用户名: 密码: 验证码:
自动控向垂钻系统小型化设计的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钻井过程中影响井斜的因素很多,且井斜给钻井、完井作业等带来一系列的危害,并造成巨大损失。国外近年来研制了VDS、SDD、Vertitrak、PowerV等具有主动防斜能力的自动化井斜闭环控制系统,成功解决了高陡构造、断层、盐层等情况下钻进时的井眼质量问题。自动控向垂直钻井技术是在工程钻井钻进时随钻测量钻孔的偏斜,确定孔斜后随即通过控制纠斜单元来纠正井斜,是当代钻探技术发展的热点。在实际的钻探工程中,各种高垂直度要求的钻孔越来越多,自动控向垂直钻进技术也就成为目前钻探工程界研究和工程实践的一个重要方向。
     自动垂直钻井系统主要由测斜、信号传输、控制、钻具纠斜及动力源等几个基本的单元组成。测斜单元用于测量钻孔的井斜角与相对方位角等参数;信号传输单元将井下的参数信息传送到地面监控中心,并接收地面控制指令;井下控制单元对井斜角和相对方位角等信息进行处理和比较,检测实际倾角与垂直度的偏差,然后发出纠斜控制指令驱动纠斜单元;钻具纠斜单元按纠斜控制指令动作,给出一个适当的合力矢量指向高边,保持钻具向垂直方向钻进。动力源用于给纠斜单元的液压泵组、液压控制阀组以及其它电气元件提供动力。
     近年来,国外已开始逐步重视小井眼钻井技术的研究和实际应用,在取芯钻进等地质钻探中,小口径井眼尺寸的钻探占了较大比重。在油气开采领域,由于小井眼钻井技术在降低油气勘探和开发成本、提高经济效益、减轻环境污染等方面比常规钻井具有十分突出的优越性。自动控向垂直钻井系统的小型化随着市场需求特别是随着技术的发展而不断进步。然而国外在这一研究领域一直对我国处于技术封锁状态。因此,打破国外大公司技术垄断,开发适合我国国情的自动化垂钻系统就显得很有意义。自动化垂钻系统的小型化将使得小井眼钻机的自动控向垂直钻井成为可能,其经济效益更为显著。开发出适合我国国情的小型化自动化垂钻系统,对我国的深部资源勘探和开采是很有意义的事情。
     论文主要根据自动控向垂钻系统的功能原理,对自动控向垂钻系统的整体结构进行了分析,指出实现自动控向垂钻系统的小型化设计的重点是实现随钻测量仪(MWD)、动力源以及纠斜单元的小型化。然后分别对上述三种单元工作原理和结构形式进行了分析,提出了实现三者小型化的设计思路。
     全文共分六章,每章内容如下:
     第一章:
     本章主要论述了国内外对自动控向垂钻系统的研究历史和研究现状;分析了钻采领域对小井眼钻探和小口径自动控向垂钻系统的需求,提出了本文的研究目标和研究内容。把研究重点定位于自动控向垂钻系统小型化设计所涉及到的与纠斜单元、通讯单元与动力单元有关的机械及液压方面的关键技术问题。同时对本文的研究背景和研究意义也进行了阐述。
     第二章:
     主要根据自动控向垂钻系统的功能原理,对自动控向垂钻系统的整体结构进行了分析,指出实现自动控向垂钻系统的小型化设计的重点是实现随钻测量仪(MWD)、动力源以及纠斜单元的小型化。然后分别对上述三种单元工作原理和结构形式进行了分析,提出了实现三者小型化的设计思路,其中重点分析了纠斜单元的几种纠斜策略和对应的结构布置形式,提出采用单缸独立动作与双缸异步动作结合的纠斜策略,确定以单泵组三液压缸横向布置形式作为纠斜单元小型化设计的方案。
     第三章:
     本章主要根据小孔径电磁波随钻测量仪工作的工作环境条件及小型化设计要求,解决其机械结构设计上遇到的抗压、密封、抗震、散热问题,以及解决狭小空间内实现电气可靠和快速联接的有关问题。在进行机械密封结构设计时,采用高级非线性有限元软件SC.Marc对管筒连接头处的O形橡胶圈径向密封以及端面处的O形橡胶圈轴向密封进了仿真运算,利用仿真运算结果,对初始设计中O形橡胶圈密封沟槽的结构尺寸以及O形橡胶圈的过盈量等参数进行了优化。最后介绍了小孔径电磁波随钻测量仪的实际装调和试验情况,以及对原设计方案的改进意见。
     第四章:
     本章根据适应于纠斜单元小型化设计的纠斜策略,分析了几种液压控制系统方案的特点,设计了采用二位二通螺纹插装阀换向和保压的液压控制系统方案,利用AMESim软件建立了液压控制系统仿真模型,在不同压力条件下,对液压缸单缸动作、双缸同步动作、双缸异步动作以及停泵保压工况进行了仿真运算和分析,利用仿真结果调整了卸荷阀等部分元件的参数。随后以压力传感器、数据采集卡、PLC控制器及微机等组成的测试平台,对所设计的液压系统进行了试验测试,验证了仿真结果的合理性,同时也肯定了自动控向垂钻系统纠斜单元小型化设计思路的正确性。
     第五章:
     本章主要介绍了井下涡轮发电机设计的基本理论,分析了影响井下涡轮发电机效率的因素,对井下涡轮发电机的几种结构形式进行三维建模,利用计算流体力学的方法,使用CFD软件FloWorks对井下涡轮发电机不同外部结构形式下的内部流场特性进行了仿真,提出了适于井下涡轮发电机小型化的结构方案,并就小口径井下涡轮发电机的结构设计与试验方案提出了参考建议。
     第六章:
     第六章为总结部分。主要介绍了经过有关的理论分析和试验研究,获得的一些研究成果和主要创新点,并指出了论文中的不足之处,提出了进一步研究的内容和思路,最后对我国自动控向垂钻系统的技术发展进行了乐观的展望。
In the well drilling process, there are many factors lead to slanting well. The slant for the well drilling and the well completion work bring a series of harms, and creates heavy loss. The foreign countrys recent years developed a automated well slanting closed-loop initiative control system such as VDS,SDD, Vertitrak, PowerV to against slant. The success has solved the hole quality problem when in high steep situations, complex structure and salt deposit area. Automatic Directional Vertical Drilling system (VDS)aims to restrain the drilling path to the desirable track by imposing force for well straightening through control system immediately when detecting the deviation of drilling hole through MWD (measurement while drilling). At present, the research on Automatic Directional Vertical Drilling technology is the hot pot of modern drilling technology development. Particularly there are more and more vertical drilling projects, so Automatic Vertical Drilling technology has become an important trend for research and project practice.
     The system is composed of four basic units respectively for inclinometer, signal transmission, control, drilling oblique correction and the power source. The inclinometer unit measures the parameters of the apex angle and the relative azimuth angle of the hole; then the signal transmission unit sends the parameters to the aboveground monitoring and control unit and receives the control instructions; the down hole control unit compares and processes the message received, measures the deviation between the actual inclination angle and the verticality and sends control instructions to drive the well straightening device. Power source is used to powered for skew correction unit pump group, hydraulic control valves and other electrical components. which then imposes an appropriate resultant force vector directing upward and keep the drilling tool moving in the vertical direction.
     In recent years, foreign countries have begun to gradually pay attention slimhole drilling technology and practical applications.In the core drilling and other geological drilling, the small diameter borehole drilling dimensions accounted for a larger share. In the oil and gas field,slimhole drilling technology has even more advantages than conventional drilling In reducing oil and gas exploration and development costs, improve economic efficiency, reducing environmental pollution, etc.
     Automatic Directional Vertical Drilling system miniaturization is constantly developing with the market demand, especially as technology advances. However, overseas means us to take the technological blockade in this field of study. Therefore, to break the technological monopoly of foreign companies to develop China's national conditions suitable for automated vertical drilling system becomes very significant. VDS miniaturization has made Automatic Vertical Drilling slim hole drilling rig possible.It is even more significant economic benefits Development of China's national conditions suitable for the miniaturization of automatic vertical drilling system has great significance.i n our deep resource exploration and exploitation.
     Paper analyzes the overall structure of the VDS according to its principle of functional. It pointed out that the realization of its focus on the miniaturization of the design is to achieve the miniaturization of drilling measuring instrument (MWD), the power source as well as the correcting oblique unit.Then each of these three kinds of units working principle and structure were analyzed, it put forward proposals to achieve he design of the three units Full-text is divided into six chapters, each chapter is as follows:
     Chapter 1:
     this part is introduction. This chapter deals primarily on the VDS at home and abroad to research history and research status. Paper analyzes the business needs of the VDS system in the field of drilling and mining,and presents the research objectives and research content. We focus on the study design targeted at miniaturization VDS involved with correcting oblique unit, communication unit and power unit of the machinery and hydraulic aspects of the key technical issues.at the same time, this research background and research interests have also been described.
     Chapter 2:
     Paper analyzes the overall structure of the VDS according to its principle of functional. It pointed out that the realization of its focus on the miniaturization of the design is to achieve the miniaturization of drilling measuring instrument (MWD), the power source as well as the correcting oblique unit.Then each of these three kinds of units working principle and structure were analyzed, it put forward proposals to achieve he design of the three units We focus on the study design targeted at miniaturization VDS involved with correcting oblique unit, communication unit and power unit of the machinery and hydraulic aspects of the key technical issues.at the same time, this research background and research interests have also been described.Paper focused on the analysis of several correction oblique strategy and the form of the corresponding structural arrangement. It analyzes the overall structure of VDS according to the function principle of it.Paper presents a combination of both methods which controling a single hydraulic cylinder operates independently and controling two hydraulic cylinders asynchronous action.
     Chapter 3:
     This chapter mainly based on the working environment conditions and the miniaturization design requirements of small small-aperture electromagnetic measurement while drilling instrument(EM-MWD)to solve their mechanical structure encountered in the design of compression, sealing, seismic, heat problem,and to achieve a reliable and fast connection of electrical related issues in tight spaces.We use an advanced non-linear finite element software SC.Marc analysis of the structure of rubber O-ring radial seal in tube connector and O-ring rubber seal into the axial ininstrument end. Utilizing the simulation calculation results,the initial design parameters of the rubber O-ring seal groove size and the pre-compression of O-shaped rubber ring t are optimized. Finally the situation of the actual assembly and test for small aperture EM-MWD is to be introduced, As well as the the improvements.
     Chapter 4:
     This chapter analyzes several features of the program of hydraulic control system, according to correction Oblique Strategies of adapting to the miniaturization tilt correcting unit.We designed the hydraulic control system program of change direction and keeping up the pressure with 2 Two-way Cartridge Valves.This chapter has established the simulation model of hydraulic control system using of AMESim software, many cases of hydraulic cylinder operation under different pressure conditions were Simulated.Use of simulation results to adjust the unloading valve and some other components of the parameters. Followed by the use of pressure sensors, data acquisition card, PLC controllers and computers set up a test platform,conducted a pilot test of the hydraulic System. The simulation results are verified as legitimate. At the same time, it affirmed the VDS correcting oblique miniaturization design ideas are correct.
     Chapter 5:
     This chapter introduced the design basic theory of downhole turbine generator, and analyzed the impact of the efficiency of the reasons for downhole turbine generator.Several downhole turbine generator structure is built of three-dimensional modeling. Using computational fluid dynamics method and CFD software FloWorks, We simulated downhole turbine generator external structure of different forms of internal flow field characteristics.Appropriate structure solution for underground small turbine generator was proposed. Finally, we made reference to the proposed For small diameter downhole turbine generator structure design and test program
     Chapter 6:
     This part is conclusion. This part mainly introduced the achievements obtained and main creative work after theory and practice research. Then the limitation of this research work and the further research that should be done are also pointed out. Finally, the prospect of our national VDS is put forward in the end of the paper.
引文
[1]周琴,姚爱国.自动垂直钻进系统的液压系统设计.石油机械[J].2003,(12):12-15
    [2]李松林,苏义脑.自动垂直钻井系统VDS的形成与发展[J].国外石油机械,2005,33(5):10-13.
    [3]刘峰.POWER-V和PD-XCEED垂直导向钻井技术在渤海油田的应用[J].石油钻采工艺,2009,31(10):29-32.
    [4]刘伟,李晓亮等.垂直钻井技术在川东北的应用[J].石油矿场机械,2008,37(4):75-77.
    [5]Paul Bieniawski, Don Hinners, A Novel Application:Automated Vertical Drilling System Saves Time and Money in Salt Dome Gas Storage Drilling[M],Proceedings of the AADE 2005 National Technical Conference, Texas,US,April 5-7,2005;1-13
    [6]刘伟,李晓亮等.垂直钻井技术在川东北的应用[J].石油矿场机械,2008,37(4):75-77.
    [7]汤风林,加里宁,杨学涵.岩心钻探学[M].武汉:中国地质大学出版社,1997:446-452.
    [8]高德利等.易斜地层防斜打快钻井理论与技术探讨[J].石油钻探技术,2005,(5):16-19.
    [9]赵胜英等.新型闭环直井钻井系统[J].石油机械,2003,(1):53-54.
    [10]石得权自动控向垂钻系统性能试验研究.武汉:中国地质大学硕士学位论文,2005:2-4.
    [11]Kurt Bram, Johann Draxler. The KTB Borehole-Germany's Superdeep Telescope into the Earth's Crust. Oilfield Review,2004(7);14-18
    [12]汪海阁,苏义脑.直井防斜打快理论研究进展[J].石油学报,2004,25(3);86-90.
    [13]张俊良,肖科,吕俊川.旋转导向系统POWER-V钻井技术应用简介[J].西部探矿工程,2008,(4):79-81.
    [14]张华卫,令文学.VertiTrak垂直钻井技术在秋南1井的应用[J].内蒙古石油化工,2008,(12):121-123.
    [15]赵金海,唐代绪等.国外典型的旋转导向钻井系统[J].国外油田工程,2002,18(11):33-36.
    [16]艾才云等.一种新型垂直钻井工具[J].钻采工艺,2006,(5):82-83.
    [17]张绍槐.深井、超深井和复杂结构井垂直钻井技术[J].石油钻探技术,2005,(5).11-15.
    [18]Colebrook, M.A.,et al. Application of Steerable Rotary Drilling Technology to Drill Extended Reach Wells.IADC/SPE 39327, presented at the 1998 IADC/SPE Drilling Conference, Dallas, Texas, Mar.3-6,1998,11 pages.
    [19]苏义脑.关于井眼轨道控制研究的新思考[J].石油学报,1993.14(4);117-127.
    [20]苏义脑,季细星.井眼轨道控制系统控制原理分析[J].石油学报,1996.17(4);109-113.
    [21]李琪,杜春文,张绍槐等.旋转导向钻井轨迹控制理论及应用技术研究[J].石油学报,2005.26(4);97-101.
    [22]崔琪琳,张绍槐等.旋转导向钻井系统稳定平台变结构控制研究[J].石油学报, 2007.28(3);121-123.
    [23]闰文辉,彭勇,张绍税等.旋转导询钻井工具稳定平台单元机械系统的设计[J].钻采工艺,2007.29(4);73-75.
    [24]李军,强彭勇,张绍槐等.旋转导向钻井工具稳定平台静力学有限元计算[J].石油钻探技术,2006.34(5);14-17.
    [25]李汉兴,姜伟等.可控偏心器旋转导向钻井工具研制与现场试验[J].石油机械,2007.35(9);71-74.
    [26]李军,强彭勇,张绍槐等.可控偏心器旋转导向钻井工具偏心位移控制分析[J].石油钻探技术,2008.20(3);144-187.
    [27]姜伟.旋转导向钻井偏心稳定器横向振动研究[J].中国海上油气,2006.18(5);330-333.
    [28]刘白雁,苏义脑等.自动垂直钻井中井斜动态测量理论与实验研究[J].石油学报,2006.27(4);105-109.
    [29]李秋敏,刘白雁等.自动垂直钻具井下流场特性仿真分析[J].石油矿场机械,2008.37(8);10-13.
    [30]李明,刘白雁等.深井液控导向纠斜机构的动态仿真及实验研究[J].系统仿真学报,2009.21(8);2417-2419.
    [31]赵秀绍,王延军,姚爱国等.微机自动控向垂钻系统中测斜技术研究[J].煤田地质与勘探,2005.33(3);78-80.
    [32]李运升.姚爱国等.基于无模型自适应算法的垂钻纠斜控制试验研究[J].探矿工程,2009年增刊:104-107.
    [33]周琴,姚爱国等.自动控向垂钻系统的纠斜原理和液压技术的实现[J].矿山机械,2003.(11);7-9.
    [34]刘西林.地质导向无线随钻测量仪器FEWD现场施工常见问题探讨[J].石油钻探技术,2005.33(4);73-76.
    [35]李洪强,丁景丽等.地质导向随钻测量数据实时远传系统的设计与实现[J].石油仪器,2006,(6);8-10.
    [36]李文魁,陈建军等.国内外小井眼井钻采技术的发展现状[J].天然气工业,2009,(9);54-56.
    [37]刘润广,徐丹.新4又3/4in旋转导向系统与高性能钻井马达结合减小了小直径钻杆旋转钻井的风险[J].国外油田工程,2006,22(1);20-22.
    [38]Vertical Drilling Systems-A vertical well with unmatched efficiency,INT-03-5389 07-04 PI 1.5M,Baker Hughes Incorporated.2004
    [39]The AutoTrak System-Rotary Closed-Loop Drilling System, INT-01-1716A4 08-01 2M. Baker Hughes Incorporated.2001
    [40]A Guide to the History,Applictions and future of Rotary Steerable Technology.John L.Kennedy AutoTrak System-Rotary Closed-Loop Drilling System, INT-01-1716A4 08-01 2M. Baker Hughes Incorporated.2004
    [41]王宗宝.樊朝斌等.防斜打快钻井技术在龙深—井的应用[J].西部探矿工程,2007(11);70-73.
    [42]王春生等.PowerV垂直钻井技术在克拉2气田的应用[J].石油钻采工艺,2004(6);4-8.
    [43]Alain.P.Houston Rotary steerable well drilling system utilizing sliding sleeve. United States Patent.US006158529A 2000.10
    [44]Joachim TREVIRANUS, Carsten FREYER. Automated Steerable Hole Enlargement Drilling Device and Methods United States Patent US 2007/0205022 Al.2007.6
    [45]Jean.Buytaert.Houston. Rotary steerable system for use in drilling deviated wells.United States Patent.US6116354A 2000.9
    [46]王士斌,李亚.国内外小井眼钻井设备的发展[J].石油矿场机械,2007,(2):18-21.
    [47]姚清添.自动垂钻钻具的测控系统研究,武汉:中国地质大学硕士学位论文,2008;8-12.
    [48]谢孟贤.大规模集成电路(LSI)技术的发展[J].世界科技研究与发展,2001,23(4);24-26.
    [49]桂得洙.浅谈钻井测斜仪[J].石油钻采工艺,1999,21(05);45-49.
    [50]傅华明,阮静洁等.一种垂钻过程检测与控制器的设计及室内试验[J].石油仪器,2004.18(1);13-15.
    [51]周春,刘白雁等.井下实时测斜的理论分析与实验研究[J].中国测试,2009,35(6);1-4.
    [52]傅华明,史学峰等.垂钻系统纠斜控制器的软件设计与测试[J].工业控制计算机,2007.20(1);20-23.
    [53]刘白雁,王新宇等.井斜实时测量方法研究[J].中国测试技术,2007,33(4);5-8.
    [54]李林.电磁随钻测量技术现状及关键技术分析[J].石油机械,2004.323(5);53-55.
    [55]Ronald A.Guidotti, Frederick W. Reinhardt, Overview of high-temperature batteries for geothermal and oil/gas borehole power sources [J],Journal of Power Sources,136 (2004); 257-262.
    [56]苏义脑,李松林等.自动垂直钻井工具的设计及自动控制方法[J].石油学报,2007.22(4);87-90.
    [57]郑登科.基于单片机井下纠斜控制系统的研究.武汉科技大学硕士学位论文,2007;12-16.
    [58]宁立伟.钻井液物性参数对深水钻井井筒温度压力的影响.华东:中国石油大学硕士学位论文,2005:5-10.
    [59]冯圣凌,蒲吉玲等.龙深1井使用VTK工具的钻井液技术[J].西部探矿工程,2006,(11);173-174.
    [60]尹成,何世明等.对常规注水泥温度场预测方法的评价[J].西南石油学院学报,1999,21(4);57-60.
    [61]陈永华,李思忍等.一种小型水密耐压舱体的设计与制作[J].压力容器,2007,24(9);25-28.
    [62]孙训芳,方孝淑等.材料力学(第四版)[M].北京:高等教育出版社,2002;40-54.
    [63]董庆军,朱军.井下工具用O形密封圈密封参数选配[J].石油矿场机械,2003,33(3);80-82.
    [64]陈爱平周忠亚.0形密封圈和密封圈槽的选配及应用[J].石油机械2000,28(5);49-51.
    [65]黄密梅.液压气动密封与泄漏防治[M].北京:机械工业出版社,2002;20-35.
    [66]张明松,罗朝祥.水下电缆密封插接的设计[J].机械设计与制造工程2001(1);17-18.
    [67]陈火红.新编Marc有限元实例教程[M].北京:机械工业出版社,2002,2-10.
    [68]Nonlinear finite element analysis of elastomers,The paper collection of Marc Software. Marc Analysis research corporation.1996
    [69]Isaac. Fried and Arthur R. Johnson. Nonlinear computation of axisymmetric solid rubber deformation, Computer Methods in Applied Mechanics and Engineering. Volume 67,Issue 2,March 1988:241-253.
    [70]Li.W, Mays. S,Springback analysis of metallic o-ring seals using the non-linear finite element method.18th International Conference of Fluid Sealing, Antwerp, Belgium, October 12,2005;217-222.
    [71]胡殿印,王荣桥等.橡胶0形圈密封结构的有限元分析[J]北京航空航天大学学报,2005,31(2):25-27.
    [72]桑园.干气密封装置动态辅助密封圈性能研究北京:北京化工大学硕士学位论文,200723-25.
    [73].任全彬,蔡体敏等.橡胶“O”形密封圈结构参数和失效准则研究[J].固体火箭技术2006,29(1):9-14.
    [74]穆志韬,邢耀国.固体发动机工况中密封圈大变形接触应力分析[J].机械强度,2006.26(5);560-563.
    [75]赵文德,宿德春.水下机器人耐压壳体0形圈密封性能有限元分析[J].制造业信息化,2009(7);66-68.
    [76]王刚,丁永伟等.钻具振动分析方法与应用[J].江汉石油职工大学学报2006,19(4);71-74.
    [77]杨玉丰,刘玉榜等.钻具振动对FEWD井下仪器的影响及预防措施[J].石油钻探技术2007,35(3);88-90.
    [78]王萌,徐晓婷.高密度密封电子设备热设计与结构优化[J].电子工艺技术,2006,27(6);339-343.
    [79]白秀茹.典型的密封式电子设备结构热设计研究[J].电子机械工程,2002,18(4);36-38.
    [80]姚爱国,张萌等.电磁随钻信号传输技术研究[J].探矿工程2009年增刊,115-119.
    [81]张晋凯.泥浆动力导向工具贴井壁力的双向控制系统研究.西安:西安石油大学硕士学位论文;10-15.
    [82]雷天觉.液压工程手册[M].北京:机械工业出版社,1990.
    [83]张海平.螺纹插装阀技术[J].流体传动与控制,2004(1);16-21.
    [84]何存兴.液压传动与气压传动(第二版)[M].武汉:华中科技大学出版社,2000;103-108.
    [85]王定标等.CAD/CAE/CAM技术与应用[M].北京:化学工业出版社,2005;2-9.
    [86]李成功.和彦森.液压系统建模与仿真分析[M].北京:航空工业出版社,2008;2-12.
    [87]付永领.AMESIM系统建模和仿真—从入门到精通[M].北京:北京航空航天出版社,2008;2-10.
    [88]杨乐平.LabVIEW程序设计与应用[M].北京:电子工业出版社,2005
    [89]丰萍.基于虚拟仪器技术的示波器的设计[J].华东交通大学学报,2009(1);49-51.
    [90]铁占续.流体机械原理设计及应用[M].北京:中国电力出版社,2009;10-25.
    [91]张先勇,冯进等.井下涡轮式发电机水力性能研究[J].机械研究与应用,2006.29(1);9-14.
    [92]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004;4-15.
    [93]P.chow, M.Percleous.A natural extension of the conventional finite volume method into polygonal unstructured meshed for CFD application.meshes for CFI application. App.Math. Modelling,20:170-183,1996
    [94]王文斌、林忠钦等,机械设计手册(第三版),北京:机械工业出版社,2004.
    [95]杨敏官、王军峰等,流体机械内部流动测量技术,北京:机械工业出版社,2006.140-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700