用户名: 密码: 验证码:
新型多孔磷酸钙陶瓷支架构建及其体内培育大尺寸活体骨修复体
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨缺损是临床骨科最常见的病症之一,可由于感染、外伤、肿瘤和先天性疾病等造成,大部分骨缺损,特别是大尺寸骨缺损不能自愈而需要进行骨移植。然而各种活体骨移植都存在许多问题,如自体骨移植虽然是最理想的修复效果,但常常需要附加手术切口,可能引起诸如疼痛、出血、感染、局部麻木和破坏组织结构的完整性等缺点,而且自体骨的供给量也非常有限;异体和异种骨移植不仅存在免疫反应和感染疾病的危险,而且比自体骨的成骨能力差,所以对硬组织修复材料及新的修复方式和途径的研究探索也成为骨修复研究领域热点之一。
     随着细胞生物学、分子生物学、材料科学及相关物理化学学科的发展,人们提出了组织工程概念,即应用生命科学与工程学原理及方法构建功能性的活体组织,以恢复受损组织或器官的功能。组织工程骨构建可分为体外和体内两种培育方式,但迄今为止,大量的研究结果表明,体外构建的组织工程骨在临床应用上还存在许多限制和问题,如由于体内外环境的巨大差异导致体外培养的细胞在植入体内后存活率较低、大尺寸组织工程骨的血管化问题、临床应用时限要求及活体器件的保存运输等一系列亟需解决的问题而现在尚无完善的解决方案。
     本研究提出体内构建大尺寸(Φ1~1.5x3~4cm)组织工程骨,不仅要求支架材料具有良好的贯通性和孔径大小及孔级配,而且要求种子细胞和生物信号分子易于与支架进行均匀的复合,以利于新生组织及血管在支架内部形成和生长,保证大段组织工程骨的整体一致性。因此,我们创新地采用多孔生物陶瓷球形颗粒堆积的方式,构建大尺寸多孔支架。在这种构建方式中,球形颗粒堆积所产生的孔隙100%的相互连通,孔隙大小和孔隙率可以通过改变球粒的大小来控制,而且具备与生物活性物质均匀混合的能力。随后,将支架植入犬腹腔大网膜、壁层腹膜、肌肉和股骨旁4个非骨部位体,利用体内的自然生长环境构建具有生物结构和功能的活体组织。组织学分析结果显示,新型支架在未添加任何生物活性物质的前提下,在体内具有较强的异位成骨能力。除腹腔大网膜组的新生血管和新生骨相对较少外,壁层腹膜、股骨旁骨膜和肌肉的支架内毛细血管、骨样组织生长丰富,且新生血管与新生骨之间呈正相关。结果显示其它研究中关注较少的壁层腹膜因其分布量大、延展性强,材料受压程度小等特点可作为体内培育大块组织工程骨的优选种植部位。通过本研究,不仅能实现在生物材料中构建生物结构和功能,了解体内不同培育部位骨组织在新型支架中的生长情况,而且为临床提供了一类可择期应用的活体替换材料,在骨组织缺损修复应用中具有突出的意义。
In clinic, it is difficult to repair the massive bone defect. Autografts and allografts are applied to solve this problem, but autografts are limited due to donor bone supply, the second surgery and the resorption during healing while allografts have to face the risks such as the potential immune rejection and pathogen transfer. The disadvantages of autografts or allografts prompt the development of reconstructing tissues or organs by means of artificial substitutes.
     Tissue engineering applies methods of materials engineering and life sciences to develop, design and reconstruct a substitute with similar morphology and function for implantation in the injured tissues to accomplish tissue repair. The process of tissue engineering is simply described:"a three-dimensional (3D) scaffold attached specific cells is cultured in vitro or in vivo for a certain period, subsequently delivered to the desired site for the purpose of tissue repair". In many experiments of reconstructing tissue engineered bone in vitro, specially in cultivating large tissue engineered bone, the currently used bone substitutes still face many unsolved problems including incomplete formation of new bone tissue, failure of neovascularization, and slow growth of the capillary network. Some researches reported the livability and quality of large tissue engineered bone would be improved with the betterment of the uniformity of biological substance and scaffold. Therefore, apart from the tailored porosity and pore structure, the scaffolds must possess the capability of improving the uniformity of biological substance such as seeded cells or growth factors inside scaffolds.
     In this study, a novel scaffold with large size and controlled porous structure was designed for the aim of massive tissue engineered bone in vivo. It was composed of HA spherulites and porous HA tube coated with poly (L-lactic acid) (PLA). Taking advantage of this design, HA spherulites can easily compound with biological substance before being filled into the HA tubes. This kind of pre-compounding manner can improve the uniformity of biological substance within the scaffold to promote the formation of new tissue and neovasculariztion in large volume of engineered bone. The novel scaffolds, in subsequent experiment, were cultured in vivo in the non-repairing sites such as muscle, femur bone side, peritoneum and canine abdominal omentum to construct the real living tissue by use of the nature environment in body which can provide the abundant substances needed for the growth of tissue including cells, nourishements, enzymes and biomolecular signals. The resluts displayed, after 6 months, the rich ingrowth of capillary blood vessel and bone tissue was found in scaffolds planted in the retroperitoneal group, femoral periosteum group and muscle group. Neovascularization and new bone were less than the other three groups significantly in intra-abdominal omental group. At the same time, the results also showed that peritoneal can be used as the better target site for bone tissue engineering in vivo.
引文
[1]邱贵兴,荣国威.骨科学.中国协和医科大学出版社,2006.
    [2]Kalfas I H. Principles of bone healing. Neurosurg Focus,2001.
    [3]陆裕朴.实用骨科学.人民军医出版社,2007.
    [4]纪荣明.人体解剖学标本彩色图谱.人民军医出版社,2007.
    [5]Fratzl P, Weinkamer R. Nature's hierarchical materials. Progress in Materials Science.2007, 52(2):1263-1334.
    [6]Meyers M A, Chen P Y, Lin A Y, et al.:Structure and mechanical properties.Progress in Materials Science. Biological materials.2008,53(5):201-206.
    [7]俞耀庭.生物医用材料.天津大学出版社,2000.
    [8]Cao Y L, Vacanti C A, Upton J, et al. Transplantation of chondrucytes utilizing polymer-cell constructs to produce new cartilage in the shape of a human ear. Plast Reconstr Surg.1997,100(2): 297-302.
    [9]成令钟.组织学与胚胎学.人民卫生出版社,1992.
    [10]Maniatopoulos C, Sodek J, Melcher A H. Bone formation in vitro by stromal cells obtained from bone marrow of yong adule rats. Cell Tissue Res.1988,254(3):317-320.
    [11]鄂征,刘流.医学组织工程技术与临床应用.北京出版社,2002.
    [12]Wlodarski K H. Bone formation in soft tissue. CRC PRESS,1991:313-337.
    [13]朱胜进.骨科基本常识与精要释疑.浙江大学出版社,2003.
    [14]Langer R, Vacanti J P. Tissueengineering. Science.1993,260(2):920-921.
    [15]时述山,肯少汀.实用骨与软骨移植.人民军医出版社,2006.
    [16]曹谊林.组织工程学理论与实践.上海科学技术出版社,2004.
    [17]Crane G M, Lshaug S L, Mikos A G, et al. Bone Tissue Engineening. Nature Medicine.1995,1(12): 1322.
    [18]Heineken F G, Skalak R. Tissue Engineering:A Brief Over—view. Biomech Eng.1991,113(4):111.
    [19]Lutton. P, Huckstep R L. Newer materials and concepts in the stabilization of bones and joints. Biomaterials.1988,3(17):291.
    [20]李世普.生物医用材料导论.武汉理工大学出版社,2000.
    [21]Nerem R M. Tissue engineering in the USA. Med Biol Eng Comput.1992,30(4):8-12.
    [22]Bobbio A. The first endosseous alloplastic implant in the history of man. Hist Dent.1970,1(5):1-6.
    [23]Thomas K. Biomaterials:History and development. Pharm Res.1990,2(7):253-259.
    [24]孟运莲.现代组织学与细胞学技术.武汉大学出版社,2004.
    [25]Mooney D J, Kim B S. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol.1998,16(5):224-230.
    [26]Brckke J H, Toth J M. Principles of tissue engineering applied to programmable ostcogenesis. Biomed Mater Res.1998,43(4):380-398.
    [27]Dubok V A. Bioceramics-yesterday, today, tomorrow. Powder metallru gay and metal ceramics.2001, 39(3):381-394.
    [28]Wang M. Developing bioactive composite materials for tissue replacement. Biomaterials.2003,24(5): 2133-2151.
    [29]Zhao B H, Lee I S, Han I H, et al. Effects of surface morphology on human osteosarcoma cell response. Current Applied Physics.2007,7(2):6-10.
    [30]Ranucci C S, Kumar A, Batra S P, et al. Control of hepatocyte function on collagen foams:sizing matrix pores toward selective induction of 2-D and 3-D cellular morpho-genesis. Biomaterials.2000,21(3):783-793.
    [31]Lien S M, Ko L Y, Huang T J. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomaterialia.2009,5(4):670-679.
    [32]Oh S H, Park I K, Kim J M, et al. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials.2007,28(5): 1664-1671.
    [33]Bose S, Darsell J, Kintner M, et al. Pore size and pore volume effects on alumina and TCP ceramic scaffolds. Mater Sci Eng C 2003,23(6):479-86.
    [34]祝天经.异种骨移植与固定.中南大学出版社,2007.
    [35]Yuan H P. Kurashina K. Bruijn J D, et al. Preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials.1999,20(8):1799-1806.
    [36]Chen R, Hunt J A. Biomimetic materials processing for tissue engineering processes. Mater Chem. 2007,17(7):3974-3979.
    [37]Cao T, Ho K H. Teoh S II. Scaffold design and in Vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone Scaffold fabricated by fused deposition modeling. Tissue Eng.2003,1(3):103-112.
    [38]Burg K J, Porter S, Kellan J F. Biomaterials.2000,21(5):2347-2359.
    [39]赵瑾,袁晓燕,姚康德.组织工程多孔支架制备技术进展.化工进展.2002,21(9):644-648.
    [40]Roy D M, Linnehan S K. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature.1974,247(4):220-222.
    [41]崔福斎,冯庆玲.生物材料学.清华大学出版社,2006.
    [42]罗民华.多孔陶瓷实用技术.中国建材工业出版社,2006.
    [43]Sheppard L M. Porous ceramic processing and application. Ceram Trans.1993,31(2):3-23.
    [44]黄志红,陈晓明,李建华.多孔碳酸钙陶瓷-人造珊瑚的初步研究.陶瓷学报.2003,3(20):149-151.
    [45]赵冰,杜荣归,林昌健.羟基磷灰石生物陶瓷材料的制备及其新进展.功能材料.2003,2(34):126-129.
    [46]Karlis A, Gross L, Rodriguez L. Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering. Biomaterials.2004,3 (25):4955-4962.
    [47]Guillemin G, Meunier A, Dallant P, et al. Comparison of coral resorption and bone apposition with two natural corals of different porosities. Biomed Mater Res.1989,23(7):765-779.
    [48]Maniatopoulos C, Sodek J, Melcher A H. Bone formation in vitro by stromal cells obtained from bone marrow of young adultrats. Cell Tissue Res.1988,254 (2):317-330.
    [49]Wakitani S, Goto T, Young R G, et al. Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue Eng.1998,4(4):429-444.
    [50]Vacanti C A, Kim W, Upton J, et al. The efficacy of periosteal cells compared to chondrocytes in the tissue engineered repairof bone defects. Tissue Eng.1995, 1(8):301-308.
    [51]Cao Y L, Vacanti J P, Paige K T, et al. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg. 1997,100(2):297-302.
    [52]Casabona F, Martin I, Muraglia A, et al. Prefabricated engineered bone flaps:an experimental model of tissue reconstruction in plastic surgery. Plast Reconstr Surg.1998,101(3):577-581.
    [53]Lieberman J R, Daluiski A, Stevenson S, et al. The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. Bone Joint Surg Am.1999,81(7):905-17.
    [54]Baltzer A W, Lattermann C, Whalen J D, et al. Potential role of direct adenoviral gene transfer in enhancing fracture repair. Clin Orthop Relat Res.2000,379(Suppl):120-125.
    [55]Contassot E, Ferrand C, Angonin R, et al. Ganciclovir-sensitive acute graft-versus-host disease in mice receiving herpes simplex virus-thymidine kinase-expressing donor T cells in a bone marrow transplantation setting. Transplantation.2000,69(4):503-508.
    [56]Yamasaki H, Sakai H. Osteogenic response to porous hydroxyapatite ceramics under the skin of dogs. Biomaterials.1992,13(55):308-312.
    [57]Ripamonti U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials.1996,17(1):31-35.
    [58]Livingston T, Ducheyne P, Garino J. In vivo evaluation of a bioactive scaffold for bone tissue engineering. Biomed Mater Res.2002,62(1):1-13.
    [59]Deligianni D D, Katsala N D. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials.2001,22(1):87-96.
    [60]Klawitter J J. A basic investigation of bone growth into a porous ceramic material. Doctoral Thesis, Clemson University, Clemson, SC,1970.
    [61]Heughebaert M, LeGeros R Z, Gineste M,et al. Bonel G. Physicochemical characterization of deposits associated with HA ceramics implanted in nonosseous sites. Biomed Mater Res. 1988,22(3):257-68.
    [62]Yamasaki H, Sakai H. Osteogenic response to porous hydroxyapatite ceramics under the skin of dogs. Biomaterials.1992,13(55):308-312.
    [63]Zhang C, Wang J, Feng H, et al. Repairing segmental bone defects with living porous ceramic cylinders:an experimental study in dog femora. Biomed Mater Res.2001,55(1):28-32.
    [64]Ripamonti U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials.1996,17(1):31-35.
    [65]Yang Z J, Yuan H P, Tong W D, et al. Osteogenesis in extraskeletally implanted porous phosphate ceramics:variability among different kinds of animals. Biomaterlals.1996,17(22):2131-2137.
    [66]Hollinger J O. Klein J C. The critical size defect as all experimental model to test bone repair materials. Craniofac Surg.1990,1(1):60-68.
    [67]Zhang C, Wang J, Zhang X. Osteoinductivity and Biomechanics of a Porous Ceramic with Autogenic Periosteum. Biomedical Materlals Research.2000,52(2):354-359.
    [68]Grynpas M D, Pilliar R M, Kandel R A, et al. Porous calcium polyphosphate scaffolds forbone substitute applications in vivo studies. Biomaterials.2002,23(5):2063-2070.
    [69]Lu J X, Flautre B, Gallur A, et al. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. Mater Sci Mater Med,1999,82(10):111-120.
    [70]Gao J, Dennis JE, Solchaga LA, et al. Repair of osteochondral defect with tissue-engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge. Tissue Eng. 2002,8(7):827-837.
    [71]顾其胜,侯春林,徐政.实用生物医用材料学.科学出版社,2004.
    [72]Sukumaran VG, Bharadwaj N. Ceramics in dental applications. Trends Biomats Arti Organs.2006, 1(3):7-11.
    [73]顾汉卿,徐国风.生物医学材料学.天津科技翻译出版公司,1993:395—418.
    [74]阮建明,邹俭鹏,黄伯云.生物材料学.科学出版社,2006.
    [75]Rieger W. Ceramics in orthopedics-30 years of evolution and experience. In World Tribology Forum in Arthroplasty, ed. C. Rieker, S. Oberholzer and U. Wyss. Hans Huber Verlag, Bern, Suisse,2001.
    [76]阮建明,邹俭鹏.生物材料学.科学出版社,2006.
    [77]谈国强.生物陶瓷材料.化学工业出版社,2006.
    [78]Hench L L, Splinter R J, Allen W C, et al. Bonding mechanism at the interface of ceramic prosthetic materials. Biomed Mater Res.1971,5(3):117-141.
    [79]Hench L L. Bioceramics:from concept to clinic. Am J Ceram Soc.1991,74(6):1487-1510.
    [80]Hench L L, Polak J M, Xynos I D,et al. Bioactive materials to control cell cycle. Mater Res Innov. 2000,6(8):313-323.
    [81]赵炎炎,徐武清,赵吉吉.氧化铝羟基磷灰石人工骨与兔骨的生物相容性观察.中国临床康复.2006,10(2):57-61.
    [82]Liu X, Ding C. Plasma sprayed wollastonite/TiO2 composite coatings on titanium alloys. Biomaterials.2002,23(20):4065-4077.
    [83]Kokubo T, Kim H M, Kawashita M, et al. Novel bioactive materials with different mechanical properties. Biomaterials.2003,24(13):2161-2175.
    [84]Wang M. Developing bioactive composite materials for tissue replacement. Biomaterials.2003, 24(10):2133-2151.
    [85]Kim H W, Noh Y J, Koh Y H, et al. Effect of CaF2 on densification and properties of hydroxyapatite-zirconia composites for biomedical applications. Biomaterials.2002,23(9): 4113-4121.
    [86]罗民华.多孔陶瓷实用技术.中国建材上业出版社,2006.
    [87]唐月军,唐月锋,王心玲.氧化锆增韧羟基磷灰石纳米复相多孔生物陶瓷的制备与性能.中国组织上程研究与临床康复.2009,4(6):29-32.
    [88]王国营,高景龙,邵忠财.氧化锆复合生物陶瓷用于人体硬组织修复的研究进展.中国美容医学.2007,8(2):16-19.
    [89]Masayoshi O,Takeshi A,Yoichi S. Bacterial adherence to bioinert and bioactive materials studied in vitro. Acta Ofthoo Scand.1993,3(2):273-276.
    [90]Daniel C, Clupper W, John J, et al. Bioactivity of tape cast and sintered bioactive glass-ceramic in simulated body fluid. Biomaterials.2002,23(11):2599-2606.
    [91]Engqvist H, Schultz W, Loof J, et al. Chemical and biological integration of a mouldable bioactive ceramic material capable of forming apatite in vivo in teeth. Biomaterials.2004,25(5):2781-2787.
    [92]张聪,姚一民,冯怀志,等.多孔生物活性陶瓷治疗骨缺损.西南国防医药.2003,13(3):274-276.
    [93]Lucas G, Langlois P, Sangleboeuf J, et al. A synthetic aragonite- based bioceramic:influence of process parameters on porosity and compressive strength. Biomaterials.2002,23(5):503-510.
    [94]张劲松,谭寿洪,江东亮.孔径可控的多孔羟基磷灰石的制备工艺研究.功能材料与器件学报.2001,5(6):152-156.
    [95]Engin. Fabrication and characterization of porous hydroxyapatite granules. Biomaterials,1996, 17:1955-1957.
    [96]吴建锋,徐晓虹.多孔磷酸三钙生物陶瓷的研制.陶瓷学报.1999,2(3):104-107.
    [97]Mooney D J, Baldwin D F, Suh N P, et al. Novel approach to fabricate porous sponges of poly(d,l-lactic-coglycolicacid) without the use of organic solvents. Biomaterials.1996, 17(4):1417-1422.
    [98]Laurence M M, Thomas L M, Bourban P E. Architecture and properties of an isotropic polymer composite scaffolds for bone tissue engineering. Biomaterials.2006,6(8):905-916.
    [99]Lips P A., Velthoena I W, Dijkstra P J, et al. Gas foaming of segmented poly (ester amide) films. Polymer.2005,46(8):9396-9403.
    [100]Woodfield T, Malda J, Wijn J. Design of porous scaffolds for cartilage tissue engineering using a 3-dimensional fiber-deposition technique. Biomaterials.2004,25(8):4149-4161.
    [101]刘洪丽,钟文武,宋春梅.采用聚硅氮烷制备SiCN泡沫陶瓷.稀有金属材料与工程.2007,36(1):538.
    [102]罗锋,郭大刚,憨勇,等.泡沫浸渍法制备多孔磷酸钙支架材料.硅酸盐学报.2006,2(9):183-185.
    [103]肖素光,赵婧,翁杰.聚乳酸涂层改善网状羟基磷灰石陶瓷支架力学性能的研究.功能材料.2007,4(12):65-68.
    [104]Mikos A G, Bao Y, Cima LG, et al. Preparation of poly (glycolic acid) bonded fiber structure for cell attachment and transplantation. Biomed Mater Res.1993,27(22):183-189.
    [105]梁列峰,翁杰,侯鹏.固化纤维在多孔生物陶瓷内的隧道条纹效应.材料科学与工艺.2008,1(3):128-130.
    [106]Lobel K D, Hench L L. In-vitro protein interactions with a bioactive gel-glass. Sol-Gel Sci Technol. 1996,7(3):69-76.
    [107]Saravanapavan P, Hench L L. Mesoporous calcium silicate glasses I.Synthesis. Non-Cryst Solids. 2003,318(13):1-13.
    [108]Dhara S, Kamboj R, Pradhan M, et al. Shape forming of ceramics via gelcasting of aqueous particulate slurries. Bull Mater Sci.2002,6(4):565-568.
    [109]Ruijgrok J M, De J R, Boon M E. Optimizing glutaraldehyde crosslinking of collagen:effect of time, temperature and concentration as measured by shrinkage temperature. Mater Sci:Mater Med. 1994,5(2):80-87.
    [110]Hassna R R, Zhang M Q. Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biomaterials.2003,24(45):3293-3302.
    [111]Woesz A, Rumpler T M, Stampf J, et al. Towards bone replacement materials from calcium phosphates via rapidprototyping and ceramic gelcasting. Mater Sci Eng C.2005,25(11):181-186.
    [112]Levy G, Schindel R, Kruth J. Rapid manufacturing and rapid tooling with layer manufacturing technologies:state of the art and future perspectives. Ann CIRP.2003,2(4):589-609.
    [113]Yeong W Y, Chua C K, Leong K F, et al. Rapid protoyping in tissue engineering:challenges and potential. Trends in Biotechnology.2004,12(6):643-652.
    [114]David F. Williams Leading Opinion on the mechanisms of biocompatibility. Biomaterials. 2008,29(3):2941-2953.
    [115]Babensee J E, Anderson J M. Host response to tissue engineered devices. Advanced Dru Delive Rev. 1998,33(2):32-38.
    [116]Hench L L, Paschall H A. Histochemical responses at a biomaterial's interface. Biomed Mater Res Sym.1974,5(2):49-64.
    [117]Zhang X D, Zou P, Wu C, et al. A study of porous block HA ceramics and its osteogeneses. In: Bioceramics and the Human Body. ED by Ravaglioli and Krajewski. Elsevier App lied Science, 1991; 408
    [118]Habibovic P, Yuan H, Vander C M.3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials.2005,17(5):3565-3575.
    [119]Galois L, Mainard D. Bone ingrowth into two porous ceramics with different pore sizes:an experimental study. Acta Orthop Belg.2004,6(2):598-603.
    [120]Kurashina K, Kurita H, Wu Q, et al. Ectopic osteogenesis with biphasic ceramics of hydroxyaptite and tricalcium phosphate in rabbits. Biomaterials.2002,23(15):407-412.
    [121]Yuan H P, Hurushina K, Bruijin J D, et al. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials.1999,20(4):1799-1086.
    [122]Li J P, Pamela H, Huipin Y, et al. Biological performance in goats of a porous titanium alloy-biphasic calcium phosphate composite. Biomaterials.2007,28(6):4209-4218.
    [123]Dong J, Uemura T, Kikuchi U. Long-term durability of porous hydroxyapatite with low-pressure system to support osteogenesis of mesenchymal stemcells. Biomed MaterEng.2002,2(8):203-209.
    [124]Chen Q Z, Wong C T, Lu W W, et al. Strengthening Mechanisms of Bone Bonding to Crystalline Hydroxyapatite in Vivo. Biomaterials.2004,25(7):4243-4254.
    [125]Gronthos S. Rec onstruction of human mandible by tissue engineering. Lancet.2004, 364(9436):735-736.
    [126]Stevens M M, Marini R P, Schaefer D, et al. In vivo engineering of organs:the bone bioreactor. Proc Natl Acad Sci.2005,102(32):11450-11455.
    [127]Hoenig M R, Campbell G R, Rolfe B E, et al. Tissue-engineered blood vessels:alternative to autologous grafts. Arterioscler Thromb Vasc Biol.2005,25(6):1128-1134.
    [128]Pieper J S, Vail P B, Van M J, et al. Attachment of glycosaminoglycans to collagenous matrices modulates the tissue response in rats. Biomaterial.2000,21(31):1689-1690.
    [129]Takaoka K. Nakahara H. Eetopic bone induction on and in porous hydroxyapatite combined with collagen and bone morphogenetic protein. Clin Orthop.1998,234(11):250-254.
    [130]Pamela H, Huipin Y, Chantal M, et al.3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials 26 (2005):3565-3575.
    [131]Antikainen T, Kallioinen M, Pohjonen T, et al. Polyglycolic acid membrane interpositioning for the prevention of skull deformity following experimental craniosynostosis. Pediatr Neurosurg. 1994;21(1):77-82.
    [132]De Oliveira JF, De Aguiar PF, Rossi AM, et al. Effect of process parameters on the characteristics of porous calcium phosphate ceramics for bone tissue scaffolds. Artif Organs.2003 May;27(5):406-11.
    [133]Ramires P A, Romito A. The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour. Biomaterials.2001,22:1467-1474
    [134]Oh S, Brammer KS, Li YS, et al. Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci USA,2009 Feb 17;106(7);2130-2135.
    [135]Casabona F, Martin I, Muraglia A, et al. Prefabricated engineered bone flaps:an experimental model of tissue reconstruction in plastic surgery. Plast Reconstr Surg.1998 Mar; 101(3):577-81.
    [136]Jingushi S, Jingushi K, Iwamoto Y, et al. In vivo banking for vascularized autograft bone by intramuscular inoculation of recombinant human bone morphogenetic protein-2 and beta-tricalcium phosphate. J Orthop Sci.2006 May;11(3):283-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700