用户名: 密码: 验证码:
基于分数阶傅里叶变换的宽带Chirp信号DOA估计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阵列信号处理是信号处理领域的主要研究方向之一,而非平稳宽带阵列信号处理不仅是目前研究的重点,也是研究的难点。对非平稳信号的宽带阵列信号处理的研究就具有非常重要的意义。本文围绕这个问题,展开了一系列的研究,并且利用分数阶傅里叶变换(Fractional Fourier Transform, FRFT)的旋转特性大大缩小了带宽,有助于宽带阵列的快速处理,为宽带阵列信号处理带来了新的思路。利用这种思路研究波达方向角估计算法,创新点包括以下几点:
     1.基于WLCF算法的宽带DOA估计
     提出了基于分数阶傅里叶变换的宽带Chirp信号DOA估计算法,根据线性Chirp信号与时频面的横轴呈一定角度的特点,利用分数阶傅里叶变换旋转时频面特性,让旋转得到的时频面横轴垂直于线性Chirp信号的调频斜率,使得信号的能量在新的时频面剧增。提出的算法充分利用了线性Chirp信号与时频面的关系,能让信号的能量在新的时频面集中在一点,这样可以较大程度地提高输出信噪比。通过高分辨率的空间谱搜索方法获得了波达方向角。与经典宽带DOA估计算法相比,估计精度和输出信噪比均得到了较大的提高。
     2.FRFT域的宽带DOA估计
     基于旋转的宽带Chirp信号DOA估计方案中,改进了相干信号子空间算法、双边相关变换算法、及投影子空间正交测试算法,利用分数阶傅里叶变换算法旋转时频面的方法,来缩小带宽,减小对宽带信号分段处理所带来的误差。与三种算法对比,仿真实验结果证明改进算法的精度有了明显提高,也说明该算法具有普遍适用性。
     3.基于FRFT算法的宽带DOA估计
     利用分数阶傅里叶变换旋转时频面特性,使方向矢量的时频分布可以近似地拟合成平行于新的时频面的横轴,进而达到缩小带宽的目的,使宽带阵列信号可以近似看做窄带阵列信号,解决了DOA估计中方向矢量随频率变化的问题。该算法相较于经典宽带DOA估计算法,无须对预估计角度和中心频率进行预估计,同时减少了分段之后因为“聚焦”所带来的误差,从而提高了估计精度。
     4.基于分数阶累积量的宽带DOA估计
     在旋转累量的宽带Chirp信号DOA估计方案中,将分数阶傅里叶变换与高阶累积量结合,提出了分数累量算法。该算法具有旋转时频面特性和对高斯过程不敏感的特性,利用这种算法进行宽带DOA估计,不仅能缩小带宽,而且能有效地抑制高斯噪声,仿真实验证实了该算法的有效性。
     综上所述,通过FRFT的旋转特性对宽带DOA估计进行了系列的研究,并在缩小带宽方面得到了一定的进展。不同于以往的处理宽带DOA的一个缩小带宽的常用思路。本论文的算法中的缩小带宽的方法不但不会丢失原始数据中包含的信息,反而可以充分利用宽带信号的信息量大的特点实现DOA估计,与传统的窄带DOA估计方法相比,具有更高的精度和性能。
Array signal processing is an important field in signal processing. And non-stationarywide-band array signal processing is the emphasis and difficult to study in this field. So itis important and worthy to study the theory and method for non-stationary wide-bandsignal processing. The main work of this paper is aimed on this subject. It uses FractionalFourier Transform(FRFT) to process the wide-band signal such as chirp signal. FRFT canreduce the signal band width and transform a wide-band signal to likely narrow-bandsignal and then most traditional DOA algorithm for narrow-band signal can be used on thetransform result to estimate the arriving direction of signal source. The paper proposessome algorithm combined with FRFT and traditional algorithm, explains the algorithmsand gives simulating result of these algorithm.
     (1)Wide-band DOA algorithm based on WLCF
     Wide-band linear chirp FRFT method (WLCF) algorithm canestimate arrivingdirection with sensory array and chirp signal. In time-frequencyplane, chirp signal can bedescribed as a line that has a angle with time axes.Use the rotational character of FRFT,Transforming the chirp signal with FRFTwith angle that is vertical to the chirp signalin time-frequency plane, the power of signal is focused in transformresult in a narrow field.The proposed algorithm uses the relation between chirpsignal and time-frequency plane,focuses the power in a new time-frequency plane and improves the signal-noise rate(SNR). Estimate the arriving direction with traditional DOA method for narrow-bandsignal, it can improve the accuracy in some degrees.
     (2) FRFT-based algorithm for wideband DOA estimation
     Use the time-frequency plane characteristic of fractional Fourier transform rotation,the time-frequency distribution of the direction vector can be approximated by fittingparallel to the horizontal axis at the new time-frequency plane, and thus achieve a narrowbandwidth, so this can achieve a narrow bandwidth, see the wideband array signal as thenarrow-band array signal to solve the problem of direction vector varies with frequency inDOA estimated,which is the advantage of this algorithm. Compared with the classicwideband DOA estimation algorithm methods, this algorithm method have no need of thepre-estimate of the angle and center frequency, reduce the error caused by the“Focus”after the segment,so this algorithm has higher estimation accuracy.
     (3) FRFT-based algorithm for wideband DOA estimation
     Using the time-frequency plane characteristic of fractional Fourier transform rotation,the time-frequency distribution of the direction vector can be approximated by fittingparallel to the horizontal axis at the new time-frequency plane, and thus achieve a narrowbandwidth, so this can achieve a narrow bandwidth, see the wideband array signal as thenarrow-band array signal to solve the problem of direction vector varies with frequency inDOA estimated,which is the advantage of this algorithm. Compared with the classicwideband DOA estimation algorithm methods, this algorithm method have no need of thepre-estimate of the angle and center frequency, reduce the error caused by the“Focus”after the segment,so this algorithm has higher estimation accuracy.
     (4) Wideband DOA estimation based on Fractional-Cumulant
     In the scheme of wideband DOA rotational Cumulant estimation based on fractionalFourier transform for Chirp signal, this method is combined fractional cumulant algorithmwith high order cumulant. The algorithm has rotation characteristics in time frequencyplane and is not sensitive to the Gauss process, and is used in wideband DOA estimation.We can see that this algorithm is not only to reduce the bandwidth, but also can effectivelyrestrain Gauss noise, and the simulation verified the effectiveness of our algorithm.
     In summary, the wideband DOA estimation is studied by rotational characteristics ofFRFT, and got some progress. The proposed algorithm, which is based on shorting thebandwidth, is different form the common idea of processing the wideband DOAestimation. This is outstanding point of our work. Moreover, the advantage of thisalgorithm can prevent from losing the message and reduce the estimation accuracy.Compared with the narrowband DOA estimation, these algorithms perform better andhave higher accuracy.
引文
[1] DH Johnson, DE Dudgeon. Array Signal Processing: Concepts and Techniques[M].Simon&Schuster,1992.
    [2] T S Perry. In search of the future of air traffic control[J]. IEEE Spectrum,1997,34(8):18-35.
    [3]弢君,陈祖斌等.可控震源相控地震的相关检测技术[J].仪器仪表学报,2005,26(4):336-339.
    [4]李大心.探地雷达方法与应用[M].北京:地质出版社,1994.
    [5] L C Godara. Application of antenna arrays to mobile communications. II.Beam-forming and direction-of-arrival considerations[J]. Proc. of IEEE,1997,85(8):1195-1245.
    [6]张颖,应小凡,田斌,易克初.一种基于倒谱分析的抗多径衰落的算法[J].信号处理,2003,(01):55-58.
    [7] L C Godara. Applications of antenna arrays to mobile communications. I.Performance improvement, feasibility, and system considerations[J].Proc.ofIEEE,1997,85(7):1031-1060.
    [8] M F Edren, M. A. Kutay and H M Ozaktas. Repeated filtering in consecutivefractional Fourier domains and its applications to signal restoration[J]. IEEE Trans.Signal Processing,1999,47:1458-1462.
    [9] O Akay and G. F. Boudreaux-Bastel. Fractional convolution and correlation viaoperator methods and an application to detection of linear FM signals[J]. IEEETrans. Signal Processing,2001,49:979-993.
    [10] I S Yetik and A Nehorai. Beamforming using the fractional Fourier transform[J].IEEE Trans. Signal Processing,2003,51:1663-1668.
    [11] G Su,M Morf. Signal subspace approach for multiple wideband emitter location[J].IEEE Trans. on Acoust., Speech, Signal Processing,1983,31:1502-1522.
    [12] H Wang, M Kaveh. Coherent signal-subspace processing for the detection andestimation of angles of arrival of multiple wide-band sources[J].IEEE Trans. Acoust.,Speech, Signal Processing,1985,33(4):823-831.
    [13]林茂庸,柯有安.雷达信号理论[M].国防工业出版社,1984.
    [14] H.Krim,M.Viberg.Two decades of array signal processing research:The parametricapproach[J].IEEE SP Mag.,1996.Vol.13,No.7:67-94.
    [15]刘德树等.空间谱估计技术及其应用[M].合肥:中国科技大学出版社,1997.
    [16] S Applebaum. Adaptive Arrays[J].IEEE trans. Antennas and Propagation,1976,24(5):585-598.
    [17] J Capon. High-resolution frequency-wavenumber spectrum analysis[J]. Proc. IEEE,1969,57(8):1408-1418.
    [18] Setal R I. Rapid convergence ratein adaptive radar[J].IEEE trans. AES,1978,2:237-252.
    [19] Kelly E J. Adaptive detection in nonstationary interference, Part[R]. TechnicalTeport761, MIT Lincon Laboratory,1987.
    [20] Lorenz R, Boyd S P. Robust minimum variance Beamforming[J]. IEEE Trans.Signal Processing,2005,53:1684-1696.
    [21] Yu J L, Yeh C C. Generalized Eigenspace Based Beamforming[J]. IEEE Trans.Signal Processing,1995,43(1):2453-2461.
    [22] Lee C C, Lee J H. Eigenspace based adaptive array Beamforming with robustcapabilities[J]. IEEE Trans. Antennas Propagation,1997,45(12):1711-1716.
    [23]毛志杰,范达,吴瑛.一种改进的PD基于投影域变换自适应波束形成器[J].Journal of Information Engineering University,2003(6):58-59.
    [24] Hamid Karim, Mats Viberg. Two decades of array signal processing research[J],IEEE signal processing magazine.1996,13(4):67-94.
    [25] Burg J P. Maximum entropy spectral analysis[C].Proc.of the37th meeting of theAnnual Int. SEG Meeting, klahoma, Okla.,1967.
    [26] J.P.Burg. Maximum entropy spectral analysis[C],Proc.37th Meeting of Society ofExploration Geophysicists,1967.
    [27] N E Ibrahim, H M Robert. Maximum-likelihood estimation of source parametersfrom time-sampled outputs of a linear array[J],The Journal of the Acoustical Societyof America,1977,62(1):125-134.
    [28] Pisarenko V F. The Retrieval of Harmonics From a Covariance Function[J].Geophys JRoy AstronSoc.1973,(33):247-266.
    [29] Schmidt R O. Multiple Emitter Location and Signal Parameter Estimation[J]. IEEETrans on AP.1986,34(3):276-280.
    [30] R Roy, A Paulraj, T Kailath. ESPRIT-A subspace rotation approach to estimation ofparameters of cissoids in noise[J],IEEE Trans. Acoustics, Speech, and SignalProcess.,1986,34(5):1340-1342.
    [31] Rao B D, Hari K V S. Performance analysis of Root-MUSIC[J]. IEEE Trans onAcoustics, Speech, and Signal Processing.1989,37(12):1939-1949.
    [32] Roy R,Kailath T. Total Least Squares ESPRIT[C].Proc.,21st Asilomar Conf.,Circuits, Sys Computer.Monterey,CA,Nov,1987.
    [33] Evans J E, Johnson J R, Sun D F. High resolution angular spectrum estimationtechniques for terrain scattering analysis and angle of arrival estimation[C].Processing1st ASSP Workshop Spectral Estimation, Hamiton, Ontario. Canada,1981:134-139.
    [34] Evans J E, Sun D F, Johnson J R. Application of advanced signal processingtechniques to angle of arrival estimation in ATC navigation and surveillancesystem[R]. MIT Lincoln Lab. Lexington, MA Rep,582. Jun.1982.
    [35] Shan T J, Wax M, Kailath T. On Spatial Smoothing for Direction of ArrivalEstimation of Coherent Signals[J]. IEEE Trans. on Acoustic Speech and SignalProcessing,1985,33(4):806-811.
    [36] Pillai S U, Kwon B H. Forward/Backward Spatial Smoothing Techniques forCoherent Signal Identification[J]. IEEE Trans. on Acoustic Speech and SignalProcessing,1989,37(1):8-15.
    [37] Du W X, Kirlin R L. Improved Spatial Smoothing Techniques for DOA Estimationof Coherent Signals[J]. IEEE Trans. on Signal Processing,1991,39(5):1208-1210.
    [38] Vibefg M, Ottersten B, Kailth T. Detection and estimation in sensor arrays usingweighed subspace[J]. IEEE Trans. Signal Processing,1991,39(1):2436-2449.
    [39] Vibefg M, Ottersten B. Sensor array processing based on subspace fitting[J]. IEEEtrans. Signal Processing,1991,39(5):1110-1121.
    [40] M C Dogan, J M Mendel, Application of cumulants to array signal Processing part I:Aperture extension and array calibration[J],IEEE trans. on Signal Processing,1995,43(5):1200-1216.
    [41]魏平,肖先赐,李乐民.基于四阶累积量特征分解的空间谱估计测向方法[J].电子科学学刊,1995,17(3):243-249.
    [42]丁齐,魏平,肖先赐.基于四阶累积量的DOA估计方法及其分析[J].电子学报,1999,27(3):25-28.
    [43] Dogan M C. Higher order narrowband array processing[D]. Signal Image ProcessingInst., University Southern Calif,1.0s Angeles,1993.
    [44] Cardoso J F. Higher order narrowband array signal processing[C]. iri Proc ConfHigher Order Statistics, Chamrousse, France,1991:121-130.
    [45] Wax M, Shan T J, Kailath T. Spatial temporal spectral analysis by eigenstructuremethods[J]. IEEE trans on Acoustic Speech and Signal Processing,1984,32(4):817-827.
    [46] Hua Y B, Sarkar T P K, Donald D. Weiner. An L shaped array for estimation2-Ddirections of arrival[J]. IEEE trans. on Antenna and Propagations,1991,39(2):143-146.
    [47] Zoltowski M D, Haardt M, Mathews C P. Closed form2D angle estimation withRectangular array in element space or beamspace via unitary ESPRIT[J]. IEEETrans. on Signal Processing,1996,44(1):326-328.
    [48]殷勤业,邹理和,Robert W N.一种高分辨二维信号参量估计方法—波达矩阵[J].通信学报,1991,12(4):1-7.
    [49]王激扬,王建英,陈天麒。宽频段空间信号频率、二维到达角和极化联合估计[J].电子与信息学报,2002,24(7):872-878.
    [50] Gardner W A. Simplification of MUSIC and ESPRIT by expoitation ofcyclostationarity[J]. Proc IEEE Trans.1998,76(7):845-847.
    [51] Gabor D. Theory of communication[J]. IEE,1946,93:429-457.
    [52] Page C H. Instantanious Power Spectra[J]. Appl. Phys,1952,23:103-106
    [53] Ville J. Theorie et applications de la notion de signal analytique. Cables etTransmission,1948,2A:61-74.
    [54] R Kronland-Martinet,J Morlet,A Grossmann. Analysis of Sound Patterns throughWavelet Transforms[J]. Int. Journal of Pattern Recognition and ArtificialIntelligence.1987,1(2):97-127.
    [55] M.G.Amin,A.Belouchrani.Blind source separation using the spatial ambiguityfunctions [C],Proceedings of the IEEE-SP International Symposium onTime-Frequency and Time Scale Analysis,1998:413-416.
    [56] A.Belouchrani,M.G.Amin, Time-frequency MUSIC[J],IEEE Signal ProcessingLetters,1999,6(5):109-110.
    [57] A.Hassanien,A.B.Gershman,M.G.Amin,Time-frequency ESPRIT for direction ofarrival estimation of chirp signals[C],Sensor Array and Multichannel SignalProcessing Workshop Proceedings,2002:337-341.
    [58] M.G.Amin,A.Belouchrani,Y.Zhang, The spatial ambiguity function and itsapplications [J], IEEE Signal Processing Letters,2000,7(6):138-140.
    [59] Yimin Zhang, Weifeng Mu, M G Amin, Time-frequency maximum likelihoodmethods for direction finding[J], Journal of the Franklin Institute,2000,337(4):483-497.
    [60] Yimin Zhang, Weifeng Mu, M G Amin, Subspace analysis of spatial time-frequencydistribution matrices[J], IEEE Transactions on Signal Processing,2001,49(4):747-759.
    [61] L A Cirillo, A M Zoubir, A B Gershman. Direction-of-arrival estimation foruncorrelated FM signals[C], Sensor Array and Multichannel Signal ProcessingWorkshop Proceedings,2002:318-322.
    [62] L.A.Cirillo,A.M.Zoubir,M.G.Amin,Direction finding of nonstationary signals usinga time-frequency hough transform[C],2005IEEE International Conference onAcoustics,Speech and Signal Processing,2005,vol.IV:501-504.
    [63] G.Su, M Morf.Signal subspace approach for multiple wideband emitter location[J],IEEE Trans. Acoust.,Speech, Signal Process.,1983,31:1502-1522.
    [64] Wax M, Shan T, Kailath T. Spatio temporal Spectral Analysis by eigenstructuremethods[J]. IEEE Trans. Acount, Speech, Signal Processing,1984,32:817-827.
    [65] H Wang,M Kaveh.Coherent signal-subspace processing for the detection andestimation of angles of arrival of multiple wide-band sources[J],IEEE Trans. Acoust.,Speech, Signal Processing,1985,33(4):823-831.
    [66] H Wang, M Kaveh. Focusing matrices for coherent signal-subspace processing[J],IEEE Trans. Acoust. Speech Signal Processing,1988,36(3):1272-1281.
    [67] M A Doron, A J Weiss. On focusing matrices for wide-band array processing[J],IEEE Trans. Signal Processing,1992,40(6):1295-1302.
    [68] Hung H, M Kaveh. Focussing matrices for coherent signal-subspace processing[J].Acoustics, Speech and Signal Processing, IEEE Transactions on,1988.36(8):1272-1281.
    [69] Doron M A, A J Weiss. On focusing matrices for wide-band array processing[J].Signal Processing, IEEE Trans. on,1992.40(6):1295-1302.
    [70] Valaee S, P Kabal. Wideband Array Processing Using A Two-Sided CorrelationTransformation[J]. Signal Processing, IEEE Transactions on,1995.43(1):160-172.
    [71] di Claudio, E D, R Parisi. WAVES: weighted average of signal subspaces for robustwideband direction finding[J]. Signal Processing, IEEE Transactions on,2001.49(10):2179-2191.
    [72] Yeo-Sun Y, L M Kaplan, J H McClellan. TOPS: New DOA Estimator for WidebandSignals[J]. Signal Processing, IEEE Transactions on,2006.54(6):1977-1989.
    [73] G.Wang,X.G.Xia,Iterative algorithm for direction of arrival estimation withwideband chirp signals,Proc.Inst.Elect.Eng.—Radar,Sonar,Navigation,2000,147(5):233-238.
    [74] A.B.Gershman,M.Pesavento and M.Amin,Estimating parameters of multiplewideband polynomial-phase sources in sensor arrays[J],IEEE Trans. Signalprocessing,2001,49(12):2924-2934.
    [75]黄克骥,田达,陈天麒.基于时频子空间分解的宽带线性调频信号DOA估计[J].电子与信息学报,2004,26(3):344-349.
    [76]金梁,殷勤业,李盈.时频子空间拟合波达方向估计[J].电子学报,2001,29(1):71-74.
    [77] Yimin Zhang, B A Obeidat, M G Amin. Nonstationary array processing for sourceswith time-varying polarizations[C]. Thirty-Eighth Asilomar Conference on Signals,Systems and Computers,2004:1242-1246.
    [78] Yimin Zhang, B A Obeidat,M G Amin. Spatial polarimetric time-frequencydistributions for direction-of-arrival estimations[J]. IEEE Transactions on SignalProcessing,2006,54(4):1327-1340.
    [79]何劲,刘中.基于分数低阶统计量的空域-模糊域DOA估计算法[J].电子与信息学报,2007,29(1):109-112.
    [80] Ning Ma,Joo Thiarn Goh,DOA estimation for broadband chirp signals[C].IEEEInternational Conference on Acoustics,Speech,and Signal Processing,2004,vol.2:261-264.
    [81] Ning Ma, Joo Thiam Goh. Ambiguity-function-based techniques to estimate DOA ofbroadband chirp signals[J]. IEEE Trans.on Signal Process.,2006,54(5):1826-1839.
    [82]王永良,陈辉,彭应宁.空间谱估计理论与算法[M].北京:清华大学出版社,2004.
    [83] W H Teukolsky, S A Vetterling, W T&Flannery, B. P. The art of scientificcomputing. Cambridge. Cambridge University Press.1986.
    [84] Gauss, Carl Friedrich.Bestimmung der Genauigkeit der Beobachtungen[J].Zeitschrift für Astronomie und verwandt Wissenschaften1816.1:187-197.
    [85] Mood A, Graybill, F, Boes D. Introduction to the Theory of Statistics (3rd ed.).McGraw-Hill.1974.229.
    [86] R.N.Bracewell.The Fourier transforms and its applications[M]. McGraw-Hill,1986.
    [87] V. Namias, The fractional order Fourier transform and its applications to quantummechanics[J]. Inst. Math Appl.,1980,25:241-265.
    [88] H. Kober. Wurzeln aus der Hankel-.Fourier-und aus anderen stetigentransfornationen[J]. Q. J. Math.(Oxford),1939,10:45-59.
    [89] A. P. Guinand. Matrices associated with fractional Hankel and Fouriertransformations[J]. Proc. Glasgow Math. Assoc.,1956,2:185-192.
    [90] Kober H. On fractional integrals and derivatives[J]. Quarterly Journal ofMathematics,1940, Oxford Ser.11(1):193-211.
    [91] De Bruijn N G. A theory of generalized functions with applications to Wignerdistribution and Weyl correspondence[J]. Nieuw Archief voor Wiskunde (3),1973,21:205-280.
    [92] V. Namias. The Fractional Order Fourier Transform and Its Application to QuantumMechanics[J]. Inst. Math.1980,25(3):241-265.
    [93] Bennett M J, McLaughlin S, Anderson T, et al. The use of the fraction Fouriertransform with coded excitation in ultrasound imaging[J]. IEEE Transactions onBiomedical Engineering,2006,53(4):754-756.
    [94] Mendlovic D, Ozaktas H M, Lohmann A W. Self Fourier functions and fractionalFourier transforms[J]. Optics Communications,1994,105:36-38.
    [95] A. C. McBride, H Kerr F. On Namias’s Fractional Fourier Transforms[J]. IMAJ.Appl.Math.1987,39:159-175.
    [96] D. Mendlovic, H. M. Ozaktas. Fractional Fourier Transform and their OpticalImplementaion (i)[J]. Optical Society Am A,1993,10(9):1875-1881.
    [97] H. M. Ozaktas, D. Mendlovic. Fractional Fourier Transform and their OpticalImplementaion (ii)[J]. Optical Society Am A,1993,10(12):2522~2531.
    [98] Almeida L B. The fractional Fourier transform and time-frequencyrepresentations[J]. IEEE Transactions on Signal Processing,1994,42(11):3084-3091.
    [99] Lohmann A W. Relationships between the Radon-Wigner and fractional Fouriertransforms[J]. Journal of the Optical Society of America A: Optics, Image Science,and Vision,1994,11(6):1798-1801.
    [100]陶然,邓兵,王越.分数阶Fourier变换在信号处理领域的研究进展[J].中国科学E辑,2006,36(2):113-136.
    [101]陶然,张峰,王越.分数阶Fourier变换离散化的研究进展[J].中国科学E辑,2008,38(4):481-503.
    [102]孟祥意,陶然,王越.分数阶傅里叶域循环多抽样率信号处理理论[J].中国科学E辑,2009,39(5):1004-1015.
    [103]李炳照,陶然,王越.分数阶Fourier域上非均匀采样信号的频谱重构研究[J].电子学报,2008,36(6):1202-1205.
    [104] Yang X M, Tao R. An automatic interference recognition method in spread spectrumcommunication system[J]. Journal of China Ordnance,2007,3(3):215-220.
    [105] Tao R, Deng B, Zhang W Q, et al. Sampling and sampling rate conversion of bandlimited signals in the fractional Fourier transform domain[J]. IEEE Transactions onSignal Processing,2008,56(1):158-171.
    [106] Tao R, Zhang F, Wang Y. Fractional power spectrum[J]. IEEE Transactions onSignal Processing,2008,56(9):4199-4206.
    [107]陶然,齐林,王越.分数阶Fourier变换的原理与应用[M].北京:清华大学出版社,2004.
    [108]陶然,邓兵,王越.分数阶傅里叶变换及其应用[M].北京:清华大学出版社,2009.
    [109] G. Cariolario, T. Erseghe, P. Kraniauskas and N. Laurenti. A unified framework forthe fractional Fourier transform[J]. IEEE Trans. Signal Processing,1998,46:3206-3212.
    [110] D. Mendlovic and H. M. Ozaktas. Fractional Fourier transforms and their opticalimplementation-I[J]. J. Opt. Soc. Am. A,1993,10:1875-1881.
    [111] H. M. Ozaktas and David Mendlovic, Fourier transforms of fractional order andtheir optical interpretation[J].Opt. Commun.,1993,101:163-169.
    [112] M. F. Edren, M. A. Kutay and H. M. Ozaktas, Repeated filtering in consecutivefractional Fourier domains and its applications to signal restoration[J].IEEE Trans.Signal Processing,1999,47:1458-1462.
    [113] O. Akay and G. F. Boudreaux-Bastel. Fractional convolution and correlation viaoperator methods and an application to detection of linear FM signals[J]. IEEETrans. Signal Processing,2001,49:979-993.
    [114] I. S. Yetik and A. Nehorai, Beamforming using the fractional Fourier transform[J].IEEE Trans. Signal Processing,2003,51:1663-1668.
    [115] Adolf W. Lohmann, Image rotation, Wigner rotation and the fractional Fouriertransform[J]. J. Opt. Soc. Am. A.1993,10:2181-2186.
    [116] L. Yu, K. Q. Wang, C. F. Wang and D. Zhang, Iris verification based on fractionalFourier transform[C]. Proc.First Int. Conf. on Machine Learning and Cybernetics,Beijing,2002:1470-1473.
    [117] S. C. Pei and J. J. Ding, Relations between fractional operations and time-frequencydistributions and their applications[J]. IEEE Trans. Signal Processing,2001,49:1638-1655.
    [118] H. M. Ozaktas, Z. Zalevsky and M. A. Kutay, The fractional Fourier transform withapplications in optics and signal processing[M].Wiley,2000.
    [119]邓兵,陶然,齐林等.分数阶Fourier变换与时频滤波[J].系统工程与电子技术,2004,26(10):1357-1359.
    [120] Erden M. F., Kutay M. A., Ozaktas H M. Repeated filtering in consecutivefractionalFourier domains and its application to signal restoration[J].IEEE Tran SignalProcessing,1999,47(5):1458-1462.
    [121] Kutay M. A., Ozaktas H. M., Arikan O., et al. Optimal filtering in fractional Fourierdomains[J].IEEE Tran Signal Processing,1997,45(5):1129-1143.
    [122] Jang S., Choi W., Sarkar T. K., et al. Exploiting early time response using thefractional Fourier transform for analyzing transient radar returns[J].IEEE TranAntennas and Propagation,2004,52(11):3109-3121.
    [123] Jouny I. I. Radar Backscatter analysis using fractional Fourier transform[J].In: IEEEAntennas and Propagation Society symposium. NJ: IEEE,2004.2115-2119
    [124] Ertosun M. G., Atli H., Ozaktas H. M, et al. Complex signal recovery from twofractional Fourier transform intensities order and noise dependence[J].OpticsCommunications,2005,244(1-6):61-70.
    [125] Zhang F., Bi G. A., Chen Y Q. Tomography time-frequency transform[J].IEEE TranSignal Processing,2002,50(6):1289-1297.
    [126]陈光化,马世伟,曹家麟等.基于分数阶傅里叶变换的自适应时频表示[J].系统工程与电子技术,2001,23(4):69-71.
    [127] Almeida L B. The fractional Fourier transform and time-frequency representations[J]. IEEE Transactions on Signal Processing,1994,42(11):3084-3091.
    [128] Ozaktas H M, Barshan B. Convolution, filtering, and multiplexing in fractionalFourier domains and their relation to LFM and wavelet transforms[J]. Journal of theOptical Society of America. A,1993,11(2):547-559.
    [129]曲强,金明录.基于自适应分数阶傅里叶变换的线性调频信号检测及参数估计[J].电子与信息学报,2009,(12):2937-2940.
    [130]金翔,张天骐,庞统,杜晓华.基于分数阶傅里叶变换的多项式相位信号参数估计[J].电子技术应用,2010,(07):127-130.
    [131]李家强,金荣洪,范瑜,毛炜. LFM信号参数联合估计新方法——域频率相差法[J].现代雷达,2006,(01):45-48.
    [132]王璞,杨建宇,杜雨洺.分数阶自相关和FRFT的LFM信号参数估计[J].电子科技大学学报,2006,(02):179-182.
    [133]杨秀丽,冯小平.基于分数阶傅里叶变换的Chirp信号参数估计及恢复[J].空间电子技术,2007,(03):78-81.
    [134]李家强,金荣洪,耿军平,范瑜,毛炜.基于高斯短时分数阶傅里叶变换的多分量LFM信号检测与参数估计[J].电子与信息学报,2007,(03):570-573.
    [135]史文国,徐向辉.基于分数阶傅里叶变换的多分量线性调频信号检测和参数估计的快速自适应方法[J].科学技术与工程,2012,(07):1517-1521.
    [136]李丽,邱天爽.基于分数阶傅里叶变换的双基地雷达线性调频信号的参数联合估计新方法[J].电子与信息学报,2012,(04):878-884.
    [137]董永强,陶然,周思永,王越.含未知参数的多分量Chirp信号的分数阶傅里叶分析[J].北京理工大学学报,1999,(05):86-90.
    [138]逄勃,范广伟.分数阶傅里叶变换在雷达多目标检测和参数估计中的应用[J].雷达与对抗,2010,(01):23-26.
    [139]张军.基于分数阶傅里叶变换步态特征提取[J].北京理工大学学报,2012,(06):636-640.
    [140]庞存锁.基于离散多项式相位变换和分数阶傅里叶变换的加速目标检测算法[J].电子学报,2012,(01):184-188.
    [141]宋军,刘渝,朱霞. LFM信号参数估计的插值FRFT算法[J].系统工程与电子技术,2011,(10):2188-2193.
    [142]张希会,蔡竟业,杨亦师.基于分数阶傅里叶变换的LFM信号参数估计预判法[J].信号处理,2008,(04):667-671.
    [143] Namias V. The fractional order Fourier transform and its application to quantummechanics[J]. IMA Journal of Applied Mathematics,1980,25(3):241-265.
    [144] McBride A C, Kerr F H. On Namias’ fractional Fourier transforms[J]. IMA Journalof Applied Mathematics,1987,39(2):159-175.
    [145] Bernardo L M, Soares O D D. Fractional Fourier transforms and optical systems[J].Optics Communications,1994,110:517-522.
    [146] Ozaktas H M, Aytur O. Fractional Fourier domains[J]. Signal Processing,1995,46(1):119-124.
    [147] Lohmann A W. Image rotation, Wigner rotation, and the fractional Fouriertransform[J]. Journal of the Optical Society of America. A,1993,10(10):2181-2186.
    [148] Bernardo L M, Soares O D D. Fractional Fourier transforms and imaging[J]. Journalof the Optical Society of America. A,1994,11(10):2622-2626.
    [149] Liu S, Ren H, Zhang J, et al. Image-scaling problem in the optical fractional Fouriertransform[J]. Applied Optics,1997,36(23):5671-5674.
    [150]姜建国,信号与系统分析基础[M].北京:清华大学出版社,1995.
    [151] A.Swami, J.M.Mendel. Cumulant-based approach to the harmonic retrieval andrelated problems[J]. IEEE Trans. on SP,1991,39(5):1099-1109.
    [152] B.Porat, B.Friedlander. Direction finding algorithms based on high-order statistics[J].IEEE Trans. on SP,1991.39(9):2016-2023.
    [153] M.C.Dogan, J.M.Mendel. Application of cumulants to array processing—Part I:Aperture extension and array calibration[J]. IEEE Trans. on SP,1995,43(5):1200-1216.
    [154] M.C.Dogan, J.M.Mendel. Application of cumulants to array processing—Part II:Non-Gaussian noise suppression[J]. IEEE Trans. on SP,1995,43(7):1663-1676.
    [155] Y.-H.Chen,Y.-S.Lin. Cumulant-based method for bearing estimation in the presenceof non-Gaussian noise[J]. IEEE Trans. on Antennas and Propagation,1994,42(4):548-552.
    [156] Y.-H.Chen,Y.-S.Lin. DOA estimation by fourth-order cumulants in unknown noiseenvironments[J]. IEEE ICASSP-93,1993,4:296-299.
    [157]黄佑勇,王激扬,陈天麒.一种小运算量累积量域频率和到达角估计算法[J].系统工程与电子技术,2001,23(7):24-26.
    [158] Xiuhong Wang,Qingqiang Guo,Qiqiang Li,Jinsong Zhang. High-order cumulant-based adaptive filter using particle swarm optimization[C]. Control and DecisionConference,2008. CCDC2008.Chinese,2008:4567-4570.
    [159] Kouame D,Girault J,Labat V,Ouahabi A.Delta high order cumulant-based recursiveinstrumental variable algorithm[J].Signal Processing Letters, IEEE.2000,7(9):262-265.
    [160]梁军利,刘丁,张军英.基于平行因子分析的频率、二维到达角和极化参数联合估计[J].中国科学:信息科学,2010,(01):63-77.
    [161] Junli, L. and L. Ding, Passive Localization of Mixed Near-Field and Far-FieldSources Using Two-stage MUSIC Algorithm[J]. Signal Processing, IEEETransactions on,2010.58(1):108-120.
    [162]宋海岩,朴胜春.基于高阶累积量矩阵组正交联合对角化的高分辨方位估计方法[J].电子与信息学报,2010,(04):967-972.
    [163] Leporini D,Pesquet J.High-order wavelet packets and cumulant field analysis[J].Information Theory, IEEE Transactions on.1999,45(3):863-877.
    [164] Sunsin, H., H. Ru, and L. JangMyung, Inspection of Insulators on High-VoltagePower Transmission Lines. Power Delivery[J], IEEE Transactions on,2009.24(4):2319-2327.
    [165] Moreau, E. and N. Thirion-moreau, Nonsymmetrical contrasts for sourcesseparation[J]. Signal Processing, IEEE Transactions on,1999.47(8): p.2241-2252.
    [166]张贤达.时间序列分析-高阶统计量方法[M].北京:清华大学出版社,1996.
    [167]张贤达.现代信号处理[M].北京:清华大学出版社,1995.
    [168]肖国有,屠庆平.声信号处理及其应用[M],西安:西北工业大学出版社.1994。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700