用户名: 密码: 验证码:
空间机器人自主捕获目标的轨迹规划与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着空间技术的发展以及空间开发与应用能力的不断提高,通过空间机器人进行自主在轨服务的意义和作用日益凸显,而空间机器人自主捕获目标的轨迹规划与控制是实现在轨服务的关键技术之一。本文结合国家863计划航天领域某项目,以对目标航天器自主捕获及捕获后目标停靠等在轨服务操作为应用背景,开展了空间机器人动力学建模仿真、目标航天器自主捕获、目标抓捕后复合体姿态调整和目标转移路径规划、目标捕获后轨迹跟踪控制、半物理仿真试验系统等方面的研究,以期推动我国空间机器人在轨服务技术的发展。
     针对空间机器人动力学建模进行研究,基于拉格朗日法推导空间机器人系统运动学和动力学方程,并对其非完整约束特性进行分析,以此作为研究非完整路径规划和轨迹跟踪控制的基础。此外,为满足空间机器人地面半物理仿真试验系统对实时性、计算精度以及稳定性的要求,引入R-W方法,从计算多体动力学的角度建立空间机器人动力学模型,并在此基础上实现了动力学计算软件,通过仿真验证了动力学模型的有效性。
     空间机器人自主捕获目标是在轨服务任务得以实施的前提和先决条件。本文研究了空间机器人自主目标捕获的视觉伺服轨迹规划方法,建立虚拟机械臂模型,并在此基础上采用蒙特卡罗法对空间机器人工作空间进行分析与仿真。为避免视觉伺服捕获过程中目标偏离相机视场、规划的关节角、角速度超出限位问题,提出了一种多约束条件下目标捕获的视觉伺服协调控制方法,包括相机视场约束和关节极限约束排斥力函数的建立,基于人工势能场法在图像空间生成规划轨迹,并通过图像雅克比矩阵将其映射为机械臂末端运动,同时引入协调控制方法减少机械臂运动所引起的基座姿态偏差;仿真结果表明该方法可实现在基座姿态、相机视场及关节运动范围受限条件下的目标捕获。
     针对空间机器人目标捕获后复合体姿态调整和目标转移路径规划问题,通过正弦多项式函数对机械臂关节角轨迹参数化,根据基座姿态和机械臂末端位姿控制精度指标设计目标函数,由此将自由漂浮空间机器人的非完整笛卡尔路径规划问题转换为非线性系统的优化问题;进而采用量子粒子群优化算法对该非线性优化问题进行求解,实现了非完整路径规划的目标,并通过仿真验证了该方法的有效性。
     针对空间机器人捕获目标后系统参数不确定情况下的轨迹跟踪控制问题进行了研究,推导了自由飞行空间机器人参数线性化形式的动力学模型,设计了反步自适应控制律,并给出了控制器参数与系统暂态性能之间的关系。针对自由漂浮空间机器人系统,设计了一种将约束输出转化为无约束控制变量的变换,然后针对此无约束控制变量设计了神经网络反步自适应控制律,仿真结果表明该方法可实现轨迹跟踪的稳定控制并满足一定的时域性能要求。
     为了降低技术研究与开发的风险和成本,确保在轨任务的成功,结合目前我国空间机器人系统研制任务对地面仿真试验的需求,设计并实现了一套与实际系统电气接口完全一致的空间机器人半物理仿真试验系统,并对本文所提出的方法进行了验证。
The number of launched spacecraft has progressively increased year by year asthe ability to exploit and apply technology in outer space has developed, therefore,great advantages and enormous economic benefits can be gained by on-orbitservices through space robots. The key points of on-orbit services are the trajectoryplanning and control of autonomous capturing. This dissertation is prepared inaccordance with a project sponsored by the National High-Tech R&D Program ofChina (863Program). The research problem include modeling of the space robot,the autonomous capturing of target spacecraft, the attitude adjustment and pathplanning of the target after capturing, the trajectory tracking control after capturingand the development of semi-physical experiment. The main contributions of thisdissertation are as follows.
     Firstly, general kinematics equations and dynamic equations of space robot areestablished based on Lagrangian methods. The features of non-holonomic constraintare analyzed and utilized as the foundation of nonholonomic path planning andtrajectory tracking control design. In addition, in order to satisfy the requirements ofreal-time performance, calculation accuracy and stability for the space robot groundsemi-physical simulation system, the R-W method, proposed by Robertson andWitten Berg, is used to established the associated matrix and path matrices whichdescribed the topology relationship of the system. The relative motion equation ofthe adjacent rigid body are derived, and the dynamics equations of the space robotsystem are then established on the basis of the Virtual Power equation.
     Secondly, the visual servo method is studied for autonomous target capturingby a space robot. The workspace of the space robot is obtained by Monte-Carlomethod. Then, in order to avoid the possibility that the target moves out of thecamera’s FOV and the planned joint angle exceeds the limits, a visual servotrajectory planning method with multi-constraints is proposed. The camera FOVconstraint equation and the joint movement limits repulsive equation are established.The planned trajectory is generated in the image space on the basis of the artificialpotential field method, and then the trajectory in the image space is mapped to themovement of the end effector according to the image jacobian matrix. In order toreduce the disturbance aroused by the dynamic coupling of the manipulator and thebase, coordinated control is introduced into visual servo operation.
     Thirdly, path planning for the attitude adjustment of the composite body andthe target transfer are studied. A non-holonomic cartesian space path planningmethod based on quantum particle swarm optimization is proposed based on the nonholonomic redundancy features of a free-floating space robotic system. Thetrajectory of the manipulator joints is parameterized, and the target function isestablished by the control accuracy of the end effector and the base attitude. Thetrajectory-planning problem of a free-floating space robot converted into anoptimization problem of nonlinear system. The optimization problem of nonlinearsystem is then solved by quantum particle swarm algorithm. The solved parametersare substituted into the trajectory equation of the robotic arm to realized the goal ofnonholonomic trajectory planning. The effectiveness of the proposed method isverified by simulation.
     Fourthly, when the target is captured by a space robot, trajectory trackingcontrol problems with the uncertainty parameters of the kinematic and kineticequations are researched. The control law is designed based on back-stepping andadaptive control theory for free-flying space robot system. The relationship betweenthe control parameters and system transient performance is obtained. For a free-floating space robot system, in order to make the system’s tracking error meet theresponse constraints in time domain, one method that transforms the constrainedoutput to unconstrained control parameter is designed, then the back-steppingadaptive neural network control is designed to realize unconstrained variablestability control. Not only can the tracking error with global asymptotic stability ofthe system in the task space can be ensured according to this method, but also thetracking error of the closed loop system in a predetermined time domain response,which significantly improves the tracking performance of the system.
     Finally, in order to reduce the risk of research, ensure on-orbit mission success,and verify the method proposed in this paper, the real-time semi-physical simulationsystem whose electric interface is identical to a real system is established to meetthe mission requirements in space robot area.
引文
[1] Xu W, Liang B, Gao D, et al. A Space Robotic System Used for On-OrbitServicing in the Geostationary Orbit[C]. IEEE International Conference onIntelligent Robots and Systems. Taipei, Taiwan: IEEE,2010:4089-4094.
    [2]崔乃刚,王平,郭继峰,等.空间在轨服务技术发展综述[J].宇航学报,2007,28(4):805-811.
    [3] Yoshida K. Achievements in Space Robotics[J]. IEEE Robotics andAutomation Magazine,2009,16(4):20-28.
    [4] Lopota V A, Polin A V, Yudin V I. Experiences and Prospects of Developmentof Space Robotics Systems[C].4th International Conference and Expositionon Robotics for Challenging Situations and Environments. Denver, CO,United states: American Society of Civil Engineers,2000:56-62.
    [5] Motaghedi P. On-Orbit Performance of the Orbital Express Capture System[C].SPIE Defense and Security Symposium. Orlando, FL, United states: SPIE,2008.
    [6]吴勤.“轨道快车”计划及其军事应用[J].太空探索,2007,(5):20-23.
    [7] Stamm S, Motaghedi P. Orbital Express Capture System: Concept toReality[C]. Spacecraft Platforms and Infrastructure. Orlando, FL, Unitedstates: SPIE,2004:78-91.
    [8]吴勤.美国空间对抗新利器FREND[J].现代军事,2009,(8):36-39.
    [9] Debus T, Dougherty S. Overview and Performance of the Front-End RoboticsEnabling Near-Term Demonstration(Frend) Robotic Arm [C]. AIAAInfotech@Aerospace Conference. Seattle, Washington: AIAA,2009.
    [10]周小坤. DARPA启动“凤凰”计划利用太空废弃物组建新卫星[J].装备指挥技术学院学报,2012(1):113.
    [11] Sachdev S, Harvey W, Gibbs G, et al. Canada and the International SpaceStation Program: Overview and Status Since Iac2005[C]. AIAA57thInternational Astronautical Congress, IAC2006. Valencia, Spain: AIAA,2006:2850-2862.
    [12] Wiedemann S M, Kirk C L. Eigenvalue Analysis and Optimised NumericalSimulations of the Space Shuttle Remote Manipulator System[J]. Journal ofSound and Vibration,2007,307,(1-2):265-279.
    [13] Mukherji R, Liu M. Spdm Constrained Motion-Modelling, Analysis andController Design[C]. International Astronautical Federation-55thInternational Astronautical Congress. Vancouver, Canada: IAF,2004:7670-7677.
    [14] Caron M, Keenan A. Concept of Operation of the Special Purpose DexterousManipulator[C]. International Astronautical Federation-56th InternationalAstronautical Congress2005. Fukuoka, Japan: IAF,2005:1837-1847.
    [15] Hirzinger G, Brunner B, Lampariello R, et al. Advances in Orbital Robotics[C].ICRA2000: IEEE International Conference on Robotics and Automation. SanFrancisco, CA, USA: IEEE,2000:898-907.
    [16] Hirzinger G, Brunner B, Dietrich J, et al. Sensor-Based Space Robotics-Rotexand its Telerobotic Features[J]. IEEE Transactions on Robotics andAutomation,1993,9(5):649-663.
    [17] Reintsema D, Landzettel K, Hirzinger G. Dlr’S Advanced TeleroboticConcepts and Experiments for On-Orbit Servicing[M]. Springer,2007,323-345.
    [18] Landzettel K, Preusche C, Albu-Schaffer A, et al. Robotic On-Orbit Servicing-Dlr's Experience and Perspective[C].2006IEEE/RSJ InternationalConference on Intelligent Robots and Systems, IROS2006. Beijing, China:IEEE,2006:4587-4594.
    [19] Sommer B. Unmanned On-Orbit Servicing (Oos)-A Roadmap to the Future,Rokviss and the Tecsas Mission[C]. International Astronautical Federation-56th International Astronautical Congress2005. Fukuoka, Japan: IAF,2005:5492-5508.
    [20] Hirzinger G, Landzettel K, Brunner B, et al. Dlr's Robotics Technologies forOn-Orbit Servicing[J]. Advanced Robotics,2004,18(2):139-174.
    [21] Putz P. Space Robotics in Europe: A Survey[J]. Robotics and AutonomousSystems,1998,23(1-2):3-16.
    [22] Visentin G, Brown D L. Robotics for Geostationary Satellite Servicing[J].Robotics and Autonomous Systems,1998,23(1-2):45-51.
    [23] Boumans R, Heemskerk C. European Robotic Arm for the International SpaceStation[J]. Robotics and Autonomous Systems,1998,23(1-2):17-27.
    [24] Kassebom M, Koebel D, Tobehn C, et al. Roger-An Advanced Solution for aGeostationary Service Satellite[C].54th International Astronautical Congressof the International Astronautical Federation. Bremen, Germany: IAF,2003:1037-1046.
    [25] Inaba N, Oda M. Autonomous Satellite Capture by a Space Robot: World FirstOn-Orbit Experiment On a Japanese Robot Satellite Ets-Vii[C]. IEEEInternational Conference on Robotics and Automation, ICRA2000. IEEE,2000:1169-1174.
    [26] Oda M. Experiences and Lessons Learned From the Ets-Vii Robot Satellite[C].2000:914-919.
    [27] Oda M, K. Kibe, Yamagata F. Ets-Vii, Space Robot in-Orbit ExperimentSatellite[C]. Proceedings of the1996IEEE International Conference onRobotics and Automation.1996:739-744.
    [28]梁斌,徐文福,李成,等.地球静止轨道在轨服务技术研究现状与发展趋势[J].宇航学报,2010,31(1):1-11.
    [29]王树国.空间机器人地面实验综合平台仿真系统[D].哈尔滨:哈尔滨工业大学,1996.
    [30]黄献龙,梁斌,陈建新,等. EMR系统机器人工作空间与灵活性的分析[J].机械工程学报,2001,37(2):5.
    [31] Xu W, Liang B, Xu Y. Survey of Modeling, Planning, and Ground Verificationof Space Robotic Systems[J]. Acta Astronautica,2011,68(11):1629-1649.
    [32] Merzouki R, Samantaray A K, Pathak P M, et al. Modeling and Control ofSpace Robots[M]. London:Springer,2013,703-768.
    [33]洪嘉振.计算多体系统动力学[M].北京:高等教育出版社,2003:19-30.
    [34]徐文福.空间机器人目标捕获的路径规划方法与实验研究[D].哈尔滨:哈尔滨工业大学,2006:11-12.
    [35] Nanos K, Papadopoulos E. On the Use of Free-Floating Space Robots in thePresence of Angular Momentum[C].2010IEEE/ASME InternationalConference on Advanced Intelligent Mechatronics. Montreal, QC, Canada:Inc.,2010:1287-1292.
    [36] Vafa Z, Dubowsky S. On the Dynamics of Manipulators in Space Using theVirtual Manipulator Approach[C]. Proceedings of IEEE InternationalConference on Robotics and Automation.1987:579-585.
    [37] Bin L, Xu Y, Bergerman M. Dynamically Equivalent Manipulator for SpaceManipulator System: Part1[C]. Proceedings of the1997IEEE InternationalConference on Robotics and Automation. Albuquerque, NM, USA: IEEE,1997:2765-2770.
    [38] Liang B, Xu Y, Bergerman M, et al. Dynamically Equivalent Manipulator forSpace Manipulator System: Part2[C]. Proceedings of the1997IEEE/RSJInternational Conference on Intelligent Robot and Systems. Grenoble, Fr:IEEE,1997:1493-1499.
    [39] Parlaktuna O, Ozkan M. Adaptive Control of Free-Floating SpaceManipulators Using Dynamically Equivalent Manipulator Model[J]. Roboticsand Autonomous Systems,2004,46(3):185-193.
    [40] Moosavian S A A, Papadopoulos E. Free-Flying Robots in Space: AnOverview of Dynamics Modeling, Planning and Control[J]. Robotica,2007,25(5):537-547.
    [41] S. Ali A. Moosavian E P. On the Kinematics of Multiple Manipulator SpaceFree-Flyers and their Computation[J]. Journal of Robotic Systems,1998,15(4):207-216.
    [42]徐文福,李成,强文义,等.基于虚拟样机技术的空间机器人系统的建模与仿真[J].机器人,2005,3(27).
    [43]张瀚,徐科军,赵明,等.机器人视觉伺服控制半物理仿真系统的研制[J].系统仿真学报,2008,20(1):68-72.
    [44]胡松华,薛力军,徐文福,等.串联旋转关节空间机器人的动力学仿真系统[J].吉林大学学报,2008,38(2).
    [45] Xu W, Liu Y, Liang B, et al. Study On Unified Multi-Domain Modeling ofSpace Robot for Target Capturing[C]. IEEE International Conference onAdvanced Intelligent Mechatronics. IEEE,2009:374-379.
    [46] Xu W, Liu Y, Liang B, et al. Unified Multi-Domain Modelling and Simulationof Space Robot for Capturing a Moving Target[J]. Multibody SystemDynamics,2010,23(3):293-331.
    [47] Marchesi M, Angrilli F, Bettanini C. On Ground Experiments of Free-FlyerSpace Robot Simulator in Intervention Missions[C]. Proceeding of the6thInternational Symposium on Artificial Intelligence and Robotics&Automation in Space. IEEE,2001:18-22.
    [48] Boge T, Ma O. Using Advanced Industrial Robotics for SpacecraftRendezvous and Docking Simulation[C].2011IEEE International Conferenceon Robotics and Automation. Shanghai, China: IEEE,2011.
    [49]翟光,仇越,梁斌,等.在轨捕获技术发展综述[J].机器人,2008,30(5):467-480.
    [50] Inaba N, Oda M, Hayashi M. Visual Servoing of Space Robot for AutonomousSatellite Capture[J]. Transactions of the Japan Society for Aeronautical andSpace Sciences,2003,46(153):173-179.
    [51] Inaba N, Nishimaki T, Asano M, et al. Rescuing a Stranded Satellite in Space-Experimental Study of Satellite Captures Using a Space Manipulator[C].International Conference on Intelligent Robots and Systems,IROS2003.2003:3071-3076.
    [52] Rembala R, Teti F, Couzin P. Operations Concept for the Robotic Capture ofLarge Orbital Debris[J]. Advances in the Astronautical Sciences,2012,144:111-120.
    [53] Mccourt R A, de Silva C W. Autonomous Robotic Capture of a Satellite UsingConstrained Predictive Control[J]. IEEE Transactions on Mechatronics,2006,11(6):699-708.
    [54] R G, V S, S I. Vision-Based Tracking and Trajectory Generation for RoboticCapture of Objects in Space[C]. AIAA Guidance, Navigation, and ControlConference and Exhibit. San Francisco, California:2005:1-14.
    [55] Aghili F. A Prediction and Motion-Planning Scheme for Visually GuidedRobotic Capturing of Free-Floating Tumbling Objects with UncertainDynamics[J]. IEEE Transactions on Robotics,2012,28(3):634-649.
    [56] Aghili F. Coordination Control of a Free-Flying Manipulator and its BaseAttitude to Capture and Detumble a Noncooperative Satellite[C]. IEEEInternational Conference on Intelligent Robots and Systems. St. Louis, USA:IEEE,2009:2365-2372.
    [57] Hubert S, Aghili F. Optimal Control of a Space Manipulator for Detumbling ofa Target Satellite[C].2009IEEE International Conference on Robotics andAutomation. Kobe, Japan: IEEE,2009:3019-3024.
    [58] Aghili F, Parsa K. An Adaptive Vision System for Guidance of a RoboticManipulator to Capture a Tumbling Satellite with Unknown Dynamics[C].2008IEEE/RSJ International Conference on Intelligent Robots and Systems,IROS. Nice, France: IEEE,2008:3064-3071.
    [59] Nishida S, Yoshidawa T. Capture and Motion Braking of Space Debris by aSpace Robot[C]. International Conference on Control, Automation andSystems. Seoul,Korea:2007.
    [60] Dimitrov D, Yoshida K. Utilization of Holonomic Distribution Control forReactionless Path Planning[C]. IEEE International Conference on IntelligentRobots and Systems. Beijing, China: IEEE,2006:3387-3392.
    [61] Dimitrov D N, Yoshida K. Momentum Distribution in a Space Manipulator forFacilitating the Post-Impact Control[C].2004IEEE/RSJ InternationalConference on Intelligent Robots and Systems. Sendai, Japan:2004:3345-3350.
    [62] Dimitrov D. Dynamics and Control of Space Manipulators During a SatelliteCapturing Operation[D]. Japan: Tohoku University,2005.
    [63] Yoshida K, Dimitrov D, Nakanishi H. On the Capture of Tumbling Satellite bya Space Robot[C]. IEEE International Conference on Intelligent Robots andSystems. IEEE,2006:4127-4132.
    [64] Xu W, Liang B, Xu Y. Practical Approaches to Handle the Singularities of aWrist-Partitioned Space Manipulator[J]. Acta Astronautica,2011,68(1-2):269-300.
    [65] Xu W, Liu Y, Liang B, et al. Autonomous Path Planning and Experiment Studyof Free-Floating Space Robot for Target Capturing[J]. Journal of IntelligentRobotic Systems,2008,51(3):303-331.
    [66]丛佩超.空间机械臂抓取目标的碰撞前构型规划与控制问题研究[D].哈尔滨:哈尔滨工业大学,2009.
    [67]丛佩超,孙兆伟.空间机械臂捕捉目标的碰撞力问题分析[J].四川大学学报:工程科学版,2009,41(1):202-208.
    [68] Cong P C, Sun Z W. Preimpact Configuration Analysis of Dual-Arm SpaceManipulator Capturing Object[J]. Journal of Aerospace Engineering,2009,23(2):117-123.
    [69] Huang P, Xu Y, Liang B. Contact and Impact Dynamics of Space Manipulatorand Free-Flying Target[C]. IEEE International Conference on IntelligentRobots and Systems. IEEE,2005:1181-1186.
    [70] Huang P, Xu Y, Liang B. Dynamic Balance Control of Multi-Arm Free-Floating Space Robots[J]. International Journal of Advanced Robotic Systems,2005,2(2):117-124.
    [71] Huang P, Xu Y, Liang B. Balance Control of Multi-Arm Free-Floating SpaceRobots During Capture Operation[C].2005IEEE International Conference onRobotics and Biomimetics. Shatin, N.T.China: IEEE,2005:398-403.
    [72] Panfeng H, Jie Y, Yangsheng X, et al. Tracking Trajectory Planning of SpaceManipulator for Capturing Uncontrolled Spinning Satellite[C]. Proceedings ofthe2006IEEE International Conference on Mechatronics and Automation.2006:1014-1019.
    [73] Vafa Z, Dubowsky S. On the Dynamics of Space Manipulators Using theVirtual Manipulator, with Applications to Path Planning[J]. Journal of theAstronautical Sciences,1990,38(4):441-472.
    [74] Dubowsky S, Torres M A. Path Planning for Space Manipulators to MinimizeSpacecraft Attitude Disturbances[C]. Proceedings of the1991IEEEInternational Conference on Robotics and Automation. Sacramento, CA, USA:IEEE,1991:2522-2528.
    [75] Nakamura Y, Mukherjee R. Nonholonomic Path Planning of Space Robots Viaa Bidirectional Approach[J]. IEEE Transactions on Robotics and Automation,1991,7(4):500-514.
    [76] Fernandes C, Gurvits L, Li Z. Attitude Control of a SpacePlatform/Manipulator System Using Internal Motion[J]. International Journalof Robotics Research,1994,13(4):289-303.
    [77] Papadopoulos E, Tortopidis I, Nanos K. Smooth Planning for Free-FloatingSpace Robots Using Polynomials[C]. Proceedings of the2005IEEEInternational Conference on Robotics and Automation. Barcelona, Spain:2005:4272-4277.
    [78]戈新生,陈立群,刘延柱,等.一类多体系统的非完整运动规划最优控制[J].工程力学,2006,23(3):63-68.
    [79] Huang P, Chen K, Xu Y. Optimal Path Planning for Minimizing Disturbance ofSpace Robot[C].9th International Conference on Control, Automation,Robotics and Vision. Singapore, Singapore: IEEE,2006.
    [80]丰保民.自由漂浮空间机器人轨迹规划与轨迹跟踪问题研究[D].哈尔滨:哈尔滨工业大学,2007.
    [81]张福海,付宜利,王树国.一种笛卡儿空间的自由漂浮空间机器人路径规划方法[J].机器人,2009,31(2):187-192.
    [82]徐文福.空间机器人系统的运动学和动力学方程[Z].2009.
    [83]丁希仑,战强,解玉文.自由漂浮的空间机器人系统的动力学奇异特性分析及其运动规划[J].航空学报,2001,22(5):474-477.
    [84]税海涛.空间机器人目标捕获的运动规划研究[D].长沙:国防科学技术大学,2010.
    [85] Umetani Y, Yoshida K. Resolved Motion Rate Control of Space Manipulatorswith Generalized Jacobian Matrix[J]. IEEE Transactions on Robotics andAutomation,1989,5(3):303-314.
    [86] Moosavian S A A, Papadopoulos E. Control of Space Free-Flyers Using theModified Transpose Jacobian Algorithm[C]. Proceedings of the1997IEEEInternational Conference on Intelligent Robot and Systems. Grenoble, Fr:IEEE,1997:1500-1505.
    [87] Xu Y, Shum H. Dynamic Control and Coupling of a Free-Flying Space RobotSystem[J]. Journal of Robotic Systems,1994,11(7):573-589.
    [88] Xu Y, Shum H, Kanade T, et al. Parameterization and Adaptive Control ofSpace Robot Systems[J]. IEEE Transactions on Aerospace and ElectronicSystems,1994,30(2):435-451.
    [89] Ma B L, Huo W. Adaptive Control of Space Robot System[J]. Control Theoryand Application,1996,13(2):1912197.
    [90]王景,王昊瀛,刘良栋,等.空间机械臂的鲁棒复合自适应控制[J].自动化学报,2002,28(3):378-384.
    [91] Oda M. Coordinated Control of Spacecraft Attitude and its Manipulator[C].proceedings of the1996IEEE International Conference on Robotics andAutomation. Minneapolis, Minnesota, USA: IEEE,1996:732-738.
    [92] Oda M. Attitude Control Experiments of a Robot Satellite[J]. Journal ofSpacecraft and Rockets,2000:788-793.
    [93][93]税海涛,李迅,马宏绪.空间机械臂位形与基座姿态协同控制研究[J].宇航学报,2011,32(8):1708-1714.
    [94]马保离,霍伟.自由飞行空间机器人系统的协调运动控制[J].自动化学报,1998,24(1):50-55.
    [95]陈力,刘延柱.空间机器人姿态与末端抓手协调运动的鲁棒自适应控制[J].工程力学,2002,19(2):165-170.
    [96]袁景阳,柳长安,李瑰贤,等.有外力作用的多臂自由飞行空间机器人协调操作动力学特性[J].宇航学报,2006,27(3):541-545.
    [97]马保离,霍伟.空间机器人系统的自适应控制[J].控制理论与应用,1996,13(2):191-197.
    [98]任艳青,马保离.基于后退设计的空间机器人系统的自适应控制[J].航空学报,2007,28(2):490-494.
    [99]张福海.面向在轨维护的自由漂浮空间机器人运动规划与控制研究[D].哈尔滨:哈尔滨工业大学,2010.
    [100] Taveira T D F P, Siqueira A A G, Terra M H. Adaptive Nonlinear ControllersApplied to a Free-Floating Space Manipulator[C]. Proceedings of the IEEEInternational Conference on Control Applications. Munich, Germany: IEEE,2007:1476-1481.
    [101]谢箭,刘国良,颜世佐,等.基于神经网络的不确定性空间机器人自适应控制方法研究[J].宇航学报,2010,31(1):123-129.
    [102]洪昭斌,陈力.漂浮基双臂空间机器人系统的模糊神经网络自学习控制[J].机器人,2008,30(5):435-439.
    [103]李保丰.六自由度空间机器人的工作空间分析与参数辨识[D].北京:北京邮电大学,2011.
    [104]李保丰,孙汉旭,贾庆轩,等.基于蒙特卡洛法的空间机器人工作空间计算[J].航天器工程,2011,20(4):79-85.
    [105]徐文福,李立涛,梁斌,等.空间3R机器人工作空间分析[J].宇航学报,2008,28(5).
    [106]徐文福,李成,梁斌,等.空间机器人捕获运动目标的协调规划与控制方法[J].自动化学报,2009,35(9):1216-1225.
    [107] Chesi G, Hashimoto K, Prattichizzo D. Keeping Features in the Camera’SField of View: A Visual Servoing Strategy[C]. International symposium onMathematical Theory of Networks and Systems.2002:2321-2326.
    [108] Kazemi M, Gupta K, Mehrandezh M. Path-Planning for Visual Servoing: AReview and Issues[J]. Lecture Notes in Control and Information Sciences,2010,401:189-207.
    [109] Li H, Liu J, Li Y, et al. Trajectory Planning for Visual Servoing with someConstraints[C].29th Chinese Control Conference. Beijing, China: IEEE,2010:3636-3642.
    [110] Mezouar Y, Chaumette F. Path Planning in Image Space for Robust VisualServoing[C]. IEEE International Conference on Robotics and Automation. SanFrancisco, CA, USA: IEEE,2000:2759-2764.
    [111] Corke P I, Hutchinson S A. A New Partitioned Approach to Image-BasedVisual Servo Control[J]. IEEE Transactions on Robotics and Automation,2001,17(4):507-515.
    [112]王宏杰.机器人视觉伺服控制方法及其应用的研究[D].上海:上海交通大学,2002.
    [113] Kennedy J. Particle Swarm Optimization[C]. IEEE International Conferenceon Neural Networks. Washington,DC,USA: IEEE,1995:1942-1948.
    [114] Van den Bergh F, Engelbrecht A P. A New Locally Convergent Particle SwarmOptimiser[C].2002IEEE International Conference on Systems, Man andCybernetics. Yasmine Hammamet, Tunisia: IEEE,2002:94-99.
    [115] Xu W F, Li C, Wang X, et al. Study On Non-Holonomic Cartesian PathPlanning of Free-Floating Space Robotic System[J]. Advanced Robotics,2009,23(1-2):113-143.
    [116] Hu S, Xue L, Xu W, et al. Trajectory Planning of Space Robot System forReorientation After Capturing Target[C].20082nd International Symposiumon Systems and Control in Aerospace and Astronautics, ISSCAA2008.Shenzhen, China: IEEE,2008:1-6.
    [117] Xu W F, Li C, Liang B. The Cartesian Path Planning of Free-Floating SpaceRobot Using Particle Swarm Optimization[J]. International Journal ofAdvanced Robotic Systems,2008,5(3):301-310.
    [118] Sun J, Feng B, Xu W. Particle Swarm Optimization with Particles HavingQuantum Behavior[C]. Proceedings of the2004Congress on EvolutionaryComputation. Portland, OR, United states: IEEE,2004:325-331.
    [119] Hu Q. Adaptive Backstepping Trajectory Tracking Control of RobotManipulator[J]. Journal of the Franklin Institute,2012,349(3):1087-1105.
    [120]张文辉,齐乃明,尹洪亮.自适应神经变结构的机器人轨迹跟踪控制[J].控制与决策,2011,26(4):597-600.
    [121]丰保民,马广程,温奇咏,等.任务空间内空间机器人鲁棒智能控制器设计[J].宇航学报,2007,28(4):914-919.
    [122]徐文福,梁斌,李成,等.空间机器人微重力模拟实验系统研究综述[J].机器人,2009,31(1):88-96.
    [123]史国振,孙汉旭,贾庆轩,等.空间机器人分布式控制系统[J]. ComputerEngineering,2009,35(3).
    [124]姚燕生,梅涛.空间操作的地面模拟方法水浮法木[J].机械工程学报,2008,44(3).
    [125]史士财,谢宗武,朱映远,等.空间机械臂地面实验系统[J].哈尔滨工业大学学报,2008,40(3):381-385.
    [126]洪炳熔,柳长安,郭恒业,等.双臂自由飞行空间机器人地面实验平台系统设计[J].机器人,2000,22(2):7.
    [127]金飞虎,洪炳熔,柳长安.双臂自由飞行空间机器人捕捉目标实验研究[J].宇航学报,2002,23(1):5.
    [128]刘良栋,刘慎钊,孙承启.卫星控制系统仿真技术[M].北京:中国宇航出版社,2003:3-10.
    [129]张学波,阎慧.空间机器人仿真推演系统中的建模与仿真研究[J].系统仿真学报,2009,21(2).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700