmaceutics.2001;226:93-106.
    [64] Park I-K, Yang J, Jeong H-J, Bom H-S, Harada I, Akaike T. Galactosylated chitosan as a syntheticextracellular matrix for hepatocytes attachment. Biomaterials.2003;24:2331-7.
    [65] Chung TW, Yang J, Akaike T, Cho KY, Nah JW, Kim SI. Preparation of alginate/galactosylatedchitosan scaffold for hepatocyte attachment. Biomaterials.2002;23:2827-34.
    [66] Park IK, Kim TH, Park YH, Shin BA, Choi ES, Chowdhury EH. Galactosylatedchitosan-graft-poly(ethylene glycol) as hepatocyte-targeting DNA carrier. Journal of Controlled Release.2001;76:349-62.
    [67] Park IK, Ihm JE, Park YH, Choi YJ, Kim SI, Kim WJ. Galactosylated chitosan (GC)-graft-poly(vinylpyrrolidone)(PVP) as hepatocyte-targeting DNA carrier: Preparation and physicochemical characterizationof GC-graft-PVP/DNA complex (1). Journal of Controlled Release.2003;86:349-59.
    [68] Roy R, Laferrire CA, Gamian A, Jennings HJ. N-Acetylneuraminic Acid: Neoglycoproteins andPseudopolysaccharides. Journal of Carbohydrate Chemistry.1987;6:161-5.
    [69] Gamian A, Chomik M, Laferrire CA, Roy R. Inhibition of influenza A virus hemagglutinin andinduction of interferon by synthetic sialylated glycoconjugates. Canadian Journal of Microbiology.1991;37:233-7.
    [70] Roy R, Andersson FO, Harms G, Kelm S, Schauer R. Synthesis of Esterase-resistant9-O-AcetylatedPolysialoside as Inhibitor of Influenza C Virus Hemagglutinin. Angewandte Chemie International Editionin English.1992;31:1478-81.
    [71] Roy R, Tropper FD, Romanowska A, Letellier M, Cousineau L, Meunier SJ. Expedient syntheses ofneoglycoproteins using phase transfer catalysis and reductive amination as key reactions GlycoconjugateJournal1991;8:75-81.
    [72] Chen S, Wang Y. Study on β-cyclodextrin grafting with chitosan and slow release of its inclusioncomplex with radioactive iodine. Journal of Applied Polymer Science.2001;82:2414-21.
    [73] Aoki N, Nishikawa M, Hattori K. Synthesis of chitosan derivatives bearing cyclodextrin andadsorption of p-nonylphenol and bisphenol A. Carbohydrate Polymers.2003;52:219-23.
    [74] Sreenivasan K. Synthesis and preliminary studies on a β-cyclodextrin-coupled chitosan as a noveladsorbent matrix. Journal of Applied Polymer Science.1998;69:1051-5.
    [75] Tang X-H, Tan S-Y, Wang Y-T. Study of the synthesis of chitosan derivatives containingbenzo-21-crown-7and their adsorption properties for metal ions. Journal of Applied Polymer Science.2002;83:1886-91.
    [76] Wan L, Wang Y, Qian S. Study on the adsorption properties of novel crown ether crosslinked chitosanfor metal ions. Journal of Applied Polymer Science.2002;84:29-34.
    [77] Li H-B, Chen Y-Y, Liu S-L. Synthesis, characterization, and metal ions adsorption properties ofchitosan–calixarenes (I). Journal of Applied Polymer Science.2003;89:1139-44.
    [78] DW J, SM H. Review of vinyl graft copolymerization featuring recent advances toward controlledradicalbased reactions and illustrated with chitin/chitosan trunk. Chem Rev.2001;101:3245-73.
    [79] Naka K, Yamashita R, Nakamura T, Ohki A, Shigeru M, Aoi K.Chitin-graft-poly(2-methyl-2-oxazoline) enhanced solubility and activity of catalase in organic solvent.International Journal of Biological Macromolecules.1998;23:259-62.
    [80] Aoi K, Takasu A, Okada M, Imae T. Nano-Scale Molecular Shapes of Water-Soluble ChitinDerivatives Having Monodisperse Poly(2-alkyl-2-oxazoline) Side Chains. Macromolecular Chemistry andPhysics.2002;203:2650-7.
    [81] Qu X, Wirsén A, Albertsson A-C. Synthesis and characterization of pH-sensitive hydrogels based onchitosan and D,L-lactic acid. Journal of Applied Polymer Science.1999;74:3193-202.
    [82] Kurita K, Inoue M, Harata M. Graft Copolymerization of Methyl Methacrylate onto Mercaptochitinand Some Properties of the Resulting Hybrid Materials. Biomacromolecules.2001;3:147-52.
    [83] Kumar G, Smith PJ, Payne GF. Enzymatic grafting of a natural product onto chitosan to confer watersolubility under basic conditions. Biotechnology and Bioengineering.1999;63:154-65.
    [84] Chen T, Kumar G, Harris MT, Smith PJ, Payne GF. Enzymatic grafting of hexyloxyphenol ontochitosan to alter surface and rheological properties. Biotechnology and Bioengineering.2000;70:564-73.
    [85] Kim YH, Gihm SH, Park CR, Lee KY, Kim TW, Kwon IC. Structural Characteristics ofSize-Controlled Self-Aggregates of Deoxycholic Acid-Modified Chitosan and Their Application as a DNADelivery Carrier. Bioconjugate Chemistry.2001;12:932-8.
    [86] Lee KY, Kim JH, Kwon IC, Jeong SY. Self-aggregates of deoxycholic acid-modified chitosan as anovel carrier of adriamycin. Colloid&Polymer Science.2000;278:1216-9.
    [87] Martin L, Wilson CG, Koosha F, Uchegbu IF. Sustained buccal delivery of the hydrophobic drugdenbufylline using physically cross-linked palmitoyl glycol chitosan hydrogels. European Journal ofPharmaceutics and Biopharmaceutics.2003;55:35-45.
    [88]李英剑,张立强,潘妍,郑俊民.胰岛素壳聚糖胶态纳米粒的制备及体外释药性能.中国医药工业杂志.2004;35:655-7.
    [89]谢宇,尚晓娴,颜流水.羟丙基壳聚糖纳米微球的制备及其缓释效果.应用化学.2009;26:193-7.
    [90]罗志敏,马秀玲,陈盛,钱伟.磁性壳聚糖-聚丙烯酸微球的制备及表征.化学通报.2005:551-4.
    [91] Xu Y, Du Y, Huang R, Gao L. Preparation and modification of N-(2-hydroxyl) propyl-3-trimethylammonium chitosan chloride nanoparticle as a protein carrier. Biomaterials.2003;24:5015-22.
    [92] Mi F-L, Shyu S-S, Chen C-T, Lai J-Y. Adsorption of indomethacin onto chemically modified chitosanbeads. Polymer.2002;43:757-65.
    [93] Zhang Y, Huo M, Zhou J, Yu D, Wu Y. Potential of amphiphilically modified low molecular weightchitosan as a novel carrier for hydrophobic anticancer drug: Synthesis, characterization,micellization andcytotoxicity evaluation. Carbohydrate Polymers.2009;77:231-8.
    [94] Schatz C, Bionaz A, Lucas J-M, Pichot C, Viton C, Domard A. Formation of Polyelectrolyte ComplexParticles from Self-Complexation of N-Sulfated Chitosan. Biomacromolecules.2005;6:1642-7.
    [95] Zhang C, Ping Q, Zhang H, Shen J. Preparation of N-alkyl-O-sulfate chitosan derivatives and micellarsolubilization of taxol. Carbohydrate Polymers.2003;54:137-41.
    [96] Zhang C, Qineng P, Zhang H. Self-assembly and characterization of paclitaxel-loadedN-octyl-O-sulfate chitosan micellar system. Colloids and Surfaces B: Biointerfaces.2004;39:69-75.
    [97] Liu WG, Zhang X, Sun SJ, Sun GJ, Yao KD, Liang DC. N-Alkylated Chitosan as a Potential NonviralVector for Gene Transfection. Bioconjugate Chemistry.2003;14:782-9.
    [98] Tsurugai K, Hiraide T. Preparation and antibacterial activities of N-trimethylammonium salts ofchitosan. Sen'i Gakkaishi.1994;50:215-20.
    [99] Kim CH, Choi JW, Chun HJ, Choi KS. Synthesis of chitosan derivatives with quaternary ammoniumsalt and their antibacterial activity. POLYMER BULLETIN.1997;38:387-93.
    [100] Jung B-O, Kim C-H, Choi K-S, Lee YM, Kim J-J. Preparation of amphiphilic chitosan and theirantimicrobial activities. Journal of Applied Polymer Science.1999;72:1713-9.
    [101] Huh MW, Kang I-K, Lee DH, Kim WS, Lee DH, Park LS. Surface characterization and antibacterialactivity of chitosan-grafted poly(ethylene terephthalate) prepared by plasma glow discharge. Journal ofApplied Polymer Science.2001;81:2769-78.
    [102]潘虹,赵涛.壳聚糖改性及其在抗菌方面的应用.纺织学报.2011;32:96-101.
    [103] Nie H, Wang C-H. Fabrication and characterization of PLGA/HAp composite scaffolds for deliveryof BMP-2plasmid DNA. Journal of Controlled Release.2007;120:111-21.
    [104]张步宁,崔英德,陈循军,尹国强,黎新明,贾振宇.甲壳素/壳聚糖医用敷料研究进展.化工进展.2008;27:520-6.
    [105] Singh DK, Ray AR. Biomedical Applications of Chitin, Chitosan, and Their Derivatives. Journal ofMacromolecular Science, Part C: Polymer Reviews.2000;40:69-83.
    [106]肖玲,万冬,李洁,涂依.聚乙烯醇-壳聚糖-明胶不对称海绵的制备及其性能.武汉大学学报(理学版).2005;51:443-7.
    [107]吴奕光,韦少慧,郑宗坤,周莉,波刘,蒋志刚.低取代6-0-羧甲基壳聚糖结构及其抗菌和促进皮肤创面愈合的研究.中国生物医学工程学报.2006;25:613-7.
    [108]倪斌,侯春林,贾连顺,戈俊国,丰建民.几丁质膜引导兔桡骨缺损骨再生的实验研究.中华骨科杂志.1995;15:607-9.
    [109] Abarrategi A, Civantos A, Ramos V, Sanz Casado JV, Lpez-Lacomba JL. Chitosan Film as rhBMP2Carrier: Delivery Properties for Bone Tissue Application. Biomacromolecules.2007;9:711-8.
    [110] Canter HI, Vargel I, Korkusuz P, Oner F, Gungorduk DB, Cil B. Effect of Use of Slow Release ofBone Morphogenetic Protein-2and Transforming Growth Factor-Beta-2in a Chitosan Gel Matrix onCranial Bone Graft Survival in Experimental Cranial Critical Size Defect Model. p.342-5010.1097/SAP.0b013e3181a73045.
    [111] Issa JPM, do Nascimento C, Bentley MVLB, Del Bel EA, Iyomasa MM, Sebald W. Bone repair in ratmandible by rhBMP-2associated with two carriers. Micron.2008;39:373-9.
    [112] Lee JY, Nam SH, Im SY, Park YJ, Lee YM, Seol YJ. Enhanced bone formation by controlled growthfactor delivery from chitosan-based biomaterials. Journal of Controlled Release.2002;78:187-97.
    [113] Akman AC, Seda T l R, Gümü derelio lu M, Nohutcu RM. Bone Morphogenetic Protein-6-loadedChitosan Scaffolds Enhance the Osteoblastic Characteristics of MC3T3-E1Cells. ArtificialOrgans.34:65-74.
    [114] Niu X, Feng Q, Wang M, Guo X, Zheng Q. In vitro degradation and release behavior of porouspoly(lactic acid) scaffolds containing chitosan microspheres as a carrier for BMP-2-derived syntheticpeptide. Polymer Degradation and Stability.2009;94:176-82.
    [115] Arpornmaeklong P, Pripatnanont P, Suwatwirote N. Properties of chitosan-collagen sponges andosteogenic differentiation of rat-bone-marrow stromal cells. International Journal of Oral and MaxillofacialSurgery.2008;37:357-66.
    [116] Wang L, Stegemann JP. Thermogelling chitosan and collagen composite hydrogels initiated with尾-glycerophosphate for bone tissue engineering. Biomaterials.31:3976-85.
    [117] Heughebaert M, LeGeros RZ, Gineste M, Guilhem A, Bonel G. Physicochemical characterization ofdeposits associated with HA ceramics implanted in nonosseous sites. Journal of Biomedical MaterialsResearch.1988;22:257-68.
    [118] Yang Z, Yuan H, Tong W, Zou P, Chen W, Zhang X. Osteogenesis in extraskeletally implanted porouscalcium phosphate ceramics: variability among different kinds of animals. Biomaterials.1996;17:2131-7.
    [119] Yuan H, De Bruijn JD, Li Y, Feng J, Yang Z, De Groot K. Bone formation induced by calciumphosphate ceramics in soft tissue of dogs: a comparative study between porous α-TCP and β-TCP. Journalof Materials Science: Materials in Medicine.2001;12:7-13.
    [120]连芩,李涤尘,李爱民,王珏,靳忠民,贺健康.壳聚糖纤维/磷酸钙骨水泥复合材料人工骨的力学性能.机械工程学报.2008;44:49-53.
    [121]张志斌,黎达光,苏智青,万昌秀.骨修复用聚磷酸钙/壳聚糖复合材料的合成及其细胞相容性.复合材料学报.2007;24:105-9.
    [122] Liao F, Chen Y, Li Z, Wang Y, Shi B, Gong Z. A novel bioactive three-dimensional β-tricalciumphosphate/chitosan scaffold for periodontal tissue engineering. Journal of Materials Science: Materials inMedicine.21:489-96.
    [123] Jeong Park Y, Moo Lee Y, Nae Park S, Yoon Sheen S, Pyoung Chung C, Lee SJ. Platelet derivedgrowth factor releasing chitosan sponge for periodontal bone regeneration. Biomaterials.2000;21:153-9.
    [124]赖仁发,赵清桐,刘湘宁,沈山.壳聚糖/β-磷酸三钙支架复合骨形态发生蛋白后成骨效能研究.华西口腔医学杂志.2010;28:464-7.
    [125] Li J, Dou Y, Yang J, Yin Y, Zhang H, Yao F. Surface characterization and biocompatibility of micro-and nano-hydroxyapatite/chitosan-gelatin network films. Materials Science and Engineering: C.2009;29:1207-15.
    [126] Xianmiao C, Yubao L, Yi Z, Li Z, Jidong L, Huanan W. Properties and in vitro biological evaluationof nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Materials Science andEngineering: C.2009;29:29-35.
    [127] Zhao F, Yin Y, Lu WW, Leong JC, Zhang W, Zhang J. Preparation and histological evaluation ofbiomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials.2002;23:3227-34.
    [128] Ge Z, Baguenard S, Lim LY, Wee A, Khor E. Hydroxyapatite–chitin materials as potential tissueengineered bone substitutes. Biomaterials.2004;25:1049-58.
    [129] Teng S-H, Lee E-J, Yoon B-H, Shin D-S, Kim H-E, Oh J-S. Chitosan/nanohydroxyapatite compositemembranes via dynamic filtration for guided bone regeneration. Journal of Biomedical Materials ResearchPart A.2009;88A:569-80.
    [130] Oliveira JM, Costa SA, Leonor IB, Malafaya PB, Mano JF, Reis RL. Novelhydroxyapatite/carboxymethylchitosan composite scaffolds prepared through an innovative “autocatalytic”electroless coprecipitation route. Journal of Biomedical Materials Research Part A.2009;88A:470-80.
    [131]吕彩霞,姚子华.纳米羟基磷灰石/壳聚糖-硫酸软骨素复合材料的制备及其性能研究.复合材料学报.2007;24:110-5.
    [132] Lopez-Perez PM, da Silva RMP, Serra C, Pashkuleva I, Reis RL. Surface phosphorylation of chitosansignificantly improves osteoblast cell viability, attachment and proliferation. Journal of MaterialsChemistry.20:483-91.
    [133] Wilson Jr OC, Hull JR. Surface modification of nanophase hydroxyapatite with chitosan. MaterialsScience and Engineering: C.2008;28:434-7.
    [134] Li B, Wang XB, Ma JH, Huang LN. Preparation of Phosphorylated Chitosan/Chitosan/Hydroxyapatite Composites by Co-Precipitation Method Advanced Materials Research.2009;79-82:401-4.
    [135] Venugopal J, Prabhakaran MP, Zhang Y, Low S, Choon AT, Ramakrishna S. Biomimetichydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. p.2065-81.
    [136] Li LH, Kommareddy KP, Pilz C, Zhou CR, Fratzl P, Manjubala I. In vitro bioactivity of bioresorbableporous polymeric scaffolds incorporating hydroxyapatite microspheres. Acta Biomaterialia.2010;6:2525-31.
    [137] Chen F, Wang ZC, Lin CJ. Preparation and characterization of nano-sized hydroxyapatite particlesand hydroxyapatite/chitosan nano-composite for use in biomedical materials. Materials Letters.2002;57:858-61.
    [138] Thein-Han WW, Misra RDK. Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bonetissue engineering. Acta Biomaterialia.2009;5:1182-97.
    [139] Thein-Han WW, Misra RDK. Three-dimensional chitosan-nanohydroxyapatite composite scaffoldsfor bone tissue engineering. JOM.2009;61:41-4.
    [140] Wang X, Wang X, Tan Y, Zhang B, Gu Z, Li X. Synthesis and evaluation ofcollagen–chitosan–hydroxyapatite nanocomposites for bone grafting. Journal of Biomedical MaterialsResearch Part A.2009;89A:1079-87.
    [141] Peter M, Ganesh N, Selvamurugan N, Nair SV, Furuike T, Tamura H. Preparation andcharacterization of chitosan-gelatin/nanohydroxyapatite composite scaffolds for tissue engineeringapplications. Carbohydrate Polymers.80:687-94.
    [142] Nitzsche H, Lochmann A, Metz H, Hauser A, Syrowatka F, Hempel E. Fabrication andcharacterization of a biomimetic composite scaffold for bone defect repair. Journal of Biomedical MaterialsResearch Part A.94A:298-307.
    [143] Li Z, Yubao L, Yi Z, Lan W, Jansen JA. In vitro and in vivo evaluation on the bioactivity of ZnOcontaining nano-hydroxyapatite/chitosan cement. Journal of Biomedical Materials Research PartA.93A:269-79.
    [144] Couto DS, Hong Z, Mano JF. Development of bioactive and biodegradable chitosan-based injectablesystems containing bioactive glass nanoparticles. Acta Biomaterialia.2009;5:115-23.
    [145] Zou Q, Li Y, Zhang L, Zuo Y, Li J, Li J. Antibiotic delivery system usingnano-hydroxyapatite/chitosan bone cement consisting of berberine. Journal of Biomedical MaterialsResearch Part A.2009;89A:1108-17.
    [146] Chiang T-Y, Ho C-C, Chen DC-H, Lai M-H, Ding S-J. Physicochemical properties andbiocompatibility of chitosan oligosaccharide/gelatin/calcium phosphate hybrid cements. MaterialsChemistry and Physics.120:282-8.
    [147] Song H-Y, Rahman AHME, Lee B-T. Fabrication of calcium phosphate-calcium sulfate injectablebone substitute using chitosan and citric acid Journal of Materials Science: Materials in Medicine2009;20:935-41.
    [148] Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD. Novel injectable neutralsolutions of chitosan form biodegradable gels in situ. Biomaterials.2000;21:2155-61.
    [149] Liu H, Li H, Cheng W, Yang Y, Zhu M, Zhou C. Novel injectable calcium phosphate/chitosancomposites for bone substitute materials. Acta Biomaterialia.2006;2:557-65.
    [150] Simons K, Ikonen E. How Cells Handle Cholesterol.2000. p.1721-6.
    [151] Hwang JJ, Iyer SN, Li LS, Claussen R, Harrington DA, Stupp SI. Proceedings of the Nat ionalAcademy of Sciences of the United States of America.2002;99:9662-7.
    [152] Zhu H, Ji J, Lin R, Gao C, Feng L, Shen J. Surface engineering of poly(dl-lactic acid) by entrapmentof alginate-amino acid derivatives for promotion of chondrogenesis. Biomaterials.2002;23:3141-8.
    [153]周其凤,王新久.液晶高分子[M].1999;北京:科学出版社.
    [154] Lee I, K A. Single molecular mechanics of a cholesterol-bearing pullulan nanogel at the hydrophobicinterfaces. Biomaterials.2004;25:2911-8.
    [155] Klok H A, Hwang J J, Iyer S N. Cholesteryl-(L-lactic acid)n building blocks for self-assemblingbiomaterial. Macromolecules.2002;35:746-59.
    [156] Cong Y-H, Wang W, Tian M, Meng F-B, Zhang B-Y. Liquid-crystalline behaviours of novel chitosanderivates containing singular and cholesteryl groups. Liquid Crystals.2009;36:455-60.
    [157]原续波,顾鸣岐,原艳波,弘李,王来好,京盛.胆固醇疏水改性壳聚糖自聚集纳米微粒的制备及其动物体内分布研究.高分子通报.2005:122-7.
    [158]陈名懋,杨文智,刘,李学敏,刘玲蓉,李瑞丰.选择性胆甾化壳聚糖两亲材料的合成及其自聚集现象.功能材料.2010;41:1776-9.
    [159]王晓丽,计剑,徐建平,沈家骢.胆固醇改性聚硅氧烷的合成和血液相容性.材料研究学报.2005;19:608-12.
    [160]赵健,刘平,赵艳芳,李小卫,徐建新,葛华.血清非高密度脂蛋白胆固醇与冠状动脉病变的相关性研究.医学研究生学报.2008;21:501-3.
    [161]金少圣.胆汁及相关成分变化在胆结石形成机制中的作用研究.亚太传统医药.2010;6:138-42.
    [162] Sharma S, Patil DJ, Soni VP, Sarkate LB, Khandekar GS, Bellare JR. Bone healing performance ofelectrophoretically deposited apatite–wollastonite/chitosan coating on titanium implants in rabbit tibiae.Journal of Tissue Engineering and Regenerative Medicine.2009;3:501-11.
    [163] Laird DF, Mucalo MR, Yokogawa Y. Growth of calcium hydroxyapatite (Ca-HAp) on cholesterol andcholestanol crystals from a simulated body fluid: A possible insight into the pathological calcificationsassociated with atherosclerosis. Journal of Colloid and Interface Science.2006;295:348-63.
    [1] Matthew J. Olszta, Xingguo Cheng, Sang Soo Jee, Rajendra Kumar, Yi-Yeoun Kim, Michael J.Kaufman, Elliot P. Douglas, Laurie B. Gower a, Bone structure and formation: A new perspective.Materials Science and Engineering R,2007,58:77-116
    [2] Lan W., Yubao L., Yi Z., Zhang L., Weihu Y., Yuanhua M. Study on the biomimetic propertiesof bone substitute material: nano-hydroxyapatite/polyamide66composite. Materials Science Forum,2006,938:510–1
    [3]廖鹏飞,毛萱,汤顺清,欧阳健明,吴佩珠.卵磷脂参与沉淀法制备纳米羟基磷灰石.暨南大学学报(自然科学版),2004,25(1):72-5
    [4] N. Roveria, G. Falinia, M. C. Sidotia, A. Tampierib, E. Landib, M. Sandrib and B. Parma.Biologically inspired growth of hydroxyapatite nanocrystals inside self-assembled collagen fibers.terials Science and Engineering: C,2003,23(3):441-6
    [5] T. Ikoma, N. Azuma, S.Itoh, H. Omi, S. Nishikawa, S. Toh and J. Tanaka. Spherical PorousMicroparticle of Hydroxyapatite/Polysaccharides Nanocomposites. Key Engineering Materials,2005,(288-289):159-62
    [6]张利,李玉宝,魏杰,左奕,韩纪梅,吴兰,王学江.纳米羟基磷灰石/壳聚糖复合骨修复材料的共沉淀法制备及其性能表征.功能材料,2005,36(3):441-4
    [7] CHEN F, WANG Z C, LIN C J. Preparation and characterization of nano-sized hydroxyapatiteparticles and hydroxyapatite/chitosan nano-composite for use in biomedical materials. MaterialsLetters,2002,57(4):858-61
    [8]罗丙红,程松,钟翠红,焦延鹏,周长忍.超临界CO2中CS-g-PDLLA的合成及其与PDLLA多孔支架材料的原位构建.材料研究学报,2010,24(3):225-31
    [9] Laird DF, Mucalo MR, Yokogawa Y. Growth of calcium hydroxyapatite (Ca-HAp) on cholesteroland cholestanol crystals from a simulated body fluid: A possible insight into the pathological calcificationsassociated with atherosclerosis. Journal of Colloid and Interface Science.2006;295:348-63.
    [10]朱敏鹰,李红,李立华,周长忍.反相微乳液制备纳米羟基磷灰石及其表征.材料导报,2006,20(3):135-7
    [11] Junjie Li,YiPing Chen, Yuji Yin, Fanglian Yao and Kangde Yao. Modulation ofnano-hydroxyapatite size via formation on chitosan–gelatin network film in situ. Biomaterials,2007,28(5),781-90
    [12] George R., Mcelhaney R. N. The effect of cholesterol and epicholesterol on the activity andtemperature dependence of the purified, phospholipid-reconstituted(Na++Mg2+)-ATPase fromAcholeplasma laidlawii B membranes.Biochim lcaet Biophysica Acta,1992,1107(1):111-8
    [13]吴冰,姚松年,童华,钟桂荣.胆固醇对卵磷脂有序体中生成CaCO3晶型的影响.无机化学学报,1999,15(3):341-6
    [14] Yan C L, Xue D F. Novel Self-assembled MgO Nanosheet and Its Precursors. J. Phys. Chem.B,2005,109(25):12358-61
    [15] Li, L. H.; Kommareddy, K. P.; Pilz, C.; Zhou, C. R.; Fratzl, P.; Manjubala, I., In vitro bioactivityof bioresorbable porous polymeric scaffolds incorporating hydroxyapatite microspheres. ActaBiomaterialia6,(7),2525-31.
    [16]朱丹琛,肖秀峰,刘榕芳,傅涵萍,徐佳,王梅芳.以环糊精为模板水热合成羟基磷灰石.人工晶体学报,2010,39(1):214-20
    [1] Bonucci E. Fine structure of early cartilage calcification. Journal of Ultrastructure Research.1967;20:33-50.
    [2] Ali SY, Sajdera SW, Anderson HC. Isolation and Characterization of Calcifying Matrix Vesicles fromEpiphyseal Cartilage. Proceedings of the National Academy of Sciences.1970;67:1513-20.
    [3] Ennever J, Riggan LJ, Vogel JJ. Proteolipid and collagen calcification, in vitro. Cytobios.1984;39:151-7.
    [4] Iannotti JP, Naidu S, Noguchi Y, Hunt RM, Brighton CT. Growth Plate Matrix Vesicle Biogenesis: TheRole of Intracellular Calcium. Clinical Orthopaedics and Related Research.1994;306:222-9.
    [5] Du C, Cui FZ, Zhang W, Feng QL, Zhu XD, de Groot K. Formation of calcium phosphate/collagencomposites through mineralization of collagen matrix. Journal of Biomedical Materials Research.2000;50:518-27.
    [6] Xu S, Yu JJ. Beneath the Minerals, a Layer of Round Lipid Particles Was Identified to Mediate CollagenCalcification in Compact Bone Formation. Biophysical Journal.2006;91:4221-9.
    [7] Yu JM, Li YJ, Qiu LY, Jin Y. Self-aggregated nanoparticles of cholesterol-modified glycol chitosanconjugate: Preparation, characterization,and preliminary assessment as a new drug delivery carrier.European Polymer Journal.2008;44:555-65.
    [8] Shaikn V, Madar N, Lonikar S. Thermontropic behavior of cholesterol-linked polysaccarides. Journal ofApplied Polymer Science.1998;70:195-201.
    [9]武长城,李兰英,张栋,宋慧.丁二酸单胆固醇酯的合成研究.天津工业大学学报.2005;24:27-9.
    [10] Shaikn V, Madar N, Lonikar S. Thermotropic liquid crystalline behavior of cholesterol-linkedhydroxyethyl cellulose. Journal of Applied Polymer Science.1999;72:763-70.
    [11]原续波,顾鸣岐,原艳波,弘李,王来好,京盛.胆固醇疏水改性壳聚糖自聚集纳米微粒的制备及其动物体内分布研究.高分子通报.2005;10:122.
    [12]于海峰,潘明旺,李佐邦,朱普坤.羧甲基甲壳素与壳聚糖的合成及其性能研究.河北工业大学学报.2000;29:22-5.
    [13] Dong Y, Ruan Y, Wang H, Zhao Y, Bi D. Studies on glass transition temperature of chitosan with fourtechniques. Journal of Applied Polymer Science.2004;93:1553-8.
    [14]罗丙红,程松,钟翠红,焦延鹏,周长忍.超临界CO2中CS-g-PDLLA的合成及其与PDLLA多孔支架材料的原位构建.材料研究学报.2010;24:225-31.
    [1] Bengt K. Biological surface science. Surface Science.2002;500:656-77.
    [2]尤玲玲,赵瑞芳,鹏陈,汤顺清.琼脂糖的疏水化改性及生物相容性.高分子材料科学与工程.2011;27:67-70.
    [3]高长有,马列.医用高分子材料.北京.2006;化学工业出版社:96-8.
    [4] Marx KA. Quartz Crystal Microbalance:A useful tool for studying thin polymer films and complexbiomolecular systems at the solution-surface interface. Biomacromolecules.2003;4:1099-120.
    [5] Buttry DA, Ward MD. Measurement of interfacial processes at electrode surfaces with theelectrochemical quartz crystal microbalance. Chem Rev.1992;92:1355-79.
    [6] K.C.迪伊, D.A.普莱奥, R比齐奥斯编著,黄楠译.组织-生物材料相互作用导论.化学工业出版社2005:58-9.
    [7] G. Sauerbrey Z. Verwendung von Schwingquarzen zur Microwagung. Phys.1959;155:206-22.
    [8]张奕,曾戎,周长忍.基于QCM-D技术的合成高分子的蛋白吸附研究.高分子材料科学与工程.2009;25:76-82.
    [9]张基昌,李淑梅,宋春莉,赵雷,刘佳,刘斌.不同疏水性能冠脉支架表面对溶血性能及蛋白吸附影响.中国实验诊断学.2010;14:528-30.
    [10] Lynch I. Are there generic mechanisms governing interactions between nanoparticles and cells?Epitope mapping the outer layer of the protein-material interface. Physica A: Statistical and TheoreticalPhysics.2007;373:511-20.
    [11] Gallagher WM, Lynch I, Allen LT. Molecular basis of cell-biomaterial interaction: Insights gainedfrom transcriptomic and proteomic studies. Biomaterials.2006;27:5871-81.
    [12]夏科.壳聚糖-硫酸软骨素自组装膜体系的AFM研究.硕士毕业论文.2003:15-7.
    [13]夏科,蔡继业,王彬,马豫峰.壳聚糖溶致液晶性的研究.无锡轻工大学学报.2003;22:36-40.
    [14] Klok H-A, Hwang JJ, Iyer SN, Stupp SI. Cholesteryl-(l-Lactic Acid)n Building Blocks forSelf-Assembling Biomaterials. Macromolecules.2002;35:746-59.
    [15] Wilson C J, Clegg R E, Leavesley D E. Mediation of biomaterial-cell interactions by adsorbedproteins:a review. Tissue Eng.2005;11:1-18.
    [16] Keselowsky B G, Collard D M, Garcia A J. Surface chemistry modulates fibronectin conformation anddirects integrin binding and specificity to control cell adhesion. Biomed Mater Res A.2003;66:247-59.
    [17] Lan M A. Myoblast proliferation and differentiation on fibronectin-coated self assembled monolayerspresenting different surface chemistries. Biomaterials.2005;26:4523-31.
    [18] Anderson J M. Biological responses to materials. Annual Review of Materials Research.2001;31:81-110.
    [19] Lynch I. Are there generic mechanisms governing interactions between nanoparticles and cells Epitopemapping the outer layer of the protein-material interface. Physica a-Statistical Mechanics and ItsApplications.2007;373:511-20.
    [20] Taborelli M. Bovine serum albumin conformation on methyl and amine functionalized surfacescompared by scanning force microscopy. Biomed Mater Res A.1995;29:707-14.
    [21] Thomas C H. The role of vitronectin in the attachment and spatial distribution of bone-derived cells onmaterials with patterned surface chemistry. Biomed Mater Res A.1997;37:81-93.
    [22] Ta T C, Mcdermott M T. Mapping interfacial chemistry induced variations in protein adsorption withscanning force microscopy. Anal Chem.2000;72:2627-34.
    [23] Larsericsdotter H, Oscarsson S, Buijs J. Structure,stability,and orientation of BSA adsorbed to silica.Colloid and Interface Science.2005;289:26-35.
    [24]戴志飞,岳秀丽,王金锐.仿生膜材料与技术.北京:科学出版社,2010:111-28.
    [1] Hench LL, Polak JM. Third-Generation Biomedical Materials.2002. p.1014-7.
    [2] Dalby MJ, Childs S, Riehle MO, Johnstone HJH, Affrossman S, Curtis ASG. Fibroblast reaction toisland topography: changes in cytoskeleton and morphology with time. Biomaterials.2003;24:927-35.
    [3] Chou L, Firth JD, Uitto V-J, Brunette DM. Effects of titanium substratum and grooved surfacetopography on metalloproteinase-2expression in human fibroblasts. Journal of Biomedical MaterialsResearch.1998;39:437-45.
    [4] Matsuzaka K, Walboomers XF, de Ruijter JE, Jansen JA. The effect of poly-L-lactic acid with parallelsurface micro groove on osteoblast-like cells in vitro. Biomaterials.1999;20:1293-301.
    [5] Altankov G, Grinnell F, T G. Studies on the biocompatibility of materials: fibroblast reorganization ofsubstratum-bound fibronectin on surfaces varying in wettability. J Biomed Mater Res1996;30:385-91.
    [6] Georgi A, Thomas G, Natalia K, Wolfgang A, Dieter P. Morphological evidence for a differentfibronectin receptor organization and function during fibroblast adhesion on hydrophilic and hydrophobicglass substrata Journal of Biomaterials Science, Polymer Edition.1997;8:721-40.
    [7] Shelton RM, Rasmussen AC, Davies JE. Protein adsorption at the interface between charged polymersubstrata and migrating osteoblasts. Biomaterials.1988;9:24-9.
    [8] Smetana Jr K, Luk J, Pale kov V, Bart ko J, Liu F-T, Vack J, et al. Effect of chemical structure ofhydrogels on the adhesion and phenotypic characteristics of human monocytes such as expression ofgalectins and other carbohydrate-binding sites. Biomaterials.1997;18:1009-14.
    [9] Lee JH, Jung HW, Kang IK, HB. L. Cell behaviour on polymer surfaces with different functional groups.Biomaterials.1994;15:705-11.
    [10] Tamada Y, Ikada Y. Fibroblast growth on polymer surfaces and biosynthesis of collagen. Journal ofBiomedical Materials Research.1994;28:783-9.
    [11] Lee JH, Jung HW, Kang I-K, Lee HB. Cell behaviour on polymer surfaces with different functionalgroups. Biomaterials.1994;15:705-11.
    [12] Norman AW, Mizwicki MT, Norman DPG. Steroid-hormone rapid actions, membrane receptors and aconformational ensemble model. Nat Rev Drug Discov.2004;3:27-41.
    [13]王正辉,萧翼之.高分子生物材料的研究进展.高分子材料科学与工程.2005;21:19-22.
    [14]吕晓迎.牙科材料细胞毒性评定的新方法(MTT试验).中华口腔医学杂志.1995;30:377-9.
    [15]郝和平.医疗器械生物学评价标准实施指南[M].北京:中国标准出版社.2000:100-1.
    [16] JANMEY PA. The Cytoskeleton and Cell Signaling: Component Localization and MechanicalCoupling and Mechanical Coupling. PHYSIOLOGICAL REVIEWS.1998;78:763-81.
    [17] Hsu S-h, Tang C-M, Chiu J-J, Liao T-C, Lin C-C, Iwata H. Cell Migration Rate on Poly (ε‐caprolactone)/Poly (ethylene glycol) Diblock Copolymers and Correlation with the Material Sliding Angle.Macromol Biosci.2007;7:482–90.
    [18]韩昭昭,孔桦,孟洁,王超英,朱广瑾,解思深.取向纳米纤维聚合物膜引导内皮细胞生长的作用.高等学校化学学报.2008;29:1070-3.
    [19] Dalby MJ, Riehle MO, Johnstone H, Affrossman S, Curtis ASG. In vitro reaction of endothelial cells topolymer demixed nanotopography. Biomaterials.2002;23:2945-54.
    [20] Price RL, Waid MC, Haberstroh KM, Webster TJ. Selective bone cell adhesion on formulationscontaining carbon nanofibers. Biomaterials.2003;24:1877-87.
    [21]李良,陈槐卿.细胞核结构与力学生物学.医用生物力学.2009;24:1-5.
    [1] Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramicsprosthetic materials. J Biomed Mater Res.1972:117-41.
    [2] Jarcho M, Kay JI, Gummaer RH, Drobeck HP. Tissue,cellular and subcellular events at a bone-ceramichydroxyapatite interface. J Bioeng.1977:179-92.
    [3] Rejda BJ, Peelen JGJ, de Groot K. Tricalcium phosphate as a bone substitute. J Bioeng.1977;1:93-7.
    [4] Legeros RZ, Lin S, Rohanizadeh R, Mijares D, Legeros JP. Biphasic calcium phosphatebioceramics:preparation,properties and applications. J Mater Sci Mater Med.2003:201-9.
    [5] Kikubo T, Shigematsu M, Nagashima Y, Tashiro M, Nakamura T, Yamamuro T. Apatite andwollastonite-containing glass-ceramic for prosthetic application. Bull Inst Chem Res Kyoto Univ.1982:260-8.
    [6] Kokubo T. Bioactive glass ceramics:properties and applications. Biomaterials.1991:155-63.
    [7] Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials.2006;27:2907-15.
    [8] Rameshwar R. Rao, Alex Jiao, David H. Kohn, Stegemann. JP. Exogenous mineralization of cell-seededand unseeded collagen-chitosan hydrogels using modified culture medium. Acta Biomater.2012;doi:10.1016/j.actbio.2012.01.001.
    [9] Murphy WL, Kohn DH, DJ. M. Growth of a continuous bonelike mineral within porouspoly(lactide-co-glycolide) scaffolds in vitro. J Biomed Mater Res A.1999;50:50-8.
    [10] Kokubo T, Kushitani H, Sakka S, Kitsugi T, T. Y. Solutions able to reproduce in vivo surface-structurechanges in bioactive glass-ceramic A-W. J Biomed Mater Res.1990;24:721-34.
    [11] Kohn DH, Shin K, Jayasuriya AC, Leonova EV, RA. R. Self-assembled mineral scaffolds as modelsystems for biomineralization and tissue engineering. Toronto: University of Toronto Press;.2005.
    [12] Luong LN, Hong SI, Patel RJ, Outslay ME, DH. K. Spatial control of protein within biomimeticallynucleated mineral. Biomaterials.2006;27:1175-86.
    [13] Murphy W, Hsiong S, Richardson T, Simmons C, D. M. Effects of a bonelike mineral film onphenotype of adult human mesenchymal stem cells in vitro. Biomaterials.2005;26:303-10.
    [14]李立华,丁珊,周长忍.快速温和有效的壳聚糖生物矿化方法探讨.功能材料.2010;11:1955-8.
    [15] Li L, Li B, Zhao M, Ding S, Zhou C. Single-step mineralization of woodpile chitosan scaffolds withimproved cell compatibility. Journal of biomedical materials research, part B.2011;98B:230-7.
    [16]罗丙红,程松,钟翠红,焦延鹏,周长忍.超临界CO2中CS-g-PDLLA的合成及其与PDLLA多孔支架材料的原位构建.材料研究学报.2010;24:225-31.
    [17] Olszta MJ, Cheng X, Jee SS, Kumar R, Kim Y-Y, Kaufman MJ. Bone structure and formation:A newperspective. Materials Science and Engineering R.2007;58:77-116.
    [18] George R. MRN. The effect of cholesterol and epicholesterol on the activity and temperaturedependence of the purified, phospholipid-reconstituted (Na++Mg2+)-ATPase from Acholeplasmalaidlawii B membranes. Biochim lcaet Biophysica Acta.1107:111-8.
    [19]丁珊,唐敏健,周长忍,田金环,李立华.胆固醇/卵磷脂对壳聚糖模板中经基磷灰石微结构的影响.材料研究学报.2011;25:381-5.
    [20]李红,朱敏鹰,李立华,周长忍.原位沉析羟基磷灰石-壳聚糖骨组织工程支架材料的研制.功能材料.2009;37:909-11.
    [21]李红,朱敏鹰,周长忍.原位水化法制备羟基磷灰石/壳聚糖复合支架材料.功能材料.2010;2:256-159.
    [22] González M, Hernández E, Ascencio JA, Pacheco F, Pacheco S, Rodríguez R. Hydroxyapatite crystalsgrown on a cellulose matrix using titanium alkoxide as a coupling agent J Mater Chem.2003;13:2948-51.
    [23] Jiang H.D, Liu X.Y, Zhang G, Li Y. Kinetics and template nucleation of self-assembled hydroxyapatitenanocrystallites by chondroitin sulphate. The journal of biological chemistry.2005;280:42061-5.
    [24] Chen SF, Yu S, Yu B, Ren L, Yao WT, C lfen H. Solvent Effect on Mineral Modification: SelectiveSynthesis of Cerium Compounds by a Facile Solution Route. Chem Eur J.2004;10:3050-8.
    [25] Laird DF, Mucalo MR, Yokogawa Y. Growth of calcium hydroxyapatite (Ca-HAp) on cholesterol andcholestanol crystals from a simulated body fluid: A possible insight into the pathological calcificationsassociated with atherosclerosis. Journal of Colloid and Interface Science.2006;295:348-63.
    [26] Suzuki O. Interface of synthetic inorganic biomaterials and bone regeneration. International CongressSeries2005;1284:274-83.
    [27] Rudin VN, Komarov VF, Melikhov IV, Minaev VV, Orlov AY, Bozhevolnov VE. Method forproducing nano-sized crystalline hydroxyapatite. United States Patent.7169372.
    [28] Ito H OY, and Imai H. Selective Synthesis of Various Nanoscale Morphologies of Hydroxyapatite viaan Intermediate phase. Crystal growth and design.2008;8:1055-9.
    [29] Park H, Baek DJ, Park YM, Yoon SY. Computational modeling of ionic transport in continuous andbatch electrodialysis. J Mater Sci.2004;39:2531-55.
    [30] Dickinson SR, McGrath KM. Switching between kinetic and thermodynamic control:calciumcarbonate growth in the presence of a simple alcohol. Journal of Materials Chemistry.2003;13:928-33.
    [31] Falini G, Gazzano M, Ripamonti. A. Magnesium calcitecrystallizatin from water–alcohol mixtures.Chem Commun.1996:1037-8.
    [32] Lahiri J, Xu G, Dabbs D.M, Yao N, Aksay I.A, Groves J.T. Designed amphiphilic porphyrin templatesfor the oriented nucleation of calcium carbonate. JAmChem Soc.1997;119:5449-50.
    [33] Manoli F, E.Dalas. Effect of ferricenium salts on the crystal growth of hydroxyapatite in aqueoussolution. J Cryst Growth2000;218:359-64.
    [34] Qi LM, Li J, Ma J. Morphological control of CaCO3particles by a double-hydrophilic blockCopolymer in Mixed Alcohol-water solvent. Chem J Chin Univ.2002;23:1595-600.
    [35] Fulmer M.T, Brown P.W. J. Hydrolysis of dicalcium phosphate dihydrate to hydroxyapatite. Mater Sci:Mater Med.1998;9:197-202.
    [1] Altankov G, Grinnell F, T G. Studies on the biocompatibility of materials: fibroblast reorganization ofsubstratum-bound fibronectin on surfaces varying in wettability. J Biomed Mater Res1996;30:385-91.
    [2] Hallab NJ, Bundy KJ, O’connor K, Moses RL, Jacobs JJ. Evaluation of Metallic and PolymericBiomaterial Surface Energy and Surface Roughness Characteristics for Directed Cell Adhesion. TissueEngineering.2001;7:55-71.
    [3] Smetana Jr K, Luká J, Pale ková V, Bart ňková J, Liu F-T, Vacík J, et al. Effect of chemical structureof hydrogels on the adhesion and phenotypic characteristics of human monocytes such as expression ofgalectins and other carbohydrate-binding sites. Biomaterials.1997;18:1009-14.
    [4] Shelton RM, Rasmussen AC, Davies JE. Protein adsorption at the interface between charged polymersubstrata and migrating osteoblasts. Biomaterials.1988;9:24-9.
    [5]金少圣.胆汁及相关成分变化在胆结石形成机制中的作用研究.亚太传统医药.2010;6:138-42.
    [6]赵健,刘平,赵艳芳,李小卫,徐建新,葛华.血清非高密度脂蛋白胆固醇与冠状动脉病变的相关性研究.医学研究生学报.2008;21:501-3.
    [7]丁焕文,何锡煌,苏增贵.新生小鼠成骨细胞体外培养及其形态结构变化.解放军医学杂志.1998;23:449-51.
    [8]邓耀祖,屈伸.医学分子细胞生物学.北京:科学出版社.2002:128-9.
    [9] Akisaka T, Yoshida H, Inoue S, Shimizu K. Organization of Cytoskeletal F-Actin, G-Actin, and Gelsolinin the Adhesion Structures in Cultured Osteoclast. Journal of Bone and Mineral Research.2001;16:1248-55.
    [10] Alborzi A, Mac K, Glackin CA, Murray SS, Zernik JH. Endochondral and intramembranous fetal bonedevelopment:Osteoblastic cell proliferation and expression of alkaline phosphatase, m-twist, and histoneH4. J Craniofac Genet Dev Biol.1996;16:94-106.
    [11] Jiang C-J, Weeds AG, Khan S, Hussey PJ. F-actin and G-actin binding are uncoupled by mutation ofconserved tyrosine residues in maize actin depolymerizing factor(ZmADF). Proc Natl Acad Sci U S A1997;94:9973-8.
    [12] James MF, Manchanda N, Gonzalez-agosti C, Hartwig JH, Ramesh V. The neurofibromatosis2proteinproduct merlin selectively binds F-actin but not G-actin, and stabilizes the filaments through a lateralassociation. Biochem J.2001;356:377-86.
    [13] Anselme K. Osteoblast adhesion on biomaterials. Biomaterials.2000;21:667-81.
    [14]刘景生.细胞信息与调控.第二版,北京:中国协和医科大学出版社.2004:315-6,586.
    [15]卞建春,顾建红,燕沈,卓丽玲,林王,刘宗平.1α,25-二羟维生素D3对大鼠成骨细胞骨架、间隙连接通讯及[Ca2+]i的影响.营养学报.2009;31:339-43.
    [16]王身笏,许月初,李德强.补钙对低钙膳食儿童骨矿物质含量的影响.营养学报.1996;18:97-102.
    [17]童安莉,陈璐璐,丁桂芝.成骨细胞骨形成机制研究进展.中国骨质疏松杂志.1999;5:60-4.
    [18] Genge BR, Sauer GR, Wu LN. Correlation between loss of alkaline phosphatase activity andaccumulation of calcium during matrix vesicle-mediated mineralization. The Journal of BiologicalChemistry.1988;263:18513-9.
    [19]庄乐南,齐浩,孙润广,陈文芳,刘颖,朱杰.不同固定条件下细胞与活细胞的原子力显微镜实时观察.生物物理学报.2005;21:345-50.
    [20]胡明铅,蔡继业.不同刺激条件下人外周血淋巴细胞超微结构与粘滞力的AFM分析.分析测试学报.2008;27:1263-8.
    [21]梁志红,周长忍,李立华.几种改性方法对胶原膜微观结构的影响.高分子材料科学与工程.2006;22:181-4.
    [22] Gopalakrishna P, Rangaraj N, Pande G. Cholesterol alters the interaction of glycosphingolipid GM3with α5β1integrin and increases integrin-mediated cell adhesion to fibronectin. Experimental CellResearch.2004;300:43-53.
    [23] Chandar N, Viselli S,主编,刘佳,主译.图解细胞与分子生物学.北京:科学出版社.2011;第一版:149-54.
    [24] Wei Y, Yang X, Liu Q, Wilkins JA, Chapman HA. A Role for Caveolin and the Urokinase Receptor inIntegrin-mediated Adhesion and Signaling.1999. p.1285-94.
    [25] Norman AW, Mizwicki MT, Norman DPG. Steroid-hormone rapid actions, membrane receptors and aconformational ensemble model. Nat Rev Drug Discov.2004;3:27-41.
    [26] Pande G. The role of membrane lipids in regulation of integrin functions. Current Opinion in CellBiology.2000;12:569-74.
    [27] Gopalakrishna P, Chaubey SK, Manogaran PS, Pande G. Modulation of α5β1integrin functions by thephospholipid and cholesterol contents of cell membranes. Journal of Cellular Biochemistry.2000;77:517-28.
    [28] Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol.2000;1:31-9.
    [29] Green JM, Zhelesnyak A, Chung J, Lindberg FP, Sarfati M, Frazier WA. Role of Cholesterol inFormation and Function of a Signaling Complex Involving αvβ3, Integrin-Associated Protein (Cd47), andHeterotrimeric G Proteins.1999. p.673-82.
    [30] Simons K, Ikonen E. How Cells Handle Cholesterol.2000. p.1721-6.
    [31] Yates AJ, Rampersaud A. Sphingolipids as Receptor Modulators: An Overview. Annals of the NewYork Academy of Sciences.1998;845:57-71.
    [32] Nakano J, Yasui H, Lloyd KO, Muto M. Biologic Roles of Gangliosides GM3and GD3in theAttachment of Human Melanoma Cells to Extracellular Matrix Proteins. J Investig Dermatol.1999;4:173-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700