用户名: 密码: 验证码:
基于驾驶员起步意图的AMT控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电控机械式自动变速器(AMT)在总体传动结构不变的情况下通过加装微机控制的自动操纵系统来实现换挡的自动化。发展AMT技术对于节约能源,减少污染,提高行车安全等具有重大的现实意义,AMT的可行性已经过大量的试验论证,将其作为国内自动变速研究开发的重点并尽早实现产业化已得到广泛的认同。而起步控制一直是AMT系统控制的重点和难点。
     本文在分析发动机模型、离合器模型、整车模型和执行机构模型的基础上,建立AMT系统动力学模型,为AMT起步控制策略的实现提供了平台和依据。
     为了使AMT系统能够识别驾驶员的不同起步意图,对起步意图进行了重点研究。根据正交试验设计方法,量化油门开度、油门开度一阶导数及二阶导数对起步意图的影响,并利用隐马尔可夫模型(Hidden Markov Model,HMM)对快速起步、中速起步和慢速起步三种起步意图进行建模与识别。
     在识别起步意图的基础上,研究不同起步意图下的离合器最优控制及实现。从系统综合的角度出发,基于极小值原理,优化滑摩功、冲击度、发动机转矩、发动机角加速度,得到以解析形式表达的最优控制量和最佳轨线。以油门开度、油门开度的一阶导数和二阶导数为输入,以量化的冲击度为输出,建立起步阶段冲击度量化模糊推理模型,并以此将驾驶员起步意图和离合器最优控制过程结合在一起,从而实现不同起步意图下离合器的最优控制。根据发动机转速和转矩的最优轨线,可以得到最优的理想油门开度曲线。该理想油门开度曲线既可以反映驾驶员的起步意图,也符合离合器的最优控制过程。
     离合器的滑摩情况可由滑摩功来评价,但滑摩过程中引起的磨损却无法量化,为了进一步研究离合器接合过程中的磨损机理,定量描述磨损深度,从粘着磨损理论出发,结合M-B分形接触模型,建立离合器稳定磨损阶段的磨损模型,从而得到最优接合过程中离合器每次接合的平均磨损深度率表达式,以此来进行离合器磨损的动态优化。
     为了验证起步意图模型的准确性及对不同类型驾驶员的适应性,利用采集工具CANcaseXL和CANape,对不同类型驾驶员起步过程中的油门开度和车速数据进行采集研究。实验结果表明,综合不同类型驾驶员的起步意图HMM模型可以较好的识别和适应不同类型驾驶员的起步意图。
     本文的研究对掌握AMT起步控制关键技术,加快其产业化进程具有重要的促进意义。
As an increasing application of automatic transmissions, automatedmechanical transmission (AMT) adding an inexpensive control unit toclassical manual transmissions is considered as a mean of reducing fuelcost, easing driver task, and thus meeting driver's expectations. Massiveexperiments have confirmed the feasibility of AMT, which is a focalpoint in domestic automatic transmission research and development andis worthy to be industrialized. However, control of vehicle launch isalways the emphasis and difficulty for the control of AMT.
     A dynamic model for the driveline of AMT is proposed on the basis ofengine model, clutch model, vehicle model and actuator model. Thepresented model can provide platform for the simulation and control ofAMT system.
     The research interest is focused on a driver's starting intentions inorder to make AMT system recognize different kinds of startingintentions. An orthogonal test design is applied to treat the variables andtheir combinations for the driver's decision making during launching thevehicle. The influences of the pedal opening, the first derivative of thepedal opening, and the second derivative of the pedal opening arequantified. According to these factors, a hidden Markov model (HMM)is used to model and recognize three different kinds of starting intentions,including fast starting, mild starting and slow starting.
     This paper explores association between driver's starting intentionsand control of dry clutch engagement during vehicle launch in order todevelop an intelligent automated mechanical transmission system. Theoptimal engagement laws are deduced by finding a compromise among friction loss, shock intensity, engine torque and engine angularacceleration, based upon the extremum value theorem. The pedalopening, the first derivative of the pedal opening and the secondderivative of the pedal opening are chosen as the input while the shockintensity as the output in fuzzy control. According to the optimal engineangular speed and engine torque, the optimal accelerator opening isobtained from engine steady output torque model. The optimalaccelerator opening reflects driver's starting intentions correctly andsatisfies the optimal control of clutch engagement.
     Clutch slipping can be evaluated by slipping work, but the wearduring slipping can not be quantified. Thus, this paper explores wearmechanism and dynamic optimization of the dry clutch during slipping.A wear model for wear evaluation during the steady stage of wear isproposed based on fractal theory, adhesive wear theory andMajumdar-Bhushan Fractal Contact Model. The expression of the rate ofwear depth for each engagement during the optimal control of clutchengagement is deduced in order to realize the dynamic optimization.
     In order to verify the accuracy and adaptability of the startingintentions models for different kinds of drivers, an experimental studyon the starting intentions is carried out by the hardware CANcaseXL andthe software CANape. The experiment interest is focused on datacollection of accelerator opening and vehicle speed of different kinds ofdrivers. The results show that the HMM model has good accuracy andadaptability for the starting intentions of different kinds of drivers.
     The study presented in this paper plays an important role in the keytechniques during vehicle launch of AMT, and it is significant topromote the industrialization of AMT.
引文
[1]吴光强,孙贤安.汽车自动变速器发展综述[J].同济大学学报,2010,38(10):1478-1483.
    [2]陈勇.自动变速器技术的最新动态和发展趋势[J].汽车工程,2008,30(10):938-945.
    [3] Zhao Y, Chen L, Zhang Y, Yang J. Enhanced fuzzy sliding modecontroller for automated clutch of AMT vehicle [C]. SAE TechnicalPaper Series,2006-01-1488.
    [4] Zhao Y, Chen L, Zhang Y, Yang J. Enhanced fuzzy sliding modecontroller for launch control of AMT vehicle using a brushless DCmotor drive [J]. International Journal of Automobile Technology,2007,8(3):383-394.
    [5]李喜娟.汽车膜片弹簧离合器扭矩传递特性建模与计算方法研究[硕士论文].北京:北京交通大学.2010.
    [6]陈绍海.重型商用车机械自动变速器(AMT)的试验技术研究[博士论文].重庆:重庆大学.2008.
    [7] Gianluca L, Marcello M, Carlo R. Modelling of an automated manualtransmission system [J]. Mechatronics,2007,17:73-91.
    [8] Liu F, Li Y, Zhang J, Huang H. Robust control for automated clutchof AMT vehicle [C]. SAE Paper,2002-01-0933.
    [9] Zhao L, Zhou Y, Zheng L. Modeling and simulation of AMT clutchactuator based on SimulationX [J]. Computational Intelligence andSoftware Engineering,2009:1-5.
    [10] Bataus M, Dragne F, Maciac A, Oprean M, Vasiliu N. Models ofAutomotive transmissions for fuel consumption studies [J].IFP-Drive Library, AMESim Library Manual for Rev9, LMS Imagine.
    [11] Salvucci, D.D., Modeling driver behavior in a cognitivearchitecture [J]. Human Factors,2006,48(2):362-380.
    [12] Pentland, A. and A. Liu, Modeling and Prediction of Human Behavior[J]. Neural Computation,1999,11(1):229-242.
    [13] Oliver, N. and Pentland, A. P. Graphical models for driver behaviorrecognition in a SmartCar [C]. In Proceedings of the IEEEIntelligent Vehicles Symposium, Dearborn, Michigan, USA,3–5October2000:7-12(IEEE, New York).
    [14]王玉海,宋健,李兴坤.驾驶员意图与行驶环境的统一识别及实时算法[J].机械工程学报,2006,42(4):206-212.
    [15] Miyazaki, T., Kodama, T., Furuhashi, T., and Ohno, H. Modelling ofhuman behaviors in real driving situations [C]. In Proceedings ofthe Intelligent Transportation Systems Conference, Oakland,California, USA, August25-29,2001:643-646.
    [16] Amantini, A. and Cacciabue, P. C. A simple simulation predictingdriver behavior, attitudes and errors [C]. In Proceedings of theSecond International Conference on Digital Human Modeling(ICDHM'09),2009:345-354.
    [17] Benderius, O., Markkula, G., Wolff, K., and Wahde, M. A simulationenvironment for analysis and optimization of driver models [C]. InProceedings of the Third International Conference on Digital HumanModeling (ICDHM'11),2011:453-462.
    [18] McLaughlin, S., Hankey, J., and Dingus, T. Driver measurement:methods and applications [C]. In Proceedings of the EighthInternational Conference on Engineering Psychology and CognitiveErgonomics (EPCE2009), Lecture Notes in Computer Science, Vol.5639,San Diego, California, USA, July19-24,2009:404-413.
    [19] Kumagai, T., Sakaguchi, Y., Okuwa, M., Akamatsu, M. Prediction ofdriving behavior through probabilistic inference [C]. Proceedingsof the Eighth International Conference on Engineering Applicationsof Neural Networks (EANN'03), Torremolinos, Malaga (SPAIN),2003.
    [20] Hsiao, T. Time-varying system identification via maximum aposteriori estimation and it's application to driver steeringmodels [C].2008American Control Conference, Westin Seattle Hotel,Seattle,Washington, USA,2008(6):684-689.
    [21]秦大同,陈清洪.基于最优控制的AMT/DCT离合器通用起步控制[J].机械工程学报,2011,47(12):85-91.
    [22] Liu, W. and He, R. Fuzzy control of AMT clutch engagement duringthe vehicle starting [C]. In Proceedings of the Ninth InternationalConference of Chinese Transportation Professionals,2009:1974-1982.
    [23] Niu, Q. Clutch control during starting of AMT [J]. Symposium onSecurity Detection and Information Processing,2010:447-452.
    [24] Van der Heijden, A. C., Serrarens, A. F. A., Camlibel, M. K. andNijmeijer, H. Hybrid optimal control of dry clutch engagement [J].International Journal of Control,2007,80(11):1717-1728.
    [25] Dolcini, P., Bechart, H. and Canudas De Wit, C. Observed-basedoptimal control of dry clutch engagement [C]. In Proceedings of the44th IEEE Conference on Decision and Control, and the EuropeanControl Conference2005, Seville, Spain, December12-15,2005:440-445.
    [26]齐占宁,陈全世,葛安林.基于遗传算法的AMT车辆起步模糊控制[J].机械工程学报,2001,37(4):8-11.
    [27]余春晖,陈慧岩,丁华荣.汽车离合器起步阶段模糊控制的研究[J].汽车工程,2005,27(4):423-425.
    [28] Xie, X., Wang, X., Zhang, X. and Yu, T. Fuzzy control of clutch forautomatic mechanical transmission vehicle starting [C]. IEEEVehicle Power and Propulsion Conference (VPPC), September3-5,2008,Harbin, China, IEEE2008.
    [29] Zhao, G., Peng, C. and Wang, X. Intelligent control for AMT basedon driver's intention and ANFIS decision-making [C]. In Proceedingsof the7th, world congress on intelligent control and automation,June25-27,2008, Chongqing, China, IEEE2008.
    [30]赵永胜,任卫群,张云清等.汽车AMT自动离合器的局部线性化模糊滑模控制[J].农业机械学报,2007,38(1):17-21.
    [31]赵永胜,张云清,任卫群等.汽车AMT自动离合器的改进模糊滑模控制[J].汽车工程,2006,28(8):750-754.
    [32] Zhao, Y., Chen, L., Zhang, Y. and Yang, J. Enhance fuzzy slidingmode controller for automated clutch of AMT vehicle [C]. SAE Paper,2006-01-1488.
    [33]肖勇明,孙冬野,秦大同.汽车离合器起步阶段局部模糊控制研究[J].汽车技术,2008(12):12-15.
    [34]孙冬野,秦大同.汽车离合器局部恒转速起步自动控制研究[J].机械工程学报,2003,11:108-112.
    [35]胡敏,刘振军,秦大同.电控机械式自动变速系统开发及试验[J].重庆大学学报,2004,27(9):6-9.
    [36]孙冬野,顾永明,秦大同等.非线性控制方法在AMT起步控制中的应用[J].重庆大学学报(自然科学版),2007,30(10):10-14.
    [37]刘振军.基于人-车-路环境下的汽车电控机械自动变速智能控制研究[博士论文].重庆:重庆大学,2005.
    [38] Horn, J., Bamberger, J., Michau, P. and Pindl, S. Flatness-basedclutch control for automated manual transmissions [J]. ControlEngineering Practice11(2003):1353-1359.
    [39]习纲,张建武,陈俐.汽车AMT离合器的非线性滑模控制[J].中国机械工程,2002,13(2):171-174.
    [40] Sun, C., Zhang, J. Optimal control applied in automatic clutchengagement of vehicle [J]. Chinese journal of mechanicalengineering,2004,17(2):280-283.
    [41] Glielmo, L., Vasca, F. Optimal control of dry clutch engagement [C].SAE Paper,2000-01-0837:1-7.
    [42] Amari, R., Alamzr, M. Modeling and simulation of smooth gearshiftcontrol in real-time automatic manual transmission (AMT) system [D].Chongqing University, October2005.
    [43] David, J., Natarajan, N. Plant identification and design of optimalclutch engagement controller [C]. SAE Paper,2006-01-3539.
    [44] Butz, T., Stryk, O. V. Optimal control based modeling of Vehicledriver properties [C]. SAE Paper,2005-01-0420.
    [45] Zhang, J., Chen, L. and Xi, G. System dynamic modeling and adaptiveoptimal control for automatic clutch engagement of vehicles [J].Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2002,216(12):983-991.
    [46]江发潮,陈全世,曹正清.机械式自动变速器的离合器优化控制[J].清华大学学报(自然科学版),2005,45(2):242-245.
    [47] Azhmyakov, V. A computational approach to optimization ofcontrolled mechanical systems [J]. Mediterranean Conference onControl and Automation, July27-29,2007.
    [48] Hahn, J. O., Hur, J. W., Choi, G. W. and Lee, K. I. Self-learningapproach to automatic transmission shift control in a commercialconstruction vehicle during the inertia phase [J]. Proceedings ofthe Institution of Mechanical Engineers, Part D: Journal ofAutomobile Engineering,2002,216:909-919.
    [49]陈清洪,秦大同,叶心. AMT重型汽车起步离合器最优控制[J].中国公路学报,2010,23(1):116-121.
    [50]李永军,陈树星,崔勇等.机械式自动变速器起车过程综合控制[J].汽车工程,2003,25(2):178-181.
    [51]雷雨龙,阴晓峰,谭晶星.基于CAN总线的AMT综合控制策略研究[J].公路交通科技,2005,22(3):115-118.
    [52]叶明,秦大同,刘振军.直流伺服电机驱动的自动离合器控制[J].机械设计与研究,2003,19(2):35-37.
    [53]杨向宇,杨进,邹利平.直流无刷电机控制系统的建模与仿真[J].华南理工大学学报,2005,33(8):28-32.
    [54]谢先平,王旭东,余腾伟,吴晓刚.自动离合器精确位置跟踪控制与起步控制研究[J].中国公路学报,2008,21(4):117-121.
    [55]秦贵和,张晋东,范玮,栾德欣,李永军,陈树星.基于dSPACE的混合动力轿车AMT电机控制系统[J].计算机工程与应用,2006,28:198-200.
    [56]李志伟,李翠芬,杜志岐.电机驱动式AMT离合器接合控制研究[J].车辆与动力技术,2006,3:13-15.
    [57]吴修义.德国ZFSachs公司的2种新型离合器[J].商用汽车,2004(8):80-81.
    [58]郝琪,过学迅,罗永革,冯樱.车用离合器的发展分析及应用研究[J].汽车研究与开发,2001(4):34-36.
    [59]孙冬野,秦大同.基于环境变化的离合器起步补偿控制[J].农业机械学报,2005,36(3):8-11.
    [60]倪春生,鲁统利,吴明翔,张建武. DCT双离合器磨损量的定量辨识[J].上海交通大学学报,2008,8(42):1319-1328.
    [61]倪春生,鲁统利,张建武.摩擦片磨损对干式双离合器自动变速器换挡特性的影响[J].上海交通大学学报,2009,10(43):1545-1554.
    [62]黄丰,莫易敏,吕俊成.微型汽车离合器摩擦材料磨损机制的研究[J].润滑与密封,2010,35(3):69-72.
    [63]王立勇,马彪,李和言,郑长松.湿式换挡离合器摩擦片磨损规律研究[J].北京理工大学学报,2008,4(28):324-328.
    [64]王立勇,马彪,李和言,郑长松.湿式换挡离合器摩擦片磨损量计算方法的研究[J].中国机械工程,2008,19(1):14-17.
    [65]高辉辉.微型汽车离合器摩擦磨损性能及其机理的研究[硕士论文].武汉:武汉理工大学.2008.
    [66]谢先平.汽车自动离合器接合过程控制策略研究[博士论文].哈尔滨:哈尔滨理工大学.2008.
    [67]陈俐.汽车AMT自动离合器接合过程的动力学与控制研究[博士论文].上海:上海交通大学.2000.
    [68] Heap, J. C. Application of variable coefficient of friction and itscauses for variation [C]. SAE Paper,690570,1969.
    [69] Lucas, G. G. and Mizon, R. A model of clutch engagement [C].Proceedings of the IMechE Conference on Power Train NVH, Cranfield,Bedfordshire, UK,1979, IMechE Paper C147/79:141–148.
    [70]杨向宇,杨进,邹利平.直流无刷电机控制系统的建模与仿真[J].华南理工大学学报,2005,33(8):28-32.
    [71]曹少泳,程小华.一种无刷直流电动机双闭环调速系统仿真研究[J].微电机,2007,40(2):88-91.
    [72]吴影生,胡虔生.无刷直流电机系统仿真模型与改进[J].机械制造与自动化,2003,5:54-57.
    [73]牛海清,谢运祥.无刷直流电动机及其控制技术的发展[J].微电机,2002,35(5):36-38.
    [74]钟君柳,姜孝华.基于S-函数的无刷直流电机系统建模研究[J].仿真技术,2007:273-275.
    [75]纪志成,沈艳霞,姜建国.基于Matlab无刷直流电机系统仿真建模的新方法[J].系统仿真学报,2003,15(12):1745-1758.
    [76]李力,王飞跃,郑南宁,张毅.驾驶行为智能分析的研究与发展[J].自动化学报,2007,33(10):1014-1022.
    [77] Xi, Z. and Levinson, D. Modeling intersection driving behaviors:a Hidden Markov Model approach [J]. Transportation Research Record:Journal of the Transportation Research Board,2006,1980:16-23.
    [78] Alex, P. and Andrew, L. Modeling and prediction of human behavio[J]. Neural Computation,1999,11:229-242.
    [79] Pongsathorn, R., Takuya, M. and Masao, N. Direct yaw moment controlsystem based on driver behavior recognition [J]. Vehicle SystemDynamics,2008,46:911-921.
    [80] Kuge, N., Yamamura, T. and Shimoyama, O. A driver behaviourrecognition method based on a driver model framework [C]. SAE Paper,2000-O1-0349.
    [81] Takano, W., Matsushita, A., Iwao, K.,et al. Recognition of humandriving behaviours based on stochastic symbolization of time seriessignal [C]. Proc. of the2008IEEE IROS, Nice, France,2008.
    [82] Kishimoto, Y. and Oguri, K. A Modeling method for predicting drivingbehaviour concerning with driver's past movements [C].Proc. of the2008IEEE ICVES, Ohio, USA,2008.
    [83] Meng, X. N., Lee, K. K. and Xu, Y. S. Human driving behaviourrecognition based on Hidden Markov Models [C].Proc. of the2006IEEE ROBIO, Kunming,2006.
    [84]王畅,宗长富,郑宏宇.基于多维高斯HMM的驾驶员转向意图辨识[C].中国汽车工程学会年会论文集,2010.
    [85]宗长富,王畅,何磊,郑宏宇,张泽星.基于双层隐式马尔科夫模型的驾驶意图辨识[J].汽车工程,2011,33(8):701-706.
    [86]许骏,李一兵.基于Markov决策过程的驾驶员行为模型[J].汽车工程,2008,30(1):14-16.
    [87]孟祥红,连珂.机动车驾驶员人格特征研究[J].统计研究,2004,6:14-20.
    [88]沈玮,何存道.事故驾驶员与安全驾驶员人格特征的比较研究[J].心理科学,1994,17(5):282-286.
    [89]朱国锋,何存道.驾驶员情绪状态研究[J].心理科学,2003,26(3):438-440.
    [90]胡子正,宗昌富,杨小波,陈言忠.驾驶员运动感觉及其评价[J].汽车工程,1996,18(4):223-228.
    [91]姜同川.正交试验设计[M].济南:山东科学技术出版社,1985.
    [92]廖永平,严擎宇.正交试验法在机械工业中的应用[M].北京:中国农业机械出版社,1984.
    [93]上海市科学技术交流站.正交试验设计法:多因素的试验方法[M].上海:上海人民出版社,1975.
    [94] Glielmo L, Iannelli L, Vacca V, et al. Gearshift control forautomated manual transmissions [J], IEEE/ASME Transactions onMechatronics,2006,11:17-26.
    [95] Kppe K, Serebrennikov B, Georg G. Software for automizedtransmissions Intelligent driving [J].8th LuK Symposium,2006:156-158.
    [96]高炳钊,葛安林,雷雨龙,牛铭奎,宫赫. AMT离合器微小位移的精确调整[J].机械工程学报,2002,38(10):86-89.
    [97]习纲,张建武,陈俐.汽车AMT离合器的非线性滑模控制[J].中国机械工程,2002,13(2):171-174.
    [98]陈俐,张建武,习纲.自动离合器的自适应最优控制[J].上海交通大学学报,2000,34(10):1312-1316.
    [99]雷雨龙,李永军,葛安林.机械式自动变速器起步过程控制[J].机械工程学报,2000,36(5):69-71.
    [100] Kimmig, K. L., Agner, I. Double clutch Wet or dry, that is thequestion [J]. The8th LuK Symposium,2006:120-135.
    [101] Bharat Bhushan,著.葛世荣,译.摩擦学导论[M].北京:机械工业出版社,2006.
    [102]高辉辉,黄继雄,莫易敏,汤春球,吕俊成.经济型汽车干摩擦式离合器的磨损及影响因素[J].机械,2008,10:27-30.
    [103] Majumdar, A., Bhushan, B. Fractal model of elastic-plastic contactbetween rough surfaces [J]. Journal of Tribology (ASME),1991,113:1-11.
    [104] Bowden, F. P., Tabor, D., Friction and lubrication of solids [M],Oxford: Clarendon Press,1950.
    [105]陈国安,葛世荣.基于分形理论的磨合磨损预测模型[J].机械工程学报,2000,36(2):29-33.
    [106]朱华,李刚,唐玮.分形表征机加工表面有效性的方均根测度方法[J].机械工程学报,2006,42(9):140-143.
    [107]贺林,朱均.粗糙表面接触分形模型的提出与发展[J].摩擦学学报,1996,16(4):375-384.
    [108] Zhou, G. Y., Leu, M. C. and Blackmore, D. Fractal geometry modelfor wear prediction [J]. Wear,1993,170:1-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700