用户名: 密码: 验证码:
高活性纳米钇铝石榴石的合成及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
YAG多晶陶瓷具有优异的光学性能、良好的力学和热学性能,有望取代YAG单晶成为新一代固体激光基质材料,目前已成为研究的热点。YAG粉体的分散性,烧结性都对最终陶瓷的性能有重要影响,所以粉体制备技术和烧结技术就成为关键因素。目前广泛采用合成YAG的方法如沉淀法、溶胶—凝胶法等虽然可以得到纳米级的粉体,但是却不能解决颗粒的团聚问题,而超临界流体干燥技术(SCFD)能够有效地萃取前驱体中的溶剂,避免表面张力增大引起的物料收缩团聚现象,是一种具有潜力的纳米粉体干燥手段。
     本实验拟以目前常用的硝酸钇、硝酸铝为无机源,尿素为沉淀剂的均匀沉淀法和醋酸钇、异丙醇铝为原料的溶胶—凝胶法分别与乙醇、CO_2超临界干燥技术相结合,以期解决YAG粉体制备中的团聚问题,提高粉体的分散性、烧结性能进而改善最终产物的物理化学性能。采用XRD、IR、TG/DSC、TEM、BET等表征手段对产物粉体的晶相组成、结构、相变过程、颗粒形貌及比表面积进行研究。结果表明均匀沉淀法制备的前驱体为结构疏松的钇铝氢氧化物,在900℃生成纯YAG晶相,并随温度升高结晶额更完善。乙醇超临界干燥后的前驱体生成AlO(OH)·xH_2O和[Y_mAl_nO_x(OH)_y·(OC_2H_5)_z]结晶体,烧结过程中发生YAM→YAP→YAG相变化。1200℃煅烧后得到纯YAG相分散性较好且颗粒大小为50-60nm左右。与此相比,CO_2超临界干燥后的前驱体既保持了原有氢氧化物的均匀性又提高了其分散性,并且在较低烧结温度(900℃)直接得到单一的YAG晶相,避免了中间相
Yttrium aluminum garnet (YAG) crystalline ceramic which has excellent optical, mechanical, thermodynamic properties has been widely studied to replace YAG single crystal to be the new solid laser material. The dispersibility and sinterability of YAG powders have important effect to performance of product ceramic, so synthesis and sinter techniques are the key factor of powder preparation. The common ways such as co-precipitaiton, sol-gel, et al. can obtain nano-scaled YAG powders, but severe aggregation is unavoidable. Otherwise, supercritical fluid technique is a potential way for drying nano powders, which can effectively extract the solvent in precursor, avoid aggregation of powders.
    In this study, precursors obtained by homogenous precipitation method and sol-gel method were dried by supercritical fluid ethanol drying technology respectively to gain the well-dispersed, high actived powder, moreover improve the optical performance of product. One of YAG precursors was homogenous precipitated from a mixed solution of aluminum and yttrium nitrates using urea as precipitant, while the other precursor was obtained using Y(Ac)3 and isopropyl alcohol aluminum as raw materials. The phase transformation, composition and micro-structural features of the products were characterized by XRD, TG/DSC, BET, IR and TEM techniques. It was found that precursor
引文
[1] Lei Wen, Xudong Sun and Zhimeng Xiu. Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics. J. Eur. Ceram. Soc. Vol. 24 (2004), 2681-2688.
    [2] Akihiko Otsuka, Yoshiharu and Norio Aeai. A survey of hemispherical total emissivity of the refractory metals in practical use. Engineer Vol. 30 (2005), 535-543.
    [3] Jun-ji Zhang, Jin-wei Ning. Synthesis of ultrafine YAG: Tb phosphor by nitrate—citrate sol-gel combustion process. Mater. Res. Bull. Vol. 38 (2003), 1249-1257.
    [4] C. D. Brandle. Czochralski growth of oxides. J. Crystal Growth, 2004(264): 593-604.
    [5] Yang Peizhi, Deng Peizhen, Yin Zhiwen. The growth defects in Caochralski-grown Yb: YAG crystal. J. Crystal Growth, 218 (2000) 87-92.
    [6] Voicu Lupei. Efficiency enhancement and power scaling of Nd lasers. Optical Materials 24(2003): 353-368.
    [7] Cinibulk M K. Hexaluminates as a cleavable fiber-matrix interphase: synthesis, texture development, and phase compatibility. Am. Ceram. Soc, 2000, 83(5): 1276-1278.
    [8] 黄朝红,王爱华,殷绍唐,蔡伟平,秦晓英.Nd:YAG透明陶瓷制备技术的研究进展.硅酸盐学报,2003,31(9):873-877.
    [9] N. Okubo, N. Umeda, Y. Takeda, N. Kishimoto, Enhancement of metal-nanoparticle precipitation by co-irradiation of high-energy heavy ions and laser in silica glass. Nuclear Instruments and Methods in Physics Research B 206 (2003) 610-614.
    [10] Jean A. Tangeman, Brian L. Philips, Paul C. Nordine, Thermodynamics and Structure of Single- and Two-Phase Yttria-Alumina Glasses. J, Phys. Chem. B 2004, 108, 10663-10671.
    [11] Xionghui Zeng, Guangjun Zhao, Xiongdong Xu, Comparison of spectroscopic parameters of 15 at% Yb: YAlO_3 and 15 at% Yb: Y_3Al_5O_(12). J. Crystal Growth, 274 (2005) 105-112.
    [12] W. Q. Li, L. Gao, Co-precipitation processed needle-like YAG dispersed in alumina powder. Mater. Lett., 48(2001) 157-161.
    [13] S. Sun, Y. Duraandet, M. Brandt, Parametric investigation of pulsed Nd: YAG laser cladding of stellite 6 on stainless steel. Surface & Coatings Tech.., 194(2005) 225-231.
    [14] A. R. Naghash, Jim Y. Lee, Preparation of spinel lithium manganese oxide by aqueous co-precipitation. J. Powder Sources, 85(2000) 284-293.
    [15] Mitsutaka Kitamura, Haruo Konno, Atsunari Yasui, Hirokaysu Masuoka, Controlling factors and mechanism of reactive crystallization of calcium carbonate polymorphs from??calcium hydroxide suspensions. J. Crystal Growth, 236 (2002) 323-332.
    [16] A. S. Deshpande, Y. B. Khollam, A. J. Patil, S. B. Deshpande, H. S. potdar, S. K. Date, Improved chemical route for quantitative precipitation of lead zirconyl oxalate (PXO) leading to lead zirconate (PZ) powders. Mater. Lett. 51 (2001) 161-171.
    [17] 王介强,陶珍东,郑少华.制备条件对固相反应法制取YAG多晶体透光性的影响.中国有色金属学报,Vol.13,No.2,2003.
    [18] Ikesue A, Kinoshita T, Kamata K, Fabrication and optical properties of higlrperformance polycrystalline Nd: YAG ceramics for solid-state lasers. J Am Ceram. Soc, 1995, 78(4): 1033-1040.
    [19] 闻雷,孙旭东,马伟民,固相反应法制备YAG透明陶瓷.硅酸盐学报,2003,31(9) 819-822.
    [20] Qiwu Zhang, Fumio Saito, Mechanochemical solid reaction of yttrium oxide with alumina leading to the synthesis of yttrium aluminum garnet. Powder Technology, 2003, 129: 86-91.
    [21] E. Kozeschnik, J. Svoboda, F. D. Fischer, Modified evolution equations for the precipitation kinetics of complex phases in multi-component systems, Computer Coupling of Phase Diagrams and Thermochemistry 28 (2004) 379-382.
    [22] Ji-Guang Li, Takayasu Ikegami, Jong-Heun Lee, Toshiyuki Mori, Yoshiyuki Yajima, Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders- the effect of precipitant. J. Eur. Ceram. Soc. 20(2000) 2395-2405.
    [23] Hongzhi Wang, Lian Gao, Koichi Niihara, Synthesis of nanoscaled yttrium aluminum garnet powder by the co-precipitation method, Materials Science and Engineering A288(2000) 1~4.
    [24] 李霞,刘宏,王继扬,崔洪梅,张旭东,李红霞.共沉淀法制备Nd:YAG纳米粉体与机理探讨.功能材料,2004,4(35)501~503.
    [25] Fangli Yuan, Hojin Ryua, Ce-doped YAG phosphor powders prepared by co-precipitation and heterogeneous precipitation. Mater. Sci. Eng. B107 (2004) 14-18.
    [26] Xia Li, Hong Liu, Jiyang Wang, Hongmei Cui, Preparation of YAG-Nd nano-sized powder by co-precipitation method. Mater. Sci. Eng. A 379 (2004) 347-350.
    [27] 李江等.共沉淀法制备钇铝石榴石(YAG)纳米粉体.硅酸盐学报,2003,31(5):490-493.
    [28] 张华山,荆敏,韩辉,苏春辉,邵晶,张洪波,候朝霞,均相共沉淀法合成钇铝石榴石(YAG)纳米粉末的研究.材料科学与工程学报,2004,22(6):831-834.
    [29] 黄飞,董丽敏,吴泽,阎爱华,张显友,Sol-Gel法制备Y_3Al_5O_(12)Tb及烧结行为的研究.哈尔滨理工大学学报,2004,9(6) 50-53.[30] 卢铁城,陈丰波,张颖,刘彦章,林理彬,改进的溶胶-凝胶法制备YAG纳米粉体.功能材料,2005,4(36) 610-612.
    [31] Michael Veith, Sanjay Mathur et al. Synthesis of YAG by sol-gel method. J .Mater. Chem, 1999, 9: 3069-3079.
    [32] Tokumatsu Tachiwaki, Masaru Yoshinaka et al. Novel synthesis of Y_3Al_3O_(12) (YAG) leading to transparent ceramics. Solid State Communications, 2001, 119: 603-606.
    [33] 路清梅,董文生,王浩静,王心葵,Sol-Gel法制备新型多晶钇-铝石榴石纤维.无机材料学报,2002,17(3),566-570.
    [34] Xudong Zhang, Hong Liu, Wen He, Jiyang Wang, Xia Li, Robert I. Boughton, Rapid synthesis of YAG nano-sized powders by a novel method. Mater. Lett. 58(2004) 2377-2380.
    [35] R. Goddard, J. Bosley, B. Al-Duri, Esterification of oleic acid and ethanol in plug flow(packed bed) reactor under supercritical conditions- Investigation of kinetics. J. Supercritical Fluids, 18 (2000) 121-130.
    [36] Xudong Zhang, Hong Liu, Wen He, Jiyang Wang, Xia Li, Robert I. Boughton, Synthesis of monodisperse and spherical YAG nanopowder by a mixed solvothermal method, Journal of Alloys and Compounds, 372(2004) 300~303.
    [37] 许凤秀,李霞,YAG纳米粉体的制备技术研究进展,中国陶瓷工业,2004,11(3),38~41.
    [38] 张明福,韩杰才,赫晓东,杜善义,喷雾热解法制备功能材料研究进展.压电与声光,1999,21(5) 401-406.
    [39] Brunno T J, Ely J F. Supercritical Fluid Technology, Review in Modem Theory and A pplications, CRC PRESS, Boston, MA, 1991.
    [40] J. M. Prausnitz, R. N. Lichtenthaler, E. G. de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, Prentice-Hall, Englewood Cliffs, NJ, 1986, Chapter 4.
    [41] 野国中,李正名.超临界流体在有机合成中的应用.化学通报,2002,4:221—226.
    [42] 郭继志,袁渭康.初议超临界条件下的化学反应.化工进展,2000,3:8-13.
    [43] 陈克宁.超临界流体的应用.四川化工与腐蚀控制,1998,1:4.
    [44] 张镜澄.超临界流体萃取(第一版),北京,化学工业出版社,2000:1~4.
    [45] 霍清.超临界流体技术应用概况.中国化工信息,1999,20:11.
    [46] Tadafumi Adschiri, Yukiya Hakuta, and Kunio Arai~*. Hydrothermal synthesis of metal oxide fine particles at supercritical conditions. Ind. Eng. Chem. Res., 2000, 39: 4901-4907.
    [47] Philip G. Jessop and Walter Leitner. Chemical synthesis using supercritical fluids. Weinheim : Wiely-VCH, c1999, 6-65.[48] Adschiri, T., Kanazawa, K., Arai, K.. Rapid and continuous hydrothermal crystallization of metal oxide particles in supercritical water. J. Am. Ceram. Soc, 1992, 75:1019-1022.
    [49] Nicola Husing, Fritz Schwertfeger, Wolfgang Tappert, Ulrich Schubert. Influence of supercritical drying fluid on structure and properties of organically modified silica aerogels. Journal of Non-Crystalline Solids, 1995, 186: 37-43.
    [50] A.F. Bedilo, K.J. Klabunde. Synthesis of high surface area zirconia aerogels using high temperature supercritical drying. Nanostructure Materials, 1997, 8(2): 119-135.
    [51] Motonobu Goto, Yoshinori Machino, Tsutomu Hirose. Preparation of SiO_2 and NiO/Al_2O_3 aerogels by supercritical CO_2 drying and their catalytic activity. Microporous Materials, 1996, 7:h 41-49.
    [52] J.R. Heley, D. Jackson, P.F. James. Fine low density silica powders prepared by supercritical drying of gels derived from silicon tetrachloride. Journal of Non-Crystalline Solids, 1995, 186:30-36.
    [53] GM. Pajonk, A. Venkateswara Rao, B.M. Sawant, N.N. Parvathy. Dependence of momolithicity and physical properties of TMOS silica aerogels on gel aging and dryingconditions. Journal of Non-Crystalline Solids, 1997, 209: 40-50.
    [54] Aleksandar Orlovic, Djordje Janackovic, Dejan Skala. Alumina/silica aerogel with zinic chloride alkylation catalyst: Influence of supercritical drying conditions and aerogel structure on alkylation catalytic activity. Catalysis Communications, 2002, 3: 119-123.
    [55] AE-YOUNG JEONG Characterization of Hydrophobic SiO_2 Powders Prepared by Surface Modification on Wet Gel. Journal of Sol-Gel Science and Technology, 2000, 19: 483-487.
    [56] Z. Ding, H.Y. Zhu, P.F. Greenfield, and GQ. Lu. Characterization of pore structure and coordination of Titanium in TiO_2 and SiO_2-TiO_2 Sol-Pillared clays. Journal of Colloid and Interface Science, 2001, 238: 267-272.
    [57] Kistler S. S., Coherent expanded aerogels and jellies. Nature, 1931, 127:741-745.
    
    [58] 胡惠康,甘礼华,李光明,沙海祥,陈龙武.超临界干燥技,实验室研究与探索, 2000, (2): 33-35.
    [59] Catarina M.M. Duarte, Marcelo Crew, Teresa Casimiro, Phase equilibrium for capsaicin+water+ethanol+supercritical carbon dioxide. J. Supercritical Fluids, 22 (2002)87-92.
    [60] V. Pessey, R. Garriga, F. Weill, B. Chevalier, J. Etourneau and F. Cansell, Control of particle growth by chemical transformation in supercritical CO2-ethanol mixtures. J. Mater.Chem,2002, 12,958-965.
    [61] Smith J. M. and Van Ness H.C., Introduction to Chemical Engineering Thermodynamics,Fourth Edition, NcGraw-Hill. Inc., New York, 1987.
    [62] McHugh M. A., Krukonis V. J., Supercritical Fluid Extraction: principles and Practice, Butterworth-Heinemann, Stoneham, MA, 1994.
    [63] 陈小兵,余双平,邓淑华,黄慧民,周立清,纳米粉体干燥方法的研究进展.无机盐工业,2004,36(1),7-9.
    [64] Ambrose D. In Handbook of Chemistry and Physics; 7200 ed., Lide D. R., Ed; CRC Press: Boca Raton, 1991.
    [65] 张义民,溶胶—凝胶法制备耐热Al_2O_3气凝胶.河南科学,2002,20(3),239-241.
    [66] 梁丽萍,党淑娥,高荫本,超临界流休干操法合成无团聚ZrO_2(CaO)纳米粉体及其烧结性行为.硅酸盐学报,2002,30(5) 623-628.
    [67] F. H. Froes, O. N. Senkov, E. G. Baburaj, Some aspects of synthesis of nanocrystalline materials. Mater. Sci. Tech., 2001, 17, 119-126.
    [68] Krittika Charutawai, Somkiat Ngamprasertsith, Pattarapan Prasassarakich, Supercritical desulfurization of low rank coal with ethanol/KOH. Fuel Processing Technology 84 (2003) 207-216.
    [69] M. Budich, G. Brunner, Supercritical fluid extraction of ethanol from aqueous solutions. J. of Supercritical Fluids 25 (2003) 45-55.
    [70] Kong-Hwa Chiu, Hwa Kwang Yak, Joanna Shaofen Wangc, Chien M. Wai, Supercritical Fluid extraction of mixed wastes. Green Chem., 2004, 6, 502-506.
    [71] Suresh L. Shenoy, lpek Kaya, Can Erkey, R. A. Weiss, Synthesis of conductive elastomeric foams by an in situ polymerization of pyrrole using supercritical carbon dioxide and ethanol cosolvents. Synthetic Metals 123 (2001) 509-514.
    [72] Chang, CJ., A. D. Randolph, AIChE J., 1990, 36, 939.
    [73] Yea S. D., Debenedetti P. G., Radosz M., and H. W. Schmidt Macromolecules, 1993, 26: 6207.
    [74] Camila G. Pereira, Marcia O. M. Marques, Alaide S. Barreto, Antonio C. Siani, Eloise C. Fernandes, M. Angela A. Meireles, Extraction of indole alkaloids from Tabemaemontana catharinensis using supercritical CO_2+ethanol- an evaluation of the process variables and the raw material origin. J. of Spuercritical Fluids 30 (2004) 51-61.
    [75] Amparo Chafer, Tiziana Fornari, Angel Bema, Roumiana P. Stateva, Solubility of quercetin in supercritical CO_2+ethanol as a modifier-measurements and thermodynamic modeling. J. of Supercritical Fluids 32 (2004) 89-96.
    [76] 李江,潘裕柏,张俊计,黄莉萍,郭景坤,共沉淀法制备钇铝石榴石(YAG)纳米粉体.硅酸盐学报,2003,31(5) 490-493.[77] 张俊计,黄莉萍,徐军,Nd:YAG透明陶瓷的烧成及其显微结构.硅酸盐学报,2005,6(33)678-682.
    [78] 黄朝红,张庆礼,周东方,李运奎,殷绍唐,施朝淑.Ce~(3+):YAG闪烁晶体的真空紫外激发光谱特性.中国稀土学报,2002,(20) 36-39.
    [79] M. Frentzen, M. R. L. A., Santaella, E. Matson, Er-YAG laser-assisted fissure sealing. International Congress Series 1248 (2003) 197-198.
    [80] R. A. Rodriguez-Rojas, E. De la Rosa-Cruz, L. A. Diaz-Torres, Preparation, photo- and thermo-luminescence characterization of Tb3+ and Ce3+ doped nanocrystalline Y_3Al_5O_(12) exposed to UV-irradiation. Optical Materials 25 (2004) 285-293.
    [81] 朱建慧,徐学珍,姚广涛,张韶光,Nd:YAG激光晶体单程损耗的研究.人工晶体学报,2002,6(31) 542-546.
    [82] 苏静,张庆礼,谷长江,孙敦陆,邵淑芳,殷绍唐,共沉淀法YAG、Nd:YAG纳米粉体的制备结构与光谱性能研究.功能材料,2005,5(36) 717-722.
    [83] 饶海波,成建波,黄宗琳,Tb~(3+):YAG单晶荧光层中掺杂Ga~(3+)的荧光敏化作用.光学学报,2004,2(24) 264-267.
    [84] Jun-ji Zhang, Jin-wei Ning, Xue-jian Liu, Yu-bai Pan, Li-ping Huang, Synthesis of ultrafine YAG-Tb phosphor by nitrate-citrate sol-gel combustion process. Mater. Res. Bull. 38 (2003) 1249-1256.
    [85] 洪少春,Nd:YAG激光器在医学上的应用与改进.九江师专学报,2003 5(124) 43-47.
    [86] 洪少春,Nd:YAG激光器在医学上应用的技术研究.吉林化工学院学报,2004 3(21) 55-58.
    [87] 鲍良弼,叶兵,袁自钧,程萍,刘福峡,Er:YAG激光器及其应用研究.合肥工业大学学报,2001 1(24) 23-27.
    [88] Fangli Yuan, Hojin Ryu, Ce-doped YAG phosphor powders prepared by co-precipitation and heterogeneous precipitation. Mater. Sci. Eng. B 107 (2004) 14-18.
    [89] Wenjie Xie, Young Kwon, Siu-chung Tam, Yee-loy Lam, Diffraction losses of Nd-YAG and Yb-YAG laser crystals. Optics & Laser Technology 33 (2001) 129-134.
    [90] Y. H. Zhou, J. Lin, S. B. Wang, H. J. Zhang, Preparation of Y3Al5O12-Eu phosphors by citric-gel method and their luminescent properties. Optical Mater. 20 (2002) 13-20.
    [91] E. Zych, C. Brecher, Temperature dependence of Ce-emission kinetics in YAG-Ce optical ceramic. J. Alloys Compounds 300-301 (2000) 495-499.
    [92] Corman G S. Creep of yttrium aluminum garnet single crystal. J Mater Sci Lett, 1993 (12): 379-382.
    [93] de With G, van Dijk H J A. Translucent Y_3Al_5O_(12) ceramic. Mater Res Bull, 1984, 19(12):??1669-1674.
    [94] Corman G S. High-temperature creep of some single crystal oxides. Ceram Eng Sci. Proc, 1991 (12): 1745-1766.
    [95] Keller K A, Mah T, Parthasarathy T. Processing and mechanical properties of polycrystalline Y_3Al_5O_(12). Ceram Eng Sci Proc, 1990 (11): 1122-1133.
    [96] Wang H Z, Gao L. preparation and microstructure of polycrystalline Al_2O_3-YAG composites. Ceram Int, 2001 (27): 721-723.
    [97] Cinibulk M K, Keller K A, Mah T, Effect of yttrium aluminum garnet additions on alumina-fiber-reinforced porous-alumina-matrix composites. J Am Ceram Soc, 2004, 87(5): 881-887.
    [98] Zoran Novak, Zeljko Knez, Miha Drofenik, Irena Ban. Preparation of BaTiO_3 powders using supercritical CO_2 drying of gels. Journal of Non-Crystalline Solids, 2001, 285: 44-49.
    [99] 相宏伟,钟炳,彭少逸.超临界流体干燥理论、技术及应用.材料科学与工程,1995,13(2):38-53.
    [100] 胡知浩,张敬畅,曹维良等.超临界流体干燥法制备纳米ZnO的研究.材料科学与工艺,2002,10(3):241-246.
    [101] 姚志强,王琴,钟炳.超临界流体干燥法制备MnZn铁氧体超细粉末.J.Magn.Mater.Devices,19998,29(1):6-10.
    [102] 邓忠生,魏建东,王珏等人.超低密度二氧化硅气凝胶制备新方法.原子能科学技术,1999,33(4):314-319.
    [103] 陈寿椿,重要无机化学反应,第三版.上海的学技术出版社,1163.
    [104] 黄彪,超临界乙醇流体制取活性炭-TiO_2光催化剂复合材料的研究.环境科学学报,2002 5(22) 641-646.
    [105] M. B. Kakade, S. Ramanathan, P. V. Ravindran, Yttrium aluminum garnet powders by nitrate decomposition and nitrate-urea solution combustion reactions—a comparative study. J. Alloy. Compound., 350 (2003) 123-129.
    [106] S.-M. SIM, Phase formation in yttrium aluminum garnet powders synthesized by chemical methods. J. Mater. Sci., 35 (2000) 712-717.
    [107] 胡惠康,甘礼华,李光明,沙海祥,陈龙武,超临界干燥技术.实验室研究与探索,2000,(2)33~35.
    [108] 黄彪,超临界乙醇流体制备TiO_2光催化剂(Ⅰ).化工学报,2003,9(54) 1315-1318.
    [109] P. G. Kinstte, Int. Appl. 91 (1990) 331.
    [110] W. Z. Zhang, G. Z. Liu, E. W. Shi, Chin. Sci. B 24 (1994) 349.[111] W. J. Li, E. W. Shi, Y. Q. Zheng, C. T. Xia, Z. W. Yin, J. Chin. Ceram. Soc. 27 (1999) 714.
    [112] Aegerter, M. A., Jafelicci, M., Souza, D. F.,2anoto, E. D., Sol-Gel Science and Technology. World Scientific, Singaore, 1989.
    [113] Gowda G. Synthesis of yttrium aluminates by the Sol-gel process. J. Mater. Sci. Lett, 1986, 5: 1029-1032.
    [114] Michael Veith, Sanjay Mathur, Aivaras Kareiva, Low temperature synthesis of nanocrystalline Y_3Al_5O_(12) (YAG) and Ce-doped Y_3Al_5O_(12) via different sol-gel methods. J. Mater. Chem., 1999, 9, 3069-3079.
    [115] 孙志红,袁多荣,段秀兰,魏学成,溶胶-凝胶法制备YAG材料概述.硅酸盐通报,2004,4:59-62.
    [116] R. C. Pullar, M. D. Taylor, A. K. Bhattacharaya, The Manufacture of Yttrium Aluminium Garnet (YAG) Fibres by Blow Spinning from a Sol-Gel Precursor. Journal of European Ceramic Society 18 (1998): 1759-1764.
    [117] 王晶,邱竹贤,谢鹏,有机醇盐Sol-Gel法纳米氧化铝粉体制备及表征.有色金属,1999,3(81) 76-78.
    [118] Towata, A.; Hwang, H.J.; Yasuoka, M.; Sando, M.; Niihara, K., Preparation of polycrystalline YAG/alumina composite fibers and YAG fiber by sol-gel method. Composites Part A: Applied Science and Manufacturing, 2001, 8(32) 1127-1131.
    [119] Boyer, Damien; Bertrand-Chadeyron, Genevieve; Mahiou, Rachid, Structural and optical characterizations of YAG: Eu~(3+) elaborated by the sol-gel process. Optical Materials, 2004, 2(26) 101-105.
    [120] Okada, Kiyoshi; Motohashi, Takayuki; Kameshima, Yoshikazu; Yasumori, Atsuo, Sol-gel synthesis of YAG/Al2O3 long fibres from water solvent systems. J. Eur. Ceram. Society, 2000, 5(20): 561-567.
    [121] Sun, Zhihong; Yuan, Duorong; Li, Haoqiang; Duan, Xiulan; Sun, Haiqing; Wang, Zengmei; Wei, Xuecheng; et. al., Synthesis of yttrium aluminum garnet (YAG) by a new sol-gel method. J. Alloy. Compound. 2004 1-2(379): 1-3.
    [122] 朱虎刚,田宜灵,陈丽等.超临界CO_2+CH_3OH及C_2H_5OH二元系的气液平衡.高等学校化学学报,2002,23(8):1588-1591.
    [123] van Bommel M J, de Haan A B. Drying of silica gels with supercritical carbon dioxide. Journal of Material science, 1994, 29: 943-948.
    [124] Srinivas Palakodaty and Peter York. Phase Behavioral effects on Particle Formation Processes Using Supercritical Fluids. Pharmaceutical Research, 1999, 16(7): 976-984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700