用户名: 密码: 验证码:
缺血预适应相关基因WDR26对脑缺血—再灌注损伤的保护作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑缺血-再灌注损伤是临床上常见的病理现象,如脑血管病的手术治疗、脑血管意外后的血管自通或者溶栓治疗、脑外伤的治疗、心肺脑复苏治疗等,都可能发生脑缺血-再灌注损伤。寻找有效防治脑缺血-再灌注损伤的方法是当代神经科学的重要课题之一。脑缺血预适应是到目前为止所发现的最强有力的神经内源性保护现象。揭示脑缺血预适应的发生机制并予以利用,对脑缺血-再灌注损伤的防治具有重要意义,也是国内外学者关注的焦点。
     WDR26基因是最近从大鼠心肌组织中首次克隆的一个在缺血预适应中表达上调的新基因,定位于染色体1q42.12,含14个外显子和13个内含子,ORF为1,545bp,编码514个氨基酸,Northern杂交结果显示其有四个剪切型。采用多组织膜研究发现,WDR26基因在脑组织中高表达。它是一个典型的WD-重复蛋白。WD-重复蛋白家族成员的序列在真核生物不同物种间均高度保守,在信号转导、蛋白运输、染色体修饰、细胞周期调控、细胞凋亡等多个生命过程中具有重要作用。但WDR26的生物学功能目前尚不清楚。
     为了深入探讨WDR26在脑缺血预适应及脑缺血-再灌注损伤中的生物学功能,本研究首先通过改良四血管阻断法制备大鼠脑缺血预适应及缺血-再灌注损伤模型,使全脑缺血3min,分别再灌注3h、6h、12h、24h,然后再行全脑缺血30min,再灌注24h,深麻醉下快速断头取脑,进行脑水含量测定。结果发现,缺血3min再灌注24h后再行缺血30min再灌注24h,脑水含量较假手术对照组明显减少,而其它实验组的脑水含量与假手术组无明显差异;说明缺血3min在灌注24h对其后的脑缺血-再灌注损伤导致的脑水肿具有明显保护作用。采用real-timePCR检测脑缺血3min再灌注后WDR26基因在脑组织中的表达情况,结果发现,缺血3min再灌注后WDR26基因在脑组织中的表达较假手术对照组明显增高,再灌注6小时达到高峰。上述结果提示WDR26的表达增高可能是脑缺血预适应保护机制的一部分。
     氧化应激是脑缺血-再灌注损伤的主要损伤机制之一。为了解WDR26对氧化应激所致的神经细胞损伤是否具有保护作用,本研究采用H_2O_2刺激制备氧化应激细胞模型,检测WDR26基因在氧化应激所致SH-SY5Y神经母细胞瘤细胞损伤过程中的表达情况;将该基因的最大开放阅读框架克隆入真核表达载体pCDNA3.1,并转染入SH-SY5Y细胞,建立WDR26过表达细胞株,探讨WDR26过表达对氧化应激所致神经细胞损伤的影响;采用针对WDR26的反义寡核苷酸(antisense phosphorothioate oligodeoxynucleotides,asODNs)转染,探讨WDR26表达抑制对氧化应激所致神经细胞损伤的影响。研究结果发现,WDR26基因在H_2O_2所致氧化应激中表达明显增高;WDR26过表达可明显抑制H_2O_2导致的SH-SY5Y细胞凋亡,提高SH-SY5Y细胞的存活率;相反,采用反义寡核苷酸技术使WDR26的表达降低则能够显著促进H_2O_2导致的SH-SY5Y细胞死亡。上述结果表明,WDR26对H_2O_2所致神经细胞损伤具有明显保护作用。
     AP-1是由Fos-Jun或Jun-Jun二聚体构成的具有氧化还原敏感性的转录复合体,对于内源性和外源性ROS引发的氧化应激均具有重要调节作用。因此,本研究采用EMSA和荧光素酶报告基因检测了WDR26过表达对H_2O_2所致神经细胞中AP-1活化的影响,结果发现WDR26过表达能显著抑制H_2O_2诱导的AP-1的活化。因此,AP-1活化的抑制是WDR26发挥神经细胞保护功能的可能机制之一。
     星形胶质细胞是一种最主要的神经胶质细胞,在中枢神经系统中具有重要作用。本研究采用U251-MG星形母细胞瘤细胞探讨了WDR26对氧化应激所致星形胶质细胞损伤的影响。结果发现,H_2O_2能够诱导U251-MG星形胶质母细胞瘤细胞中WDR26表达显著增加;WDR26过表达可明显抑制H_2O_2导致的U251-MG细胞凋亡,提高U251-MG细胞的存活率;相反,采用反义寡核苷酸技术使WDR26的表达降低则能够显著促进H_2O_2导致的U251-MG细胞死亡。这些研究结果强烈提示,WDR26对氧化应激所致星形胶质细胞的损伤具有保护作用。
     综上所述,本研究首次发现WDR26是一个脑缺血预适应相关基因,它在氧化应激所致神经细胞和星形胶质细胞损伤过程中具有重要保护作用。该发现为阐明脑缺血预适应的细胞内源性保护机制,寻找脑缺血-再灌注损伤的有效防治措施提供了新的线索。
Cerebral ischemia-reperfusion injury is a common phenomenon which leads to neuronal death.Cerebral ischemic preconditioning is a powerful protective mechanism.It can prevent neural cells and astrocytes from apoptosis and necrosis induced by cerebral ischemia/reperfusion injury.Therefore,it is important to illustrate the mechanisms of cerebral ischemic preconditioning.
     WDR26 is identified as a novel gene which is up-regulated during myocardial ischemia/reperfusion.The completed cDNA of WDR26 is 3,729 bp,composed of an ORF of 1,545 bp.The WDR26 protein is 514 amino acids and the relative molecular mass is 58,603 Da(~59 kDa). Structural analysis reveals that the protein contains a conserved WD-40 region consisting six WD-40 repeats.WDR26 is expressed abundantly in most of tissues,including at a high level in brain.WD-40 repeat proteins play important roles in a variety of cellular functions,including cell growth,proliferation,apoptosis,and intracellular signal transduction. However,little is known about the role(s) of WDR26.
     In the present study,we firstly used meliorated four-vessel occlusion to copy global cerebral ischemic preconditioning and ischemia-reperfusion model of rat and to observe the protective effects of cerebral ischemic preconditioning on the following cerebral ischemia/reperfusion injury.Compared with the sham control group,the brain water content of experimental group which was treated 24 hours after operation with 30 minutes cerebral ischemia followed by 24 hours reperfusion was reduced.The results indicated the global cerebral ischemic preconditioning and ischemia-reperfusion model of rat was copied successfully.And the expression of WDR26 was significantly up-regualted following 3 minutes cerebral ischemic preconditioning.
     Secondly,hWDR26 plasmids and asODNs against WDR26 were used to reveal the role of WDR26 in response to oxidative stress in human SH-SY5Y neuroblastoma cells.The results showed that H_2O_2 at 0.5mM induced a marked increase of cell death and significant up-regulation of WDR26 expression.In addition,over-expression of WDR26 significantly supressed H_2O_2-induced SH-SY5Y cell death. asODNs markedly inhibited the de novo biosynthesis of WDR26,which contributed to enhanced cell death induced by H_2O_2.Moreover, over-expression of WDR26 down-regulated the transcriptional activity of AP-1 during H_2O_2-induced SH-SY5Y cell death.These data demonstrated that WDR26 was up-regulated by oxidative stress and played important roles in H_2O_2-induced SH-SY5Y cell death,which might be mediated by down-regulation of AP-1 transcriptional activity.
     Thirdly,the role of WDR26 in response to oxidative stress in human U251-MG glioma cells was detected.The results showed that H_2O_2 at 0.5mM induced a significant increase of cell death and up-regulation of WDR26 expression.In addition,over-expression of WDR26 significantly supressed H_2O_2-induced cell injury,asODNs against WDR26 enhanced cell death induced by H_2O_2.These data demonstrated that WDR26 was up-regulated by oxidative stress and played important roles in H_2O_2-induced U251-MG cell death.
     In together,for the first time we determined that WDR26 was a cerebral ischemic preconditioning related gene and it played important roles in protection from the cell death induced by oxidative stress in neuronal cells and astrocytes.The exact mechanisms are still under active investigation.
引文
[1]肖献忠主编.病理生理学(第2版).高等教育出版社.2008.95-105.
    [2]Honda HM,Korge P,Weiss JN.Mitochondria and ischemia/reperfusion injury.Ann NY Acad Sci,2005,1047:248-258.
    [3]Rosenberg GA.Ischemic brain edema[.Prog Cardiovasc Dis,1999,42:209-216.
    [4]Fiskum G,Murphy AN,Beal MF.Mitochondria in neurodegeneration:bioenergetic function in cell life and death.J Cereb Blood Flow Metab,1999,19:231-245.
    [5]Liang BT.Protein kinase C-mediated preconditioning of cardiac myocytes:role of adenosine receptor and KATP channel.Am J Physiol,1997,273(2):H847-853.
    [6]Yang GY,Schielke GP,Gong C,et al.Expression of tumor necrosis factor-alpha and intercellular adhesion molecule-1 after focal cerebral ischemia in interleukin-lbeta converting enzyme deficient mice.J Cereb Blood Flow Metab,1999,19:1109-1117.
    [7]Aito H,Aalto KT,Raivio KO.Biphasic ATP depletion caused by transient oxidative exposure is associated with apoptotic cell death in rat embryonal cortical neurons Pediatr Res,2002,52:40-45.
    [8]Sen CK,Packer L.Antioxidant and redox regulation of gene transcription.FASEB J,1996,10:709-720.
    [9]Chan PH.Oxygen radicals in focal cerebral ischemia.Brain Pathol,1994,4:59-65.
    [10]Ding Y,Li J,Rafols JA,et al.Prereperfusion saline infusion into ischemic territory reduces inflammatory injury after transient middle cerebral artery occlusion in rats.Stroke,2002,33(10):2492-2498.
    [11]Sagher O,Huang DL,Keep RF.Sp inal cord stimulation reducing infarct volume in a model of focal cerebral ischemia in rats.Neurosurg,2003,99(1):131-137.
    [12]Robert SE,Edwin H,Stefan Z,et al.Combination drug therapy and mild hypothermia a p romising treatment strategy for reversible,focal cerebral ischemia.Stroke,1999,30(9):1891-1899.
    [13] Hoesch RE , Geocadin RG. Therapeutic hypothermia for global and focal ischemic brain injury-a cool way to imp rove neurologic outcomes.Neurologist, 2007, 13(6):331-342.
    [14] Fukuda S and Warner DS. Cerebral protection. Br J Anaesth. 2007; 99(1): 10-7.
    [15] Goldstein LB. Acute ischemic stroke treatment in 2007. Circulation. 2007;116(13): 1504-14. Review.
    [16] Obrenovitch TP. Molecular physiology of preconditioning-induced brain tolerance to ischemia.Physiol Rev. 2008; 88(1): 211-47. Review.
    [17] Gidday JM. Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci. 2006; 7(6): 437-48. Review.
    [18] Zhu Y, Wang Y, Xia C, Li D, Li Y, Zeng W, Yuan W, Liu H, Zhu C, Wu X,Liu M. WDR26: a novel Gbeta-like protein, suppresses MAPK signaling pathway. J Cell Biochem. 2004; 93(3): 579-87.
    [19] Li D, Roberts R. WD-repeat proteins: structure characteristics,biological function,and their involvement in human diseases. Cellular & Molecular Life Sciences. 2001; 58(14): 2085-97.
    [20] Yu L, Gaitatzes C, Neer E, Smith TF. Thirty-plus functional families from a single motif. Protein Science. 2000; 9(12): 2470-6.
    [21] Tyers M, Willems AR. One ring to rule a superfamily of E3 ubiquitin ligases.Science. 1999; 284(5414): 601, 603-4.
    [22] Galaris D ,Barbouti A ,Korantzopoulos P. Oxidative stress in hepatic ischemia - reperfusion injury : t he role of antioxidant s and iron chelating compounds .Curr Pharm Des ,2006 ,12 :2875 -2890.
    [23] Skulachev VP. Role of uncoup led and oxidations in maintenance of safely low levels of oxygen and its one - electron reductions. Quart Rev Biophys, 1996,29(1): 169-202.
    [24] Suzuki Y,Ono Y, Hirabayashi Y. Rap id and specific reactive oxygen species generation via NADPH oxidase activation durong Fas-mediated apoptosis. FEBS Lett, 1998,425 (2): 209 -212.
    [25] Lee MW, Park SC, Kim JH, et al. The involvement of oxidative stress in tumor necrosis factor ( TNF) - related apop tosis - inducing ligand ( TRA IL ) - induced apop tosis in HeLa cells. Cancer Lett, 2002, 182 (1): 75-82.
    [26] Gotoh Y, Cooper JA. Reactive oxygen species and dimerization induced activation of apop t - osis signal regulating kinase 1 in tumor necrosis factor alpha signal transduction.Biol Chem,1998,273(28):17477-17482.
    [27]朱传炳,曾伟奇,朱莹,李大力,袁婺洲,王跃群,李永青,梁宋平,吴秀山.Gβ类似蛋白一WDR26对细胞增殖的影响.生命科学研究.2006;10(2):123-127.
    [28]Gerald D,Berra E,Frapart Y M,Chan D A,Giaccia A J,Mansuy D,et al.JunD reduces tumor angiogenesis by protecting cells from oxidative stress.Cell,2004,118:781-794.
    [29]Sahambi S K,Hales B F.Exposure to 5-bromo-2'-deoxyuridine induces oxidative stress and activator protein-1 DNA binding activity in the embryo.Birt h Defect s Res A Clin Mol Teratol,2006,76:580-591.
    [30]Georges-Labouesse E,Mark M,Messaddeq N,et al.Essential Role of Alpha 6Integrins in Cortical and Retinal Lamination.Curr Biol,1998,8(17 ):983-986.
    [31]Molofsky AV,Pardal R,Morrison SJ.Diverse Mechanisms Regulate Stem Cell Self-renewal.Curr Opin Cell Biol,2004,16(6):700-707.
    [32]Adams JC,Watt FM.Fibronectin Inhibits the Terminal Differentiation of Human Keratinocytes.Nature,1989,340(6231):307-309.
    [33]Xu C,InokumaMS,Denham J,et al.Feeder-free Growth of Undifferentiated Human Embryonicstem Cells.Nat Biotechnol,2001,19(10):971-974.
    [34]Largo C,Cuevas P,Herreras O.Is glia disfunction the initial cause of neuronal death in ischemic penumbra? Nurol Res,1996,18:445-448.
    [35]Nakanishi H,Kawachi A,Okada M,et al.Protective effect of MK-801 on the anoxia-aglycemia induced damage in the fluorocitrate-treated hippocampal slice of the rat.Brain Res,1996,732:232-236.
    [36]Cui W,Allen ND,Skynner M,et al.Inducible ablation of astrocytes shows that these cells are required for neuronal survival in the adult brain.Glia,2001,34:272-282.
    [1] Fong H. K., Hurley J. B., Hopkins R. S., Miake-Lye R., Johnson M. S.,Doolittle R. F. et al. (1986) Repetitive segmental structure of the transducin beta subunit: homology with the CDC4 gene and identification of related mRNAs. Proc. Natl. Acad. Sci. USA 83: 2162-2166
    [2] Venter J. C, Adams M. D., Myers E. W., Li P. W., Mural R. J., Sutton G. G. et al. (2001) The sequence of the human genome. Science 291: 1304-1351
    [3] Chothia C, Hubbard T., Brenner S., Barns H. and Murzin A. (1997) Protein folds in the all-beta and all-alpha classes. Annu. Rev. Biophys. Biomol. Struct.26:597-627
    [4] Yu L., Gaitatzes C, Neer E. and Smith T. F. (2000) Thirty-plus functional families from a single motif. Protein Sci. 9: 2470-2476.
    [5] Croze E., Usacheva A., Asarnow D., Minshall R. D., Perez H. D. and Colamonici O. (2000) Receptor for activated C-kinase (RACK-1), a WD motif-containing protein, specifically associates with the human type I IFN receptor. J. Immunol. 165: 5127-5132
    [6] Csukai M., Chen C. H., Matteis M. A. and Mochly-Rosen D. (1997) The coatomer protein beta'-COP, a selective binding protein (RACK) for protein kinase C epsilon. J. Biol. Chem. 272: 29200-29206
    [7] Castets F., Bartoli M., Barnier J. V., Baillat G., Salin P., Moqrich A. et al. (1996) A novel calmodulin-binding protein, belonging to the WD-repeat family, is localized in dendrites of a subset of CNS neurons. J. Cell. Biol. 134:1051-1062
    [8] Kim EK, Noh KT, Yoon JH, Cho JH, Yoon KW, Dreyfuss G, Choi EJ. (2007) Positive regulation of ASK 1-mediated c-Jun NH(2)-terminal kinase signaling pathway by the WD-repeat protein Gemin5.Cell Death Differ. 14(8):1518-28.
    [9] Roberts S. G. (2000) Mechanisms of action of transcription activation and repression domains. Cell. Mol. Life Sci. 57: 1149-1160
    [10] Dynlacht B. D., Weinzierl R. O., Admon A. and Tjian R. (1993) The dTAFII80 subunit of Drosophila TFⅡD contains betatransducin repeats.Nature 363: 176-179
    [11] Mitsuzawa H., Seino H., Yamao F. and Ishihama A. (2001) Two WD repeat-containing TAFs in fission yeast that suppress defects in the anaphase-promoting complex. J Biol.Chem 276: 17117-17124
    [12] Dubrovskaya V., Lavigne A. C, Davidson I., Acker J., Staub A. and Tora L.(1996) Distinct domains of hTAFII100 are required for functional interaction with transcription factor TFIIFbeta (RAP30) and incorporation into the TFⅡD complex. EMBO J. 15: 3693-3701
    [13] Yamamoto T. and Horikoshi M. (1998) Defect in cytokinesis of fission yeast induced by mutation in the WD40 repeat motif of a TFIID subunit. Genes Cells 3: 347-355
    [14] Kokubo T., Gong D. W., Yamashita S., Takada R., Roeder R. G., Horikoshi M. et al. (1993) Molecular cloning, expression, and characterization of the Drosophila 85-kilodalton TFⅡD subunit. Mol. Cell. Biol. 13: 7859-7863
    [15] Takagaki Y. and Manley J. L. (1992) A human polyadenylation factor is a G protein beta-subunit homologue. J. Biol. Chem. 267: 23471-23474.
    [16] Jin F, Dai J, Ji C, Gu S, Wu M, Qian J, Xie Y, Mao Y. (2004) A novel human gene (WDR25) encoding a 7-WD40-containing protein maps on 14q32.Biochem Genet. 42(11-12):419-27.
    [17]Verreault A., Kaufman P. D., Kobayashi R. and Stillman B. (1996) Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87: 95-104
    [18]Tyler J. K., Bulger M., Kamakaka R. T., Kobayashi R. and Kadonaga J. T.(1996) The p55 subunit of Drosophila chromatin assembly factor 1 is homologous to a histone deacetylase-associated protein. Mol. Cell. Biol. 16:6149-6159
    [19] Waters M. G., Serafini T. and Rothman J. E. (1991) 'Coatomer': a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature 349: 248-251
    [20] Chow V. T. and Quek H. H. (1996) HEP-COP, a novel human gene whose product is highly homologous to the alpha-subunit of the yeast coatomer protein complex. Gene 169: 223-227
    [21] Duden R., Griffiths G., Frank R., Argos P. and Kreis T. E. (1991) Beta-COP, a 110 kd protein associated with nonclathrin-coated vesicles and the Golgi complex, shows homology to beta-adaptin. Cell 64: 649-665
    [22] Stenbeck G., Harter C, Brecht A., Herrmann D., Lottspeich F., Orci L. et al.(1993) Beta-COP, a novel subunit of coatomer. EMBO J. 12: 2841-2845
    [23] Gerich B., Orci L., Tschochner H., Lottspeich F., Ravazzola M., Amherdt M. et al. (1995) Non-clathrin-coat protein alpha is a conserved subunit of coatomer and in Saccharomyces cerevisiae is essential for growth. Proc. Natl.Acad. Sci. USA 92:3229-3233
    [24] Li Q. and Suprenant K. A. (1994) Molecular characterization of the 77-kDa echinoderm microtubule-associated protein: homology to the beta-transducin family. J. Biol. Chem. 269: 31777-31784
    [25] Ohtoshi A., Maeda T., Higashi H., Ashizawa S. and Hatakeyama M. (2000) Human p55(CDC)/Cdc20 associates with cyclin A and is phosphorylated by the cyclin A-Cdk2 complex. Biochem. Biophys. Res. Commun. 268: 530-534
    [26] Fukui Y., Engler S., Inoue S. and Hostos E. L. de (1999) Architectural dynamics and gene replacement of coronin suggest its role in cytokinesis. Cell Motil. Cytoskel. 42:204-217
    [27] Nakamura T., Takeuchi K., Muraoka S., Takezoe H., Takahashi N. and Mori N. (1999) A neurally enriched coronin-like protein, ClipinC, is a novel candidate for an actin cytoskeleton-cortical membrane-linking protein. J. Biol. Chem.274: 13322-13327
    [28] Weber I., Niewohner J. and Faix J. (1999) Cytoskeletal protein mutations and cell motility in Dictyostelium. Biochem. Soc. Symp. 65: 245-265
    [29] Kim S. H., Lin D. P., Matsumoto S., Kitazono A. and Matsumoto T. (1998) Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint. Science 279: 1045-1047
    [30] Xie X, Wang Z, Chen Y. (2007) Association of LKB1 with a WD-repeat protein WDR6 is implicated in cell growth arrest and p27Kipl induction. Mol Cell Biochem 301:115-122
    [31] Thompson C. B. (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456-1462
    [32]Thornberry N.A.and Lazebnik Y.(1998) Caspases:enemies within.Science 281:1312-1316
    [33]Denecker G.,Vercammen D.,Declercq W.and Vandenabeele P.(2001)Apoptotic and necrotic cell death induced by death domain receptors.Cell.Mol.Life Sci.58:356-370
    [34]Hengartner M.O.and Horvitz H.R.(1994) Programmed cell death in Caenorhabditis elegans.Curr.Opin.Genet.Dev.4:581-586
    [35]Miura M.,Zhu H.,Rotello R.,Hartwieg E.A.,and Yuan J.(1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme,a mammalian homolog of the C.elegans cell death gene ced-3.Cell 75:653-660
    [36]Salvesen G.S.and Dixit V.M.(1999) Caspase activation:the induced-proximity model.Proc.Natl.Acad.Sci.USA 96:10964-10967
    [37]Adrain C.,Slee E.A.,Harte M.T.and Martin S.J.(1999) Regulation of apoptotic protease activating factor-1 oligomerization and apoptosis by the WD-40 repeat region.J.Biol.Chem.274:20855-20860
    [38]Benedict M.A.,Hu Y.,Inohara N.and Nunez G.(2000) Expression and functional analysis of Apaf-1 isoforms:extra Wd-40 repeat is required for cytochrome c binding and regulated activation of procaspase-9.J.Biol.Chem.275:8461-8468
    [39]Zou H.,Henzel W.J.,Liu X.,Lutschg A.and Wang X.(1997) Apaf-1,a human protein homologous to C.elegans CED-4,participates in cytochrome c-dependent activation of caspase-3.Cell 90:405-413
    [40]Rodriguez A.,Oliver H.,Zou H.,Chen P.,Wang X.and Abrams J.M.(1999)Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway.Nat.Cell Biol.1:272-279
    [41]Paoletti M,Clav(e) C.(2007) The fungus-specific HET domain mediates programmed cell death in Podospora anserina.Eukaryot Cell.6(11):2001-8.
    [1] Balestrino M, Rebaudo R, Lunardi G. Exogenous creatinedelays anoxic depolarization and protects from hypoxic damage:dose-effect relationship. Brain Res 816: 124-130,1999.
    [2] Kaminogo M, Suyama K, Ichikura A, Onizuka M, Shibata S.Anoxic depolarization determines ischemic brain injury. NeurolRes 20: 343-348,1998.
    [3] Mies G, Iijima T, Hossmann KA. Correlation between peri-infarct DC shifts and ischaemic neuronal damage in rat. Neuroreport 4: 709-711,1993.
    [4] Tatlisumak T, Takano K, Meiler MR, Fisher M. A glycine site antagonist,ZD9379, reduces number of spreading depressions and infarct size in rats with permanent middle cerebral artery occlusion. Stroke 29: 190-195,1998.
    [5] Haddad GG, Jiang C. Mechanisms of neuronal survival during hypoxia: ATP-sensitive K_ channels. Biol Neonate 65: 160-165, 1994.
    [6] Hochachka PW, Buck LT, Doll CJ, Land SC. Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci USA 93: 9493-9498, 1996.
    [7] Ueda M, Nowak TS Jr. Protective preconditioning by transient global ischemia in the rat: components of delayed injury progression and lasting protection distinguished by comparisons of depolarization thresholds for cell loss at long survival times. J Cereb Blood Flow Metab 25: 949-958, 2005.
    [8] Abe H, Nowak TS Jr. Induced hippocampal neuron protection in an optimized gerbil ischemia model: insult thresholds for tolerance induction and altered gene expression defined by ischemic depolarization. J Cereb Blood Flow Metab 24: 84-97, 2004.
    [9] Golanov EV, Liu F, Reis DJ. Stimulation of cerebellum protects hippocampal neurons from global ischemia. Neuroreport 9: 819- 824, 1998.q
    [10] Reis DJ, Kobylarz K, Yamamoto S, Golanov EV. Brief electrical stimulation of cerebellar fastigial nucleus conditions long-lasting salvage from focal cerebral ischemia: conditioned central neurogenic neuroprotection. Brain Res 780: 161-165, 1998.
    [11] Zhou P, Qian L, Glickstein SB, Golanov EV, Pickel VM, Reis DJ. Electrical stimulation of cerebellar fastigial nucleus protects rat brain, in vitro, from staurosporine-induced apoptosis. J Neurochem 79: 328-338, 2001.
    [12] Galea E, Glickstein SB, Feinstein DL, Golanov EV, Reis DJ. Stimulation of cerebellar fastigial nucleus inhibits interleukin-1_- induced cerebrovascular inflammation. Am J Physiol Heart Circ Physiol 275: H2053-H2063, 1998.
    [13] Golanov EV, Reis DJ. Neuroprotective electrical stimulation of cerebellar fastigial nucleus attenuates expression of periinfarction depolarizing waves (PIDs) and inhibits cortical spreading depression. Brain Res 818: 304-315,1999.
    [14] Chan PH. Role of oxidants in ischemic brain damage. Stroke 27: 1124-1129,1996.
    [15] Jensen MS, Ahlemeyer B, Ravati A, Thakur P, Mennel HD, Krieglstein J.Preconditioning-induced protection against cyanideinduced neurotoxicity is mediated by preserving mitochondrial function. Neurochem Int 40: 285-293,2002.
    [16] Wu LY, Ding AS, Zhao T, Ma ZM, Wang FZ, Fan M. Involvement of increased stability of mitochondrial membrane potential and overexpression of Bcl-2 in enhanced anoxic tolerance induced by hypoxic preconditioning in cultured hypothalamic neurons. Brain Res 999: 149-154, 2004.
    [17] Dave KR, Saul I, Busto R, Ginsberg MD, Sick TJ, Perez-Pinzon MA. Ischemic preconditioning preserves mitochondrial function after global cerebral ischemia in rat hippocampus. J Cereb Blood Flow Metab 21: 1401-1410,2001.
    [18] Zhan RZ, Fujihara H, Baba H, Yamakura T, Shimoji K. Ischemic preconditioning is capable of inducing mitochondrial tolerance in the rat brain. Anesthesiology 97: 896-901, 2002.
    [19] Zhang HX, Du GH, Zhang JT. Ischemic pre-conditioning preserves brain mitochondrial functions during the middle cerebral artery occlusion in rat.Neurol Res 25: 471-476, 2003.
    [20] Nakatsuka H, Ohta S, Tanaka J, Toku K, Kumon Y, Maeda N, Sakanaka M,Sakaki S. Cytochrome c release from mitochondria to the cytosol was suppressed in the ischemia-tolerance-induced hippocampal CA1 region after 5-min forebrain ischemia in gerbils. Neurosci Lett 278: 53-56, 2000.
    [21] Bajgar R, Seetharaman S, Kowaltowski AJ, Garlid KD, Paucek P. Identification and properties of a novel intracellular (mitochondrial) ATP-sensitive potassium channel in brain. J Biol Chem 276: 33369-33374,2001.
    [22] Costa AD, Quinlan CL, Andrukhiv A, West IC, Jabu° rek M, Garlid KD. The direct physiological effects of mitoKATP opening on heart mitochondria. Am J Physiol Heart Circ Physiol 290:H406-H415, 2006.
    [23] Ardehali H, O'Rourke B. Mitochondrial KATP channels in cell survival and death. J Mol Cell Cardiol 39: 7-16,2005. , 108108. Facundo HT, Fornazari M, Kowaltowski AJ. Tissue protection mediated by mitochondrial K_ channels.Biochim Biophys Acta 1762: 202-212, 2006.
    [24] Garlid KD, Dos Santos P, Xie ZJ, Costa AD, Paucek P. Mitochondrial potassium transport: the role of the mitochondrial ATPsensitive K_ channel in cardiac function and cardioprotection. Biochim Biophys Acta 1606: 1-21,2003.
    [25] Leybaert L. Neurobarrier coupling in the brain: a partner of neurovascular and neurometabolic coupling? J Cereb Blood Flow Metab 25: 2-16, 2005.
    [26] Semenza GL. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 7: 345-350, 2001.
    [27] Bernaudin M, Tang Y, Reilly M, Petit E, Sharp FR. Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. Identification of genes that might contribute to hypoxia- induced ischemic tolerance. J Biol Chem 277: 39728-39738,2002.
    [28] Moro MA, Almeida A, Bolan(?) os JP, Lizasoain I. Mitochondrial respiratory chain and free radical generation in stroke. Free Radical Biol Med 39:1291-1304,2005.
    [29] Del Zoppo GJ. Microvascular changes during cerebral ischemia and reperfusion. Cerebrovasc Brain Metab Rev 6: 47-96, 1994. 30.69. Chimon GN, Wong PT. Ischemic tolerance and lipid peroxidation in the brain. Neuroreport9:2269-2272,1998.
    [30] Arthur PG, Lim SC, Meloni BP, Munns SE, Chan A, Knuckey NW. The protective effect of hypoxic preconditioning on cortical neuronal cultures is associated with increases in the activity of several antioxidant enzymes. Brain Res 1017: 146-154,2004.
    [31] Gamier P, Demougeot C, Bertrand N, Prigent-Tessier A, Marie C, Beley A. Stress response to hypoxia in gerbil brain: HO-land Mn SOD expression and glial activation. Brain Res 893: 301-309, 2001.
    [32] Gorgias N, Maidatsi P, Tsolaki M, Alvanou A, Kiriazis G, Kaidoglou K, Giala M. Hypoxic pretreatment protects against neuronal damage of the rat hippocampus induced by severe hypoxia.Brain Res 714: 215-225, 1996.
    [33] Omata N, Murata T, Takamatsu S, Maruoka N, Yonekura Y,Fujibayashi Y, Wada Y. Region-specific induction of hypoxic tolerance by expression of stress proteins and antioxidant enzymes. Neurol Sci 27: 74-77, 2006.
    [34] Danielisova V, Nemethova M, Gottlieb M, Burda J. Changes of endogenous antioxidant enzymes during ischemic tolerance acquisition. Neurochem Res 30:559-565, 2005.
    [35] Puisieux F, Deplanque D, Bulckaen H, Maboudou P, Gele' P, Lhermitte M,Lebuffe G, Bordet R. Brain ischemic preconditioning is abolished by antioxidant drugs but does not up-regulate superoxide dismutase and glutathione peroxidase. Brain Res 1027: 30-37, 2004.
    [36] Ohtsuki T, Matsumoto M, Kuwabara K, Kitagawa K, Suzuki K, Taniguchi N,Kamada T. Influence of oxidative stress on induced tolerance to ischemia in gerbil hippocampal neurons. Brain Res 599: 246-252, 1992.
    [37] Bordet R, Deplanque D, Maboudou P, Puisieux F, Pu Q, Robin E, Martin A,Bastide M, Leys D, Lhermitte M, Dupuis B. Increase in endogenous brain superoxide dismutase as a potential mechanism of lipopolysaccharide-induced brain ischemic tolerance.J Cereb Blood Flow Metab 20: 1190-1196, 2000.
    [38] Hightower LE. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66: 191-197,1991.
    [39] Lindquist S and Craig EA. The heat-shock proteins. Annu Rev Genet 22:631-677,1988.
    [40] Moseley PL. Heat shock proteins and heat adaptation of the whole organism. J Appl Physiol 83: 1413-1417, 1997.
    [41] Georgopoulos C and Welch WJ. Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9: 601-634,1993.
    [42] Parsell DA and Lindquist S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27: 437-496,1993.
    [43] Otterbein LE and Choi AM. Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol 279: L1029-L1037, 2000.
    [44] Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW,Koo GC, and Calderwood SK. HSP70 stimulates cytokine production through a CD14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6: 435-442, 2000.
    [45] Chen J, Graham SH, Zhu RL, Simon RP. Stress proteins and tolerance to focal cerebral ischemia. J Cereb Blood Flow Metab 16: 566-577, 1996.
    [46] Currie RW, Ellison JA, White RF, Feuerstein GZ, Wang X, Barone FC.Benign focal ischemic preconditioning induces neuronal Hsp70 and prolonged astrogliosis with expression of Hsp27. Brain Res 863: 169-181, 2000.
    [47] Glazier SS, O'Rourke DM, Graham DI, Welsh FA. Induction of ischemic tolerance following brief focal ischemia in rat brain. J Cereb Blood Flow Metab 14: 545-553, 1994.
    [48] Guo ZH, Mattson MP. In vivo 2-deoxyglucose administration preserves glucose and glutamate transport and mitochondrial function in cortical synaptic terminals after exposure to amyloid _-peptide and iron: evidence for a stress response. Exp Neurol 166: 173-179, 2000.
    [49] Ikeda J, Nakajima T, Osborne OC, Mies G, Nowak TS Jr. Coexpression of c-fos and hsp70 mRNAs in gerbil brain after ischemia: induction threshold, distribution and time course evaluated by in situ hybridization. Brain Res 26: 249-258, 1994.
    [50] Nishi S, Taki W, Uemura Y, Higashi T, Kikuchi H, Kudoh H, Satoh M,Nagata K. Ischemic tolerance due to the induction of HSP70 in a rat ischemic recirculation model. Brain Res 615: 281-288, 1993.
    [51] Nishino K, Nowak TS Jr. Time course and cellular distribution of hsp27 and hsp72 stress protein expression in a quantitative gerbil model of ischemic injury and tolerance: thresholds for hsp72 induction and hilar lesioning in the context of ischemic preconditioning. J Cereb Blood Flow Metab 24: 167-178,2004.
    [52] Simon RP, Niiro M, Gwinn R. Prior ischemic stress protects against experimental stroke. Neurosci Lett 163: 135-137,1993.
    [53] Simpson IA, Appel NM, Hokari M, Oki J, Holman GD, Maher F, Koehler-Stec EM, Vannucci SJ, Smith QR. Blood-brain barrier glucose transporter: effects of hypo- and hyperglycemia revisited. JNeurochem 72: 238-247, 1999.
    [54] Liu Y, Kato H, Nakata N, Kogure K. Temporal profile of heat shock protein 70 synthesis in ischemic tolerance induced by preconditioning ischemia in rat hippocampus. Neuroscience 56: 921- 927, 1993.
    [55] Dimagl U, Simon RP, Hallenbeck JM. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 248-254, 2003.
    [56] Fremont M, Vaeyens F, Herst CV, De Meirleir KL, Englebienne P.Double-stranded RNA-dependent protein kinase (PKR)is a stress-responsive kinase that induces NFkappaB-mediated resistanceagainst mercury cytotoxicity. Life Sci 78: 1845-1856, 2006.
    [57] Riabowol KT, Mizzen LA, Welch WJ. Heat shock is lethal to fibroblasts microinjected with antibodies against hsp 70. Science 242: 433-436, 1988.
    [58] Johnston RN, Kucey BL. Competitive inhibition of hsp70 gene expression causes thermosensitivity. Science 242: 1551-1554, 1988.
    [59] Nakata N, Kato H, Kogure K. Inhibition of ischaemic tolerance in the gerbil hippocampus by quercetin and anti-heat shock protein-70 antibody. Neuroreport 4: 695-698, 1993.
    [60] Ho'ehn B, Ringer TM, Xu L, Giffard RG, Sapolsky RM, Steinberg GK, Yenari MA. Overexpression of HSP72 after induction of experimental stroke protects neurons from ischemic damage.J Cereb Blood Flow Metab 21: 1303-139,2001.
    [61] Kelly S, Bieneman A, Horsburgh K, Hughes D, Sofroniew MV, McCulloch J,Uney JB. Targeting expression of hsp70i to discrete neuronal populations using the Lmo-1 promoter: assessment of the neuroprotective effects of hsp70i in vivo and in vitro. J Cereb Blood Flow Metab 21: 972-981, 2001.
    [62] Kelly S, Zhang ZJ, Zhao H, Xu L, Giffard RG, Sapolsky RM, Yenari MA,Steinberg GK. Gene transfer of HSP72 protects cornu ammonis 1 region of the hippocampus neurons from global ischemia:influence of Bcl-2. Ann Neurol 52:160-167,2002.
    [63] Lu A, Ran R, Parmentier-Batteur S, Nee A, Sharp FR. Geldanamycin induces heat shock proteins in brain and protects against focal cerebral ischemia. J Neurochem 81: 355-364, 2002.
    [64] Matsumori Y, Hong SM, Aoyama K, Fan Y, Kayama T, Sheldon RA, Vexler ZS, Ferriero DM, Weinstein PR, Liu J. Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemicbrain injury. J Cereb Blood Flow Metab 25:899-910,2005.
    [65] Plumier JC, Krueger AM, Currie RW, Kontoyiannis D, Kollias G, Pagoulatos GN. Transgenic mice expressing the human inducible Hsp70 have hippocampal neurons resistant to ischemic injury.Cell Stress Chaperones 2:162-167, 1997.
    [66] Qiao Y, Ouyang YB, Giffard RG. Overexpression of HDJ-2 protects astrocytes from ischemia-like injury and reduces redistribution of ubiquitin staining in vitro. J Cereb Blood Flow Metab 23:1113-1116, 2003.
    [67] Rajdev S, Hara K, Kokubo Y, Mestril R, Dillmann W, Weinstein PR, Sharp FR. Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction. Ann Neurol 47: 782-791, 2000.
    [68] Yenari MA, Fink SL, Sun GH, Chang LK, Patel MK, Kunis DM, Onley D, Ho DY, Sapolsky RM, Steinberg GK. Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy.Ann Neurol 44: 584-91, 1998.
    [69] Sun Y, Ouyang YB, Xu L, Chow AM, Anderson R, Hecker JG, Giffard RG.The carboxyl-terminal domain of inducible Hsp70 protects from ischemic injury in vivo and in vitro. J Cereb Blood Flow Metab 26: 937-950, 2006.
    [70] Stankiewicz AR, Lachapelle G, Foo CP, Radicioni SM, Mosser DD. Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translation. J Biol Chem 280: 38729-38739, 2005.
    [71] Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P,Morimoto RI, Cohen GM, Green DR. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase- 9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469-475,2000.
    [72] Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES. Negative regulation of the Apaf-1 apoptosome by Hsp 70. Nat Cell Biol 2: 476-483,2000.
    [73] Steel R, Doherty JP, Buzzard K, Clemons N, Hawkins CJ, Anderson RL.Hsp72 inhibits apoptosis upstream of the mitochondria and not through interactions with Apaf-1. J Biol Chem 279: 51490-51499, 2004.
    [74] Ravagnan L, Gurbuxani S, Susin SA, Maisse C, Daugas E, Zamzami N, Mak T,Jaattela M, Penninger JM, Garrido C, Kroemer G. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 3: 839-843, 2001.
    [75] Ruchalski K, Mao H, Li Z, Wang Z, Gillers S, Wang Y, Mosser DD, Gabai V,Schwartz JH, Borkan SC. Distinct hsp70 domains mediate apoptosis-inducing factor release and nuclear accumulation. J Biol Chem 281: 7873-7880, 2006.
    [76] Xu L, Giffard RG. HSP70 protects murine astrocytes from glucose deprivation injury. Neurosci Lett 224: 9-12, 1997.
    [77] Xu L, Ouyang YB, Giffard RG. Geldanamycin reduces necrotic and apoptotic injury due to oxygen-glucose deprivation in astrocytes. Neurol Res 25:697-700, 2003.
    [78] Gabai VL, Meriin AB, Yaglom JA, Wei JY, Mosser DD, Sherman MY.Suppression of stress kinase JNK is involved in HSP72-mediated protection of myogenic cells from transient energy deprivation. HSP72 alleviates the stress-induced inhibition of JNK dephosphorylation. J Biol Chem 275:38088-38094, 2000.
    [79] Yaglom JA, Ekhterae D, Gabai VL, Sherman MY. Regulation of necrosis of H9c2 myogenic cells upon transient energy deprivation. Rapid deenergization of mitochondria precedes necrosis and is controlled by reactive oxygen species, stress kinase JNK, HSP72 and ARC. J Biol Chem 278: 50483-50496, 2003.
    [80] Rosell A, Ortega-Aznar A, Alvarez-Sabi'n J, Ferna'ndez-Cadenas I, Ribo' M, Molina CA, Lo EH, Montaner J. Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke 37:1399-1406, 2006.
    [81] Rosenberg GA, Navratil M, Barone F, Feuerstein G. Proteolytic cascade enzymes increase in focal cerebral ischemia in rat.J Cereb Blood Flow Metab 16:360-366,1996.
    [82] Asahi M, Asahi K, Jung JC, del Zoppo GJ, Fini ME, Lo EH. Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 20: 1681-1689,2000.
    [83] Gasche Y, Copin JC, Sugawara T, Fujimura M, Chan PH. Matrix metalloproteinase inhibition prevents oxidative stress-associated blood-brain barrier disruption after transient focal cerebral ischemia. J Cereb Blood Flow Metab 21: 1393-400,2001.
    [84] Gu Z, Cui J, Brown S, Fridman R, Mobashery S, Strongin AY, Lipton SA. A highly specific inhibitor of matrix metalloproteinase- 9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci 25: 6401-6408, 2005.
    [85] Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC. Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke 29: 1020-1030, 1998.
    [86] Zhang FY, Chen XC, Ren HM, Bao WM. Effects of ischemic preconditioning on blood-brain barrier permeability and MMP-9 expression of ischemic brain. Neurol Res 28: 21-24, 2006.
    [87] Wang X, Yaish-Ohad S, Li X, Barone FC, Feuerstein GZ. Use of suppression subtractive hybridization strategy for discovery of increased tissue inhibitor of matrix metalloproteinase-1 gene expression in brain ischemic tolerance. J Cereb Blood Flow Metab 18: 1173-1177, 1998.
    [88] Krantic S, Mechawar N, Reix S, Quirion R. Molecular basis of programmed cell death involved in neurodegeneration. Trends Neurosci 28: 670-676, 2005.
    [89] Plamondon H, Blondeau N, Heurteaux C, Lazdunski M. Mutually protective actions of kainic acid epileptic preconditioning and sublethal global ischemia on hippocampal neuronal death: involvement of adenosine Al receptors and KATP channels.J Cereb Blood Flow Metab 19: 1296-1308,1999.
    [90] Tanaka H, Yokota H, Jover T, Cappuccio I, Calderone A,Simionescu M,Bennett MV, Zukin RS. Ischemic preconditioning: neuronal survival in the face of caspase-3 activation. J Neurosci24: 2750-2759, 2004.
    [91] Zhu HC, Gao XQ, Xing Y, Sun SG, Li HG, Wang YF. Inhibition of caspase-3 activation and apoptosis is involved in 3-nitropropionic acid-induced ischemic tolerance to transient focal cerebral ischemia in rats. J Mol Neurosci 24:299-305, 2004.
    [92] Tomasevic G, Shamloo M, Israeli D, Wieloch T. Activation of p53 and its target genes p21(WAFl/Cipl) and PAG608/Wig-l in ischemic preconditioning. Brain Res 70: 304-313, 1999.
    [93] Huang L, Li W, Li B, Zou F. Activation of ATP-sensitive K channels protects hippocampal CA1 neurons from hypoxia by suppressing p53 expression. Neurosci Lett 398: 34-38, 2006.
    [94] Brambrink AM, Schneider A, Noga H, Astheimer A, Go" tz B, Ko'rner I,Heimann A, Welschof M, Kempski O. Tolerance-Inducing dose of 3-nitropropionic acid modulates bcl-2 and bax balance in the rat brain: a potential mechanism of chemical preconditioning. J Cereb Blood Flow Metab20: 1425-1436,2000.
    [95] Kato K, Shimazaki K, Kamiya T, Amemiya S, Inaba T, Oguro K, Katayama Y.Differential effects of sublethal ischemia and chemical preconditioning with 3-nitropropionic acid on protein expression in gerbil hippocampus. Life Sci 77:2867-2878, 2005.
    [96] Rybnikova E, Sitnik N, Gluschenko T, Tjulkova E, Samoilov MO. The preconditioning modified neuronal expression of apoptosis-related proteins of Bcl-2 superfamily following severe hypobarichypoxia in rats. Brain Res 1089:195-202,2006.
    [97] Shimizu S, Nagayama T, Jin KL, Zhu L, Loeffert JE, Watkins SC, Graham SH, Simon RP. bcl-2 Antisense treatment prevents induction of tolerance to focal ischemia in the rat brain. J Cereb Blood Flow Metab 21: 233-243, 2001.
    [98] Wu C, Fujihara H, Yao J, Qi S, Li H, Shimoji K, Baba H. Different expression patterns of Bcl-2, Bcl-xl, Bax proteins after sublethal forebrain ischemia in C57Black/Crj6 mouse stnatum.Stroke 34: 1803-1808, 2003.
    [99] McLaughlin B, Hartnett KA, Erhardt JA, Legos JJ, White RF,Barone FC,Aizenman E. Caspase 3 activation is essential for neuroprotection in preconditioning. Proc Natl Acad Sci USA 100:715-720, 2003.
    [100] Yamaguchi A, Tamatani M, Matsuzaki H, Namikawa K,Kiyama H, Vitek MP,Mitsuda N, Tohyama M. Akt activation protects hippocampal neurons from apoptosis by inhibiting transcriptionalactivity of p53. J Biol Chem 276:5256-5264,2001.
    [101] Noshita N, Lewen A, Sugawara T, Chan PH. Evidence of phosphorylationof Akt and neuronal survival after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 21:1442-1450,2001.
    [102] Yano S, Morioka M, Fukunaga K, Kawano T, Hara T, Kai Y, Hamada J,Miyamoto E, Ushio Y. Activation of Akt/protein kinase B contributes to induction of ischemic tolerance in the CAl sub field of gerbil hippocampus. J Cereb Blood Flow Metab 21:351-360, 2001.
    [103] Nakajima T, Iwabuchi S, Miyazaki H, Okuma Y, Kuwabara M, Nomura Y,Kawahara K. Preconditioning prevents ischemia-induced neuronal death through persistent Akt activation in thepenumbra region of the rat brain. J Vet Med Sci 66: 521-527,2004.
    [104] Hillion JA, Li Y, Maric D, Takanohashi A, Klimanis D, BarkerJL, Hallenbeck JM.Involvement of Akt in preconditioning-inducedtolerance to ischemia in PC12 cells.J Cereb Blood FlowMetab 26:1323-1331,2006.
    [105]Cai D,McCarron RM,Yu EZ,Li Y,Hallenbeck J.Akt phosphorylation and kinase activity are down-regulated during hibernation in the 13-lined ground squirrel.Brain Res 1014:14-21,2004.
    [106]Eddy SF,Storey KB.Differential expression of Akt,PPAR_,PGC-1 during hibernation in bats.Biochem Cell Biol 81:269-274,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700