用户名: 密码: 验证码:
超临界流体制备粉体过程基本流体力学问题的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超细微粒制备技术,特别是基于超临界流体技术的超细微粒制备技术是当前材料科学和化学工程研究中最重要的领域之一,获得粒径小且分布均匀的超细粉体是人们追求的目标。目前已提出了好几种以超临界流体制备超细粉体的技术,其中比较有代表性的有超临界溶液快速膨胀过程(简称RESS)、超临界反溶剂过程(简称SAS)和超临界辅助雾化过程(简称SAA)。上述过程都需要内径接近200μm的微细喷嘴来实现,因此对于超临界流体在该喷嘴内外流场的模拟对于过程的预测和优化显得非常重要。
     为了保证对超临界流体制备粉体过程中喷嘴内外流体流场模拟的准确性,本文对超临界CO_2和乙醇物性参数的计算方法进行了总结和比较,确定了计算状态参数应用的状态方程,同时计算了CO_2和乙醇的粘度、导热系数、表面张力等物性参数。
     本文针对纯CO_2通过单孔喷嘴流动的基本流体力学问题,建立了超临界流体通过喷嘴在自由空间快速膨胀的数学模型。在给定的模拟条件下,利用商业流体力学计算软件FLUENT对计算区域内的快速膨胀过程进行了数值模拟,得到了压力、温度、密度、速度沿着喷嘴轴线的变化曲线,考察了预膨胀压力、温度,以及喷嘴出口直径等结构参数对膨胀过程的影响。
     超临界辅助雾化(SAA)过程是最近几年提出的一种新型的利用超临界流体制备固体超细微粒的方法。该过程最大的特点就是通过微细喷嘴产生的高速气流将溶有超临界CO_2的溶剂雾化成极细的液滴,从而产生粉体。本文以过程常用的溶剂乙醇为模型材料,建立了乙醇通过微细喷嘴的气体辅助雾化模型,利用流体力学计算软件FLUENT对雾化过程进行了模拟计算,得到了SAA过程中结晶器内部的液滴粒径、速度、温度等因素的变化规律,同时也分析了入口压力、温度及溶液流量变化对液滴粒径的大小和分布的影响。
     虽然超临界流体制备粉体工艺具有其他方法无可比拟的优点,但是喷嘴出口截面积过小限制了制备粉体的产量,因此限制了此类方法的应用和推广。本文设计了一种应用于超临界流体制备粉体过程的新型喷嘴,此喷嘴由内心芯和外壳构成的环隙空间作为喷嘴出口。以纯CO_2为模型介质,对该喷嘴的快速膨胀过程进行数值模拟发现,该类喷嘴具有和单孔喷嘴相同的膨胀效果,而制备粉体的产量有了明显的提高。
Micro-particle preparation technologies, especially those based on supercritical fluid technology are one of the most important research fields about material science and chemical engineering. It is the researcher's purpose to obtain the small micro-particles with a uniform distribution. At present several supercritical fluid technologies have been proposed to prepare the micro-particles. Among these, the rapid expansion of supercritical solution (RESS) process, the supercritical antisolvent (SAS) process and the supercritical assisted-atomization (SAA) process are very typical. While, a key part i.e. a nozzle with the inner diameter of 200μm is used in above three technologies to prepare the microparticels successfully. So it is important to simulate the flow fileds inside and outside of the nozzle of supercritical fluid to predict and optimize the processes.
     In order to ensure the accuracy of simulation and calculation on the rapid expansion process, physical parameters of the supercritical CO_2 and ethanol are calculated and compared. The equation of state used in this paper is determined and the calculation method of the viscosity, thermal conductivity coefficient and the thermal capacity of the carbon dioxide and ethanol are obtained.
     Toward the basic hydrodynamics behavior of the rapid expansion process of the pure CO_2 through the nozzle, the rapid expansion mathematical model of the supercritical fluid being sprayed into the free space through a nozzle is established. Based on the simulation conditions, the rapid expansion process in the calculation region is numerically simulated by the commercial calculation software FLUENT, the evolutional curves of the pressure, temperature, density and velocity along with the axis are obtained and the influences of the operating parameters, such as pre-expansion pressure, the temperature and the nozzle diameter on the expansion process are investigated.
     SAA is a recently proposed micronization technology based on the supercritical fluid to prepare the micro-particles of solid. The most important point of this method is that this process is based on the high velocity of the air stream to break the solvent into very small droplets and the microparticles are obtained. With the ethanol as model material used generally in the SAA process, the model of air assisted atomization through a nozzle is made in this paper. The atomization process is simulated and calculation by the commercial software FLUENT, the variation rules of the diameter, the velocity and the temperature of the droplets in the precipitator are obtained and the influences of the operating parameters, such as the inlet pressure, the inlet temperature and flow rate of the solvent on the diameter and size distribution of the droplets are investigated.
     Supercritical fluid micro-particle preparation technologies have more advantages than the conventional micronization ones. However, the smaller nozzle inner diameter limited the yield of the produce greatly and then the application and promotion of these processes. In this paper, a new-style nozzle used in the supercritical fluid micro-particle technology is designed which is characterized the ring shape space composed by inner core and shell. The basic hydrodynamics behavior of the rapid expansion process through this kind of nozzle has been simulated. The results show that the same expansion effects as the single-hole nozzle are obtained while the yield of produce increases greatly.
引文
[1]李凤生等.超细粉体技术.北京:国防工业出版社,2000:7.
    [2]罗付生,韩爱军,杨毅等.超细粉体技术在中药行业中的应用.中草药.2001,32(10):941-942.
    [3]徐瑛,刘根凡,余永富等.超细粉碎技术在现代中药的应用.化学与生物工程.2003,6(1):1-3.
    [4]中国超细粉体材料应用市场综述.中国粉体工业.2003,3(2):28-31.
    [5]房永广,梁志诚,彭会清.超细粉体材料的制备技术现状及应用形势.化工矿物与加工.2005,3(6):34-37.
    [6]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001
    [7]张更超,应富强.超细粉碎技术现状及发展趋势.2003,9(2):44-48.
    [8]马喆坤,邹亚萍,周云高.超细粉碎技术在制药工业中的应用.江西化工.2003,4(2):174-175.
    [9]葛晓陵.药物超细粉碎技术的研究.中国粉体技术.2002,8(6):19-23.
    [10]朱自强.超临界流体技术.北京:化学工业出版社,2000.18-23.
    [11]Jennifer Jung,Michel Perrut.Particle design using supercritical fluid:Literature and patent survey.Journal of Supercritical Fluids.2001,20(9):179-219,
    [12]Turk,Michael.Formation of small organic particles by RESS:experimental and theoretical investigations.The J.of Supercritical Fluids,1991,15(1):79-89.
    [13]Maston DW,Fulton JL,Petersen,et al.Rapid expansion of supercritical fluid solutions:solute formation of powder,thin films and fibers.Ind.Eng,Chem.Res,1987,26:2298-2306
    [14]Tom DW,Debenedetti PG.Particle formation with supercritical fluids-A review.Journal of Aerosol Science,v22,n5,1991,p555-584
    [15]Maston D W,Smith R C.Production of Powder and Films from Supercritical Solution.Journal of Material Science,1987,22:1919-1928
    [16]Nagahama K,Liu GT.Supercritical Fluid Crystallization of Solid Solution the 4th International on Supercritical Fluid[C]May 11-14 Sendal(Japan),1997:47-50
    [17]Subra P,Boissinot P.Precipitation of pure and mixed caffeine and anthracene by rapid expansion of supercritical solutions.Proceeding of the 5~(th)Meeting on Supercritical Fluid,Nice(France),1998:307-312.
    [18]Domingo,C.Berends,E;Van Rosmalen,G.Precipitation of ultrafine organic crystals from the rapid expansion of supercritical solutions over a capillary and a frit nozzle.Journal of Supercritical Fluids,v10,n1,1997,p 39
    [19]Peirico N M,Matos H A.et al.Production of Drug-Biocompatible Polymer Microsize Composites by RESS with Supercritical CO_2.Proceedings of the 5~(th)Meeting on Supercritical Fluid.Nice(France),1998:313-318
    [20]Krober H,Teipel U,et al.Formation of Submicron Particles by Rapid Expansion of Supercritical Solutions.GVC-Fachausschub 'High Pressure Chemical Engineering',Karlsruhe(Germany),1999:247
    [21]Turk M,Helfgen B,et al.Experimental and Theoretical Investigation of the Formation of Small Particles from the Rapid Expansion of Supercritical Solution(RESS).GVC-Fachausschub 'High Pressure Chemical Engineering',Karlsruhe(Germany),1999:243
    [22]Mohamed R S,Halverson D S,Debenedetti P G,et al.Supercritical Fluid Science and…particles from supercritical fluid[J].AIChE J,1989,35:1876-1882.
    [23]Shaub G R,Brennecke J F,McCready M J.Radial Model for Particle Formation from the Rapid Expansion of Supercritical Solutions[J]Journal of Supercritical Fluids,v 8,n 4,1995,p 318
    [24]Frank S.G.,C.Ye,Small particle formation and dissolution rate enhancement of relatively insoluble drugs using rapid expansion of supercritical solutions(RESS)processing.Proceedings of the 5th International Symposium on Supercritical Fluids,8-12 April,Atlanta(USA),2000.
    [25]汪朝晖.超临界流体沉积技术的研究与应用[D].南京:南京化工大学,1997.
    [26]陈鸿雁,蔡建国.邓修,等.超临界溶液快速膨胀法制备灰黄霉素微细颗粒[J].化工学报,2001,52(1):56-60
    [27]Reverchon E.Supercritical antisolivent precipitation of micro-and nano-particle.J.Supercritical Fluids,1999,15(1):1-21.
    [28]Krukonis V J.AIChE Fall Meeting,San Francisco,CA,140,1984.
    [29]Gallagher P M,Coffey M P,Krukonis V J.Supercritical Fluid Science and Technology,Am.Chem.Soc.Syrup.Set.406.Washington.D.C.1995,334-354.
    [30]Marr R,Gamse T.Use of Supercritical Fluids for Different Processes Including New Developments—a Review.Chem Eng Proc,2000,39(1):19-28.
    [31]Reverchon E,Porta G D,Falivene M G.Process Parameters and Morphology in Amoxicillin Micro and Submicro Particles Generation by Supercritical Antisolvent Precipitation.J Supercrit Fluids,2000,17(3):239-248.
    [32]Yeo S D,Lim G B,Debenedetti P G,et al.Formation of Microparticulate Protein Powers Using a Supercritical Fluid Antisolvent.Biotech Bioeng,1993,41(3):341-346.
    [33]Reverchon E,Porta G D.Production of Antibiotic Micro- and Nano-Particles Antisolvent Precipitation.Power Technology,1999,106(1):23-29.
    [34]Gao Y,Mulenda T K,Shi Y F et al.Fine Particles Preparation of Red Lake C Pigment by Supercritical Fluid.J.Supercritical Fluids,1998,13(1-3):369-374.
    [35]Reverchon E,Porta G D,Trolio D Aet al.Supercritical Anti-Solvent Precipitation of Nanoparticles of Superconductor Precursors.Ind Eng Chem Res,1998,37(4):952-958.
    [36]Reverchon E,Della Porta G.Micronization of antibiotics by supercritical assisted atomization.J Supercrit Fluids,2003,26(6):243-252.
    [37]Reverchon E,Della Porta G.Terbutaline microparticles suitable aerosol delivery produced by supercritical assisted atomization.Int J Pharm,2003,258:1-9.
    [38]Reverchon E.Supercritical assisted atomization to produce micro- and/or nanoparticles of cont rolled size and distribution.Ind.Eng.Chem.Res.,2002,41(5):2405-2411.
    [39]Reverchon E,Della Porta G.Particle design using supercritical fluids.Chem.Eng.Technol.,2003,26(8):840-845.
    [40]Sievers R E,Huang E T S,Villa J A,et al.Micronization of water-soluble or alcohol-soluble pharmaceuticals and model compounds with a low-temperature bubble dryer.Supercrit.Fluids,2003,26(6):9-16.
    [41]Sievers R E,Karst U,Milewski P D.Formation of aqueous small droplet aerosol assisted by supercritical carbon dioxide,Aereosol Sci.Technol.,1999,30(1):13-16.
    [42]Sellers S P,Miles B A,Sievers R E,et al.The production of thin metal oxide films by spray pyrolysis using supercritical CO_2 assisted aerosol ization of aqueous solution,KONA,2000,18(1):31-35.
    [43]Sellers S P,Clark G S,Sievers R E,et al.Dry powders of stable protein formulations from aqueous solution prepared using supercritical CO_2 assisted aerosolization,Pharm.Sci.,2001,90(6):785-788.
    [44]Sievers R E,Sellers S P,Carpenter J F,Patent WO00/75281(2000).
    [45]Xu C Y,Sievers R E,Karst U,et al.Supercritical carbon dioxide-assisted aerosolization for thin film deposition,fine powder generation and drug delivery,in:P.T.Anastas,T.C.Williamson(Eds.),Green Chemistry:Frontiers in Benign Chemical Synthesis and Processes,Oxford,Oxford University Press,1998,Chapter 18.
    [46]Sievers R E,Karst U,Schaefer J D,et al.supercrotocal CO2-assisted nebulization for the production and administration of drugs.J.Aerosol Sci.1996,27(1):497-498.
    [47]Xu Chongying,Watkins Barbara A,Sievers Robert E.Submicron-sized spherical yttrium oxide based phosphors prepared by supercritical CO2-assisted aerosolization and pyrolysis.Appl.Phys.Lett..1907,71(22):1643-1645.
    [48]Reverchon E.Supercritical assisted atomization to produce micro-and/or nanoparticles of cont rolled size and distribution.Ind.Eng.Chem.Res.,2002,41(5):2405-2411.
    [49]Reverchon E,Spada A.Crystalline Microparticles of Controlled Size Produced by Supercritical-Assisted Atomization.Ind.Eng.Chem.Res.,2004,43(2):1460-1465.
    [50]Reverchon E,Adami R,De Marco I,et al.Pigment red 60 micronization using supercritical fluids based techniques.J.of Supercritical Fluids,2005,35(4):76-82.
    [51]Li Zhiyi,Jiang Jingzhi,Liu Xuewu,et al.Preparation of griseofulvin microparticles by supercritical fluid expansion depressurization process.Powder Technology,2008,182(3):459-465.
    [52]Zhiyi Li,Jingzhi Jiang,Xuewu Liu,et al.Preparation of erythromycin microparticles by supercritical fluid expansion depressurization.J.of Supercritical Fluids,2007,41(2):285-292.
    [53]Li Zhiyi,Jiang Jingzhi,Liu Xuewu,et al.Preparation of tetracycline microparticles suitable for inhalation administration by supercritical fluid expansion depressurization.Chemical Engineering and Processing,Available online 8 May 2007.
    [54]蒋静智,李志义,刘学武,魏炜.超临界流体膨胀减压过程制备水溶性约物超细微粒[J].现代化工,2007,(S2).
    [55]李志义,赵顺轩,蒋静智.刘学武.孟庭宇.超临界辅助雾化法制备红霉素超细微粒[J].高校化学工程学报,2007,(1).
    [56]马沛生.石油化工基础数据手册续编.北京:化学工业出版社,1993
    [57]陈钟秀,化工热力学。北京:化学工业出版社,2000
    [58]Bender,E.Equations of state exactly representing the phase behavior of liquid and gaseous carbon dioxide.Proceedings of the fifth symposium on thermophysical properties.1970(pp.227-235)
    [59]朱自强.超临界流体技术——原理利应用.北京:化学出版社,2000
    [60]Chapman S,Cowling T G.The mathematical Theory of Nonuniform Gas,Cambride,New York,1939
    [61]童景山,李敬编著.流体热物理性质的计算.北京:清华大学出版社.1982
    [62]Angus S,Amstrong B,Renk KM.Carbon dioxide international thermodynamic tables of fluid state.IUPAC Project Center,Imperial College,London.Pergamon Press 3:P385
    [63]Lele A K,Shine A D.Morphology of polymers precipitated from a supercritical solvent.AlChE Journal 385(1992),p.742.
    [64]B.Helfgen,M.Turk.Hydrodynamic and aerosol modelling of the rapid expansion of supercritical solutions(RESS-process).The J.of Supercritical Fluids,2003.26(3):p.225.
    [65]Khalil,I.and D.R.Miller,The structure ofsupercritical fluid free-jet expansions.AIChE J,50(2004),2697-2704
    [66]Ksibi,H.,et al.,Numerical simulation of rapid expansion of supercritical fluid,European J.Mech.B Fluids 15(4)(1996)569-596.
    [67]陶文铨.数值传热学.西安:西安交通大学出版社,2001.
    [68]陶文铨,计算传热学的近代进展,北京:科学出版社,2000.
    [69]Patankar S V,Spalding D B.Calculation procedure for heat,mass and momentum transfer in 3-D flows[J].Int J Heat Mass Transfer,1972,(15):1787-1802
    [70]Domingo,E.Wubbolts,Solid crystallization by rapid expansion of supercritical ternary mixtures Journal of Crystal Growth,Volumes 198-199,Part 1,March 1999,Pages 760-766
    [71]Concepcion Domingo,Edwin Berends.Precipitation of ultrafine organic crystals from the rapid expansion of supercritical solutions over a capillary and a frit nozzle.The Journal of Supercritical Fluids,Volume 10,Issue 1,14 April 1997,Pages 39-55
    [72]朱虎刚,田宜灵,陈丽等.超临界CO_2+CH_3OH及C_2H_5OH二元系的气液平衡[J].高等学校化学学报,2002,(8).
    [73]R.D.Reitz.Mechanisms of Atomization Processes in High-Pressure Vaporizing Sprays.Atomization and Spray Technology,3:309-337,1987.
    [74]A.B.Liu,D.Mather,and R.D.Reitz.Modeling the Effects of Drop Drag and Breakup on Fuel Sprays.SAE Technical Paper 930072,SAE,1993.
    [75]W.E.Ranz and W.R.Marshall,Jr.Evaporation from Drops,Part Ⅰ.Chem.Eng.Prog.,48(3):141-146,March 1952.
    [76]W.E.Ranz and W.R.Marshall,Jr.Evaporation from Drops,Part Ⅱ.Chem.Eng.Prog.,48(4):173-180,April 1952.
    [77]张发兴,刘亚青,罗一鸣等.超临界流体快速膨胀法粒子包覆技术喷嘴的设计[J].应用化工,2006,(5).
    [78]Jintao Huang and T.Moriyoshi.Fabrication of fine powders by RESS with a clearance nozzle.J.of Supercritical Fluids.2006,27(3):292-297
    [79]邢晓伟.SCF技术制备超微颗粒新型喷嘴研究[D]山东大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700